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Foliations by planes and Lie group actions

by J. A. Álvarez López (Santiago de Compostela),
J. L. Arraut (São Carlos) and C. Biasi (São Carlos)

Abstract. Let N be a closed orientable n-manifold, n ≥ 3, and K a compact non-
empty subset. We prove that the existence of a transversally orientable codimension one
foliation on N \K with leaves homeomorphic to Rn−1, in the relative topology, implies
that K must be connected. If in addition one imposes some restrictions on the homology
of K, then N must be a homotopy sphere. Next we consider C2 actions of a Lie group
diffeomorphic to Rn−1 on N and obtain our main result: if K, the set of singular points
of the action, is a finite non-empty subset, then K contains only one point and N is
homeomorphic to Sn.

1. Introduction. A codimension one C2 foliation defined on an n-
manifold such that all leaves are diffeomorphic to Rn−1 is called a folia-
tion by planes. Two foliated manifolds (V,F) and (V ′,F ′) are said to be
Cr-conjugate if there exists a Cr homeomorphism h : V → V ′ that takes
leaves of F onto leaves of F ′. In this paper we first consider foliations by
planes on a closed manifold N minus a compact set K. The results obtained
apply to the case of a singular foliation on N defined by a C2 integrable
1-form for which all regular leaves are planes that cluster in K, which is the
union of all singular leaves. The conclusions, listed below, suggest that very
few closed manifolds admit singular foliations by planes. Next, we apply the
same techniques to obtain information on the singular set of a C2 action of
a non-compact simply connected Lie group on a closed n-manifold N . It is
well known that the singular set of a C2 action of R on N is generically a
finite subset, but very little is known when the group acting is diffeomor-
phic to Rn−1. Here we prove (see Theorem 2.9) that the singular set K of a
C2 action of a Lie group G diffeomorphic to Rn−1 on N cannot be a finite
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non-empty set unless N is homeomorphic to Sn, and in this case K contains
exactly one point. What is generically the singular set of those actions is an
open and difficult question.

2. Statements of the results. Given a manifold M we shall denote by
M∗ its one-point compactification and by P : M̃ →M its universal covering
map. If A is a subset of M , define Ã = P−1(A). If F is a foliation of M ,
then its lift to M̃ will be denoted by F̃ .

Proposition 2.1. Let M be an n-manifold foliated by planes. Then
π1(M) is torsion-free.

Proposition 2.2. Let M be an open connected n-manifold , n ≥ 3,
and K a closed subset such that π1(M \ K) is finitely generated. If there
exists a transversely orientable foliation of M \K by planes such that each
leaf is closed , then K∗ is connected.

Corollary 2.3. Under the hypothesis of Proposition 2.2:

(i) If K 6= ∅, then no connected component of K is compact. In partic-
ular , if K is compact , then K = ∅.

(ii) If dimtopK = 0, then K = ∅.
Proposition 2.4. Let N be a closed , connected and orientable n-mani-

fold , n ≥ 3, and K a compact non-empty subset. If π1(N \ K) is finitely
generated and there exists a transversely orientable foliation of N \ K by
planes such that each leaf is closed , then K is connected.

Due to Proposition 2.4, there is no loss of generality if one assumes, in
the next two theorems, that K is connected.

Recall that a space is called a homology sphere when its homology is
isomorphic to the homology of some sphere, and it is called a homotopy
sphere if its homotopy groups are isomorphic to the corresponding homotopy
groups of some sphere.

Theorem 2.5. Let N be a closed , connected and orientable n-manifold ,
n ≥ 3, and K ⊂ N a non-empty , compact and connected ANR. Assume
that Hp(K;Z) = 0 for 0 < p ≤ [n/2]. If π1(N \K) is finitely generated and
there exists a transversely orientable foliation of N \K by planes such that
each leaf is closed , then N is a homology sphere.

Theorem 2.6. Let N and K be as in Theorem 2.5 and assume, more-
over , that Hn−2(K;Z) = 0 and dimtopK ≤ n − 2. Then N is a homotopy
sphere for n = 3, and homeomorphic to Sn if n ≥ 4.

Corollary 2.7. Let N be a closed , connected and orientable n-mani-
fold , n ≥ 3, and K a non-empty compact subset with dimtopK = 0. If
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π1(N \ K) is finitely generated and there exists a transversely orientable
foliation of N \K by planes such that each leaf is closed , then:

(i) K contains only one point ,
(ii) N is homeomorphic to Sn.

Theorem 2.8. Let N be a closed , connected and orientable 3-manifold ,
and K a circle embedded in N . Suppose that there exists a transversally
orientable foliation of N \K by planes such that each leaf is closed. Then
N admits a Heegaard diagram of genus one, and therefore π1(N) is a cyclic
group. Moreover :

(i) if π1(N) = 0, then N is homeomorphic to S3,
(ii) if π1(N) = Z, then N is homeomorphic to S1 × S2.

Now, let G denote a Lie group diffeomorphic to Rn−1. For n − 1 = 2,
there are two such Lie groups: R2 and the group A2 of orientation preserving
affine transformations of R. Given an action A : N × G → N , a point p is
said to be a singular point of A if the orbit of p has topological dimension
strictly less than n−1. In the following propositions it will not be necessary
to assume that N is orientable. Also, instead of assuming that N \ K is
foliated by planes, we shall assume that on N there is given a C2 action of
a Lie group diffeomorphic to Rn−1.

Theorem 2.9. Let N be a closed and connected n-manifold , n ≥ 3, with
a C2 action of a Lie group G diffeomorphic to Rn−1. Assume that the set
K of singular points of the action is non-empty and finite. Then:

(i) K contains only one point ,
(ii) N is homeomorphic to Sn.

Corollary 2.10. Let N be a closed and connected n-manifold , n ≥ 3,
with a C2 action of a Lie group G diffeomorphic to Rn−1. Assume that K
is composed of k orbits with k 6= 0. Then:

(i) if N 6= Sn then at least one orbit has dimension greater than or equal
to one,

(ii) if N = Sn and k ≥ 2, then at least one orbit has dimension greater
than or equal to one.

Theorem 2.11. Let N be a closed and connected n-manifold , n ≥ 3,
with a C2 action of a Lie group G diffeomorphic to Rn−1. Assume that the
singular set K of the action is a Whitney stratified set that contains at least
one stratum of dimension n− 2. If Ai is a connected component of K with
dimAi ≤ n − 3, then the homomorphism π1(Ai) → π1(N), induced by the
inclusion map Ai ↪→ N , is not the zero map.
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Corollary 2.12. Let N be a closed orientable 3-manifold with a C2

action of a Lie group G diffeomorphic to R2. Assume that the singular set
K of the action is a Whitney stratified non-empty set. Then:

(i) if dimK = 0, then N = S3 and K contains only one point ;
(ii) if dimK = 1, then K does not contain isolated points.

3. Examples

Example 3.1. Consider the singular foliation of S2 whose regular leaves
are the meridians and the singular ones are the poles P1 and P2, and form
the product S2 × [0, 1]. Next, identify each (x, 1) with (ψ(x), 0), where ψ :
S2 → S2 is a rotation, fixing the poles, of angle α such that the numbers α
and 2π are linearly independent over Q. In this way one obtains a foliation
of N = S2 × S1 by planes with singular set K = ({P1}× S1)∪ ({P2}× S1),
which is not connected. Notice that here the regular leaves are not closed in
N \K, instead they are dense in N .

Example 3.2. Let (x1, . . . , xn) be the standard coordinates of Rn, and
let r2 = x2

1+. . .+x2
n. Then the form dxn defines a foliation of Rn = Sn\{∞}

by closed planes, and the form e−r
2
dxn defines a singular foliation of Sn by

planes with {∞} as the only singular leaf.

Example 3.3. Let Sn = {x ∈ Rn+1 | x2
1+. . .+x2

n = 1}, F = (0, . . . , 0, 1),
Rn = {x ∈ Rn+1 | xn+1 = 0}, and P : Sn \ F → Rn be the projection with
F as focus. The vector fields P−1

∗ (∂/∂xj), 1 ≤ j ≤ n− 1, defined on Sn \ F
extend to C∞ vector fields Xj on Sn and clearly any two of them commute.
They define an action of Rn−1 on Sn where all regular orbits are planes that
cluster at the stationary point F .

Example 3.4. Consider the following three foliations on S1 × D2, the
compact solid torus. Using (φ, (x, y)) as coordinates, put ω1 = dφ and ω2 =
q∗(−y dx+x dy), where q : S1×D2 → D2 is the projection. The leaves of the
foliation F1 defined by ω1 are the disks {φ} ×D2. The regular leaves of the
foliation F2 defined by ω2 are of the form S1 × {ray}, and the singular leaf
is the central circle K = S1×{0}. F3 is obtained from F1 by turbulizing the
disks along the central circle. Now consider a copy of the solid torus with
the foliation F1 and another copy with F2, and identify their boundaries
through the map that sends meridians onto parallels. One obtains a foliation
of S3 \K by closed planes. If one uses F1 on one copy and F3 on the other
and identify by means of the identity map of the boundary, then one obtains
a foliation of (S1 × S2) \K by closed planes.
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4. Proofs of the results. In this section, we give the proof of the
statements of Section 2. In [6], Palmeira studied foliations by planes on
open manifolds. He proved the following theorem.

Theorem 4.1. If V is an orientable open n-manifold , n ≥ 3, which has
a finitely generated fundamental group and with a transversely orientable C2

foliation F by closed planes, then there exists an orientable surface Σ and an
orientable one-dimensional foliation F0 of Σ such that (V,F) is conjugate
by a diffeomorphism to (Σ×Rn−2,F0×Rn−2). When V is simply connected
it is not necessary to assume either that F is transversely orientable or that
the leaves are closed , and moreover Σ = R2 in this case.

Remark 1. In Theorem 4.1, each connected component ofΣ can only be
an open surface or a torus S1×S1. Since the leaves of F0 are homeomorphic
to R and closed in Σ, it follows that no connected component of Σ is a
torus. So all connected components of Σ are open surfaces.

We start with a corollary that translates Theorem 4.1 into cohomological
information.

Corollary 4.2. If V and F are as in Theorem 4.1, then Hp(V ) = 0
and Hp(V ) = 0 for p ≥ 2.

Proof. By Theorem 4.1, there exists an orientable surface Σ and an
orientable one dimensional foliation F0 of Σ such that (V,F) is conjugate
by a diffeomorphism to (Σ×Rn−2,F0×Rn−2). In particular, V and Σ have
the same homotopy type, and thus Hp(V ) ∼= Hp(Σ) for each p. Moreover
all connected components of Σ are open surfaces by Remark 1, and thus
Hp(V ) ∼= Hp(Σ) = 0 and Hp(V ) ∼= Hp(Σ) = 0 for each p ≥ 2.

Proof of Proposition 2.1. To prove that π1(M) is torsion-free, it is enough
to show that its only finite subgroup is the trivial one. Let F denote the foli-
ation of M by planes, let H be a finite subgroup of π1(M), and let k denote
the number of elements of H. Let M̃ → M be the universal covering map,
and let M̂ →M be the covering map associated to H, i.e., π1(M̂) = H. Let
F̃ and F̂ be the foliations of M̃ and of M̂ induced by F ; both are foliations
by planes. We have M̃ = Rn by the last part of Theorem 4.1. Then the
Euler characteristics of M̃ and M̂ satisfy

1 = χ(Rn) = χ(M̃) = k · χ(M̂), χ(M̂) ∈ Z,
yielding k = 1 and H = 0.

Proof of Proposition 2.2. Consider the exact sequence of Čech cohomol-
ogy groups with coefficients in Z2:

(1) H0(M∗,K∗)→ H0(M∗)→ H0(K∗)→ H1(M∗,K∗)→ . . .
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The pair (M∗,K∗) is a relative manifold, i.e., M ∗ is Hausdorff and com-
pact, K∗ ⊂ M∗ is closed and M∗ \K∗ is an n-manifold. Then we have the
isomorphisms

Hp(M∗,K∗) ∼= Hn−p(M∗ \K∗) = Hn−p(M \K)

for 0 ≤ p ≤ n, given by the Alexander–Čech duality. If we replace
H0(M∗,K∗) by Hn(M \K) and H1(M∗,K∗) by Hn−1(M \K) in the exact
sequence (1), and use Corollary 4.2 with V = M \K, we get the short exact
sequence

0→ Z2 → H0(K)→ 0.

Thus H0(K) = Z2, and consequently K∗ is connected.

Proof of Proposition 2.4. Consider the exact sequence of singular homol-
ogy groups with coefficients in Z:

(2) . . .→Hp+1(N,N \K)→Hp(N \K)→Hp(N)→Hp(N,N \K)→ . . .

and the isomorphisms

Hp(N,N \K) ∼= Hn−p(K)

for 0 ≤ p ≤ n, given by Alexander–Poincaré duality. We are using Čech
cohomology for K. Then, by replacing Hn(N,N \K) by H0(K) in the exact
sequence (2), and by using Corollary 4.2 with V = N \K, one obtains the
short exact sequence

0→ Z→ H0(K)→ 0.

Thus H0(K) ∼= Z, and consequently K is connected.

Proof of Theorem 2.5. Consider the singular homology exact sequence
of the pair (N,K) with coefficients in Z:

. . .→ Hp(K)→ Hp(N)→ Hp(N,K)→ Hp−1(K)→ . . . ,(3)

and also the homology and cohomology groups of N \K. Since K is an ANR
(absolute neighbourhood retract) we have, by duality, the isomorphisms

Hp(N,K) ∼= Hn−p(N \K)

for p ≥ 0. Therefore the exact sequence (3) can be written as

. . .→ Hp(K)→ Hp(N)→ Hn−p(N \K)→ Hp−1(K)→ . . .(4)

By assumption, we have Hp(K) = 0 for 1 ≤ p ≤ [n/2]. Moreover
Hn−p(N \ K) = 0 for 1 ≤ p ≤ [n/2] by Corollary 4.2 since n − p ≥ 2.
From (4) we obtain Hp(N) = 0 for 1 ≤ p ≤ [n/2], yielding Hn−p(N) = 0 by
Poincaré duality. Hence Hp(N) = 0 for 1 ≤ p ≤ n− 1 since we can write

Hp(N) = Fp ⊕ Tp, Hp(N) = Fp ⊕ Tp−1,

where F denotes the free part and T the torsion part (see e.g. [3, p. 136]).
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Proof of Theorem 2.6. We already know, by Theorem 2.5, that N is a
homology sphere. To see that N is a homotopy sphere, it is enough to prove
that π1(N) = 0. This simplification can be proved as follows. Since N is a
homology sphere and a closed connected oriented n-manifold, its homology
is isomorphic to the homology of Sn. Hence πi(N) = 0 for 0 < i < n and
πn(N) ∼= Z by the Hurewicz isomorphism theorem [8, pp. 397–398]. Then,
for any map f : Sn → N representing a generator of πn(N), the induced
map f∗ : Hn(Sn) → Hn(N) is an isomorphism, and thus f∗ : Hi(Sn) →
Hi(N) is an isomorphism for all i. Therefore πi(f) : πi(Sn) → πi(N) is
an isomorphism for all i by the Whitehead theorem [8, p. 399], which is a
consequence of the Hurewicz isomorphism theorem.

From the exact sequence (2), using Hn−2(K) = 0 and H1(N) = 0, one
obtains H1(N \ K) = H1(Σ) = 0 with the notation of Theorem 4.1 for
V = N \K. So Σ is diffeomorphic to R2, and thus N \K is diffeomorphic
to Rn, yielding π1(N \ K) = 0. Finally, since dimtopK ≤ n − 2 and N is
a Cantor manifold [5, p. 93], it follows that the map π1(N \ K) → π1(N)
induced by the inclusion is surjective, and consequently π1(N) = 0 as de-
sired. The fact that N is homeomorphic to Sn for n ≥ 4 follows from
the celebrated theorems of Freedman [1] (for n = 4) and Smale [7] (for
n ≥ 5).

Proof of Corollary 2.7. K is connected by Proposition 2.4. So K reduces
to a point since dimtopK = 0. By Theorem 2.6, N is a homotopy sphere,
and therefore homeomorphic to Sn for n ≥ 4. For n = 3, the fact that K is
a point and N \K is homeomorphic to R3 implies that N is homeomorphic
to S3 as well.

Proof of Theorem 2.8. Let T (K) be an open tubular neighbourhood of
K diffeomorphic to the solid torus S1×D2, and let V = N \T (K). Observe
that N \ K is homotopic to N \ T (K), which is a compact manifold with
boundary, and thus π1(N \K) is finitely generated. Since V is diffeomorphic
to N \K, we see that V satisfies the assumptions of Theorem 4.1. There-
fore V is diffeomorphic to Σ × R for some connected orientable surface Σ,
which is open by Remark 1. We have Hp(V ) = Hp(Σ) = 0 for p ≥ 2 by
Corollary 4.2. From the formula χ(N) = χ(V )−χ(T (K)), which relates the
Euler characteristics, the Betti numbers of Σ satisfy

0 = β0(Σ)− β1(Σ) = 1− β1(Σ),

i.e., β1(Σ) = 1. Since the first Betti number is a complete invariant for
connected orientable surfaces when it is finite, it follows that Σ is homeo-
morphic to S1 × (0, 1), and consequently V is homeomorphic to S1 × D2.
Thus N is obtained by pasting two copies of S1 ×D2, which means that N
admits a Heegaard splitting of genus one.
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Proof of Theorem 2.9. Let Ñ be the universal covering space of N . Since
G is simply connected, the C2 action of G on N lifts to a C2 action of G
on Ñ . The singular points of this action on Ñ are those over points in K,
and they form a discrete subset K̃ ⊂ Ñ . Moreover this action on Ñ defines
a foliation F̃ on Ñ \ K̃, which is the lift of F .

For any leaf L of F̃ , consider the homomorphism π1(j) : π1(L) →
π1(Ñ \ K̃) induced by the inclusion map j : L ↪→ Ñ \ K̃. On the one
hand, we know that π1(Ñ \ K̃) ∼= π1(Ñ) = 0. On the other hand, π1(j) is
injective. In fact, if π1(j) were not injective, then F̃ would have a vanishing
cycle by a theorem of Novikov [2, p. 265]; but a foliation defined by a lo-
cally free action of a Lie group has no vanishing cycles [2, p. 270]. Therefore
π1(L) = 0, and thus the isotropy group at any point of L is trivial. So L is
diffeomorphic to G, and thus to Rn−1; i.e., F̃ is a foliation by planes. More-
over the leaves of F̃ are closed in Ñ \ K̃ [2, p. 270]. Then, by Theorem 4.1,
Ñ \ K̃ is diffeomorphic to Rn, which has only one end. But any point of K̃
can be considered as an end of Ñ \ K̃ because K̃ is discrete in Ñ , which
shows that K̃ contains only one point. Hence K contains only one point as
well, and Ñ is a one-fold covering of N , i.e., Ñ = N . So N is the one-point
compactification of Rn, and thus homeomorphic to Sn.

Proof of Theorem 2.11. Recall that the dimension of a Whitney stratified
set X is the maximum of the dimensions of its strata, which equals its
topological dimension because X is triangulable according to a result of
M. Goresky.

Consider the decomposition of K into its connected components, which
are also Whitney stratified sets:

K = A1 ∪ . . . ∪ Aα ∪B1 ∪ . . . ∪Bβ ,
where dimAi ≤ n − 3, i = 1, . . . , α, and dimBj = n − 2, j = 1, . . . , β. Let
A = A1 ∪ . . . ∪ Aα and B = B1 ∪ . . . ∪ Bβ. By assumption B 6= ∅, thus
M = N \ B is an open manifold because B is compact. Since G is simply
connected, the C2 action of G on M can be lifted to a C2 action of G on M̃ .
The singular set Ã of this action is the inverse image of A. Consider the
commutative diagram induced by inclusions and projections

π1(M̃ \ Ã) //

injective

��

π1(M̃)

injective

��
π1(M \ A) // π1(M)

Note that M is homotopic to a compact manifold with boundary (the com-
plement in N of an appropriate open neighbourhood of B); so π1(M) is
finitely generated. It follows that the map π1(M \ A) → π1(M) is an iso-
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morphism since dimA ≤ n−3 (A is a finite union of manifolds of dimension
≤ n− 3). Therefore π1(M̃ \ Ã) = 0. Let F be the foliation of M \A defined
by the orbits of the action. One deduces, as in the proof of Theorem 2.9,
that F̃ is transversely orientable with closed leaves. Then M̃ \ Ã is diffeo-
morphic to Rn by Theorem 4.1, and (Ã)∗ is connected by Proposition 2.2. It
follows that each Ãi is non-compact, and thus the projection Ãi → Ai is a
non-trivial covering map. So π1(Ai)→ π1(N) is not the zero map because its
image can be canonically identified with the group of deck transformations
of Ãi → Ai.
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