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On asymptotic solutions of analytic equations

by Jacek Stasica (Kraków)

Abstract. Sufficient conditions for the existence of an analytic solution of analytic
equations in the complex and real cases are given.

1. Introduction. Let K = R or C. We will denote by K{x} the ring
of convergent power series in the variables x = (x1, . . . , xn) with coefficients
in K, and by K[[x]] the formal power series ring. We will denote by m the
maximal ideal of K{x}, and by m̂ the maximal ideal of K[[x]]. Consider an
arbitrary system of analytic equations:

f(x, y) = 0,(1.1)

where f ∈ K{x, y}s, x = (x1, . . . , xn) and y = (y1, . . . , yp). We ask for solu-
tions of (1.1) in which yν are convergent series in x. M. Artin showed in [A1]
that any formal solution of (1.1) can be approximated to any desired degree
of accuracy (in the (x)-adic topology) by a convergent solution. Namely we
have

Artin’s Approximation Theorem. Let f = (f1, . . . , fs) ∈ K{x, y}s
be such that f(0, 0) = 0. Consider a solution ŷ(x) = (ŷ1(x), . . . , ŷp(x)) ∈
K[[x]]p of the system f(x, y) = 0. Then for every integer L ≥ 1 there exists
a solution y(x) = (y1(x), . . . , yp(x)) ∈ K{x}p of f(x, y) = 0 such that y(x) =
ŷ(x) (mod m̂L) (the congruence just means that the coefficients of monomials
of degree less than L are the same in yν(x) and ŷν(x)).

The Artin Theorem is indispensable in the study of complex analytic
structures, particularly in deformation theory where it is used to provide
a transition from formal information to “actual” (i.e. convergent) informa-
tion. There are some improvements of this theorem essentially stating that
to determine whether a convergent solution exists one needs only a finite
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amount of information (compare with [W] and [A2] in the polynomial case)
or sharper results with parameters (see [P]).

In this paper, for a fixed holomorphic function F (z, t) defined in a neigh-
borhood of (a, b) ∈ Cn+1

z,t we show the existence of a number N ∈ N such
that the existence of a continuous quasi-solution g of order at least N (i.e.
F (z, g(z)) = O|z−a|N ) implies the existence of a holomorphic solution (i.e.
F (z, h(z)) ≡ 0 with some holomorphic function h defined in a neighborhood
of a, and h(a) = b).

By the Weierstrass Preparation Theorem we can assume that F (z, t) =
tk + a1(z)tk−1 + . . . + ak(z) and D(redF ) = HD0, where inf |H| > 0,
D0(u, s) = sr + b1(u)sr−1 + . . . + br(u). Let D(redD0)(u) =

∑
|µ|≥q cµu

µ

(cq 6= 0). In fact, we show that it suffices to take N > krq in our theorem.
For the convenience of the reader we recall some basic definitions.
Consider a monic polynomial P in t ∈ C whose coefficients a1, . . . , an

are holomorphic functions in an open subset Ω of Cn, i.e.

P (z, t) = tn + a1(z)tn−1 + . . .+ an(z).

The function

D(P )(z) =
∏

i<j

(ti(z)− tj(z))2 = (−1)(
k
2)

k∏

j=1

∂P

∂t
(z, tj(z)),

where t1(z), . . . , tk(z) is the complete sequence of roots of the polynomial
t 7→ P (z, t), is called the discriminant of the polynomial P .

We say that a holomorphic function f(z, t) in a neighborhood of zero in
Cn × C is t-regular if f(0, t) 6≡ 0 in a neighborhood of zero in C.

Let P (z, t) be a distinguished polynomial for which DP (z) ≡ 0 in some
neighborhood of 0 ∈ Cn. Then there exists a distinguished polynomial
redP (z, t) for which D(redP )(z) 6≡ 0 and {P = 0} = {redP = 0} in
some neighborhood of 0.

Observe that our Theorem 1 implies the Artin Theorem in the case
p = s = 1. Indeed, take N from our theorem for a convergent power se-
ries f . If f(z, y(z)) = 0 with some formal power series y(z) =

∑
aνz

ν ,
then f(z,

∑
ν≤m aνz

ν) ∈ mN for sufficiently large m. Hence, knowing that∑
ν≤m aνz

ν is a continuous function, we get from Theorem 1 a convergent
solution. As an application of Theorem 1 we also get a sufficient condition
for the existence of a Nash solution in the real case (compare with [G]).

2. Main result

Lemma 1. Let K0, K be open discs in C, K0 ⊂ K and a ∈ K0. Let
P (z, t) be a monic polynomial in t with coefficients holomorphic in K. As-
sume that D(P )(z) 6= 0 in K \ {a}. Then each function h holomorphic in
K \K0 for which P (z, h(z)) ≡ 0 extends holomorphically onto K.
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Proof. Each of the open sets Bν = K∩Πν , where Π1,Π2 and Π3,Π4 are
open halfplanes cut off from C by two different lines passing through a, is
homeomorphic to an open disc, hence each of the sets WBν = W ∩ (Bν×C),
where W = {P (z, t) = 0}, is a finite sum of graphs of holomorphic functions
on Bν . Therefore the restrictions of h to the open connected sets B0ν =
(K\K0)∩Πν has holomorphic extensions hν onto Bν , which are compatible.
Thus

⋃
hν is an extension of h, which extends holomorphically to a by the

Riemann Theorem.

Lemma 2. Let P (z, t) be a monic polynomial of degree k with holomor-
phic coefficients for which D(redP )(z) 6= 0 in an open set G ⊂ Cnz . Define

τ(z) := 1
2 min
i6=j
|ti(z)− tj(z)|, η(z, t) := min

i
|t− ti(z)|,

where t1(z), . . . , tl(z) is the sequence of all different roots of the polynomial
t 7→ P (z, t). If there exists a continuous function g for which η(z, g(z)) <
τ(z) in G, then there exists a holomorphic function h such that P (z, h(z))≡0
and |h(z)− g(z)| ≤ |P (z, g(z))|1/k in G.

Proof. It follows from the assumption that for each a ∈ G there exists
a uniquely determined root h(a) of the polynomial t 7→ P (a, t) such that
|h(a)−g(a)| < τ(a). Hence |h(a)−g(a)| = η(a, g(a)) ≤ |P (a, g(a))|1/k. Since
g is a continuous function, the implicit function theorem shows that the root
h(z) must coincide in some neighborhood of a with a holomorphic root t(z)
of the polynomial P .

Theorem 1. Let F (z, t) be a holomorphic function in a neighborhood of
(a, b) ∈ Cn+1

z,t , t-regular in (a, b), and let L > 0. Then there exists N ∈ N
such that if F (z, g(z)) = O(|z − a|N ) as z → a with some function g
continuous in a neighborhood of a such that g(a) = b, then there exists
a function h holomorphic in a neighborhood of a such that h(a) = b and
F (z, h(z)) ≡ 0. Moreover , if g is holomorphic, then h(z)−g(z) = O(|z−a|L)
as z → a.

Proof. We can assume that a = b = 0, and by the Weierstrass Prepara-
tion Theorem that F (z, t) = tk + a1(z)tk−1 + . . .+ ak(z) is a distinguished
polynomial of degree k > 0 with bounded holomorphic coefficients aj in
some open neighborhood Ω ×∆ of 0 ∈ Cn, where Ω ⊂ Cn−1

u and ∆ ⊂ C1
s,

z = (u, s). We can also assume that the polynomial redF has bounded
holomorphic coefficients in Ω × ∆ and that {F = 0} = {redF = 0}.
Moreover, by the Weierstrass Preparation Theorem we can assume that
D(redF ) = HD0 in Ω × ∆, where D0(u, s) = sr + b1(u)sr−1 + . . . + br(u)
is a distinguished polynomial with coefficients bj holomorphic and bounded
in Ω and inf |H| > 0 in Ω × ∆. Finally, we can assume that redD0 has
coefficients holomorphic and bounded in Ω. Take τ and η from Lemma 2 for
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the polynomial redF in the set D(redF ) 6= 0. Of course in this set we have
|D(redF )(z)| ≤ Mτ(z) with some constant M > 1 and |F (z, t)| ≥ η(z, t)k.
Hence, due to Lemma 2 for each open set G ⊂ {D(redF ) 6= 0} the inequal-
ity

(i) |F (z, g(z))| < M−k|D(redF )(z)|k

with some continuous function g onG gives us the existence of a holomorphic
root h of the polynomial F in G such that

(ii) |h(z)− g(z)| ≤ |F (z, g(z))|1/k in G.

Put |u| = σ. The roots of the polynomial s 7→ D0(u, s) are O(σ1/r). Hence,
if we take M sufficiently large, there exists δ > 0 such that for σ > 0
sufficiently small, on the set

Gσ := Bσ × (K ′σ \Kσ),

where Bσ = {|u| < 2δ}, Kσ = {|s| < Mσ1/r}, K ′σ = {|s| < 2Mσ1/r}, we
have the inequality |D0(u, s)| ≥ δσ and Gσ ⊂ Ω ×∆. Let D(redD0)(u) =∑
|µ|≥q cµu

µ. Hence there exists ε ∈ (0, 1) such that for sufficiently small
σ > 0 we have

max
|u|=σ

|D(redD0)(u)| ≥ 3εσq.

It follows that for some u0 with |u0| = σ, we have |D(redD0)(u)| ≥ 3εσq.
But when σ > 0 is sufficiently small, the roots si(u0) of the polynomial
s 7→ D0(u0, s) satisfy |si(u0)| ≤ 1/2 and therefore |si(u0) − sj(u0)| ≥ 3εσq

for si(u0) 6= sj(u0). Observe that for

Kσi = {|s− si(u0)| < εσk}
we have Kσi∩Kσj = ∅ (for different roots) and in the complement of

⋃
iKσi

we have the inequality |D0(u, s)| ≥ εrσrq. Finally, diminishing δ > 0, when
σ is sufficiently small, we have

|D(redF )(z)| ≥ δσrq

in
G = Gσ ∪

(
Uσ ×

(
Kσ \

⋃

i

Kσi

))
⊂ Ω ×∆

for some open neighborhood Uσ ⊂ Bσ of u0. If we take N > krq, the
condition F (z, g(z)) = O(|z|N) implies the inequality (i) for σ sufficiently
small. Then there exists a holomorphic root h of the polynomial F in G.
According to Lemma 1, if u ∈ Uσ, the function h(u, ·) extends holomorphi-
cally onto Kσ′ . Hence h extends holomorphically onto Uσ × Kσ′ (use the
Cauchy formula for h(u, ·) on {|s| = 3

2Mσ1/2}). Thus, from the Hartogs
Lemma, h extends holomorphically onto Bσ×Kσ′ . In case g is holomorphic
take moreover N > kLr. According to (ii) we have |h(z)− g(z)| ≤ M̃ |z|Lr
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with some M̃ in the set Gσ when σ is small enough. Hence in Gσ we
have the inequality |h(z) − g(z)| ≤ M ′σL with some constant M ′, and
due to the maximum principle this inequality also holds in Bσ × Kσ′ . So
h− g = O(|z|L).

Remark. From the above proof it is easy to see that if F (z, t) is a
polynomial monic in t, then the N ∈ N can be taken the same for all points
z ∈ Cn.

Theorem 2. Let Q(x, t) be a complex polynomial on Rn+1
x,t , monic in t.

Then there exists m > 0 such that if f, g are complex , continuous roots:
Q(x, f(x)) = Q(x, g(x)) = 0 in a neighborhood of a ∈ Rn, then

f(x)− g(x) = O(|x− a|m) ⇒ f = g

in a neighborhood of a.

Proof. We can assume that a = 0 and D(Q)(z) 6= 0 (replacing Q by
redQ). Obviously, when |x| ≤ 1 we have |t′′(x) − t′(x)| ≥ M |D(Q)(x)|
with some constant M for different roots t′′(x), t′(x) of the polynomial t 7→
Q(x, t). Take an open ball B = {|x| < R}, R < 1, in which f and g are
defined. The number of connected components of the set B ∩ {D(Q) 6= 0}
is finite and each connected component is semi-algebraic. Let S be one of
them. Assume that 0 ∈ S. The function

d : r 7→ sup
S(r)
|D(r)|,

where S(r) = S ∩ {|x| = r}, is positive semi-algebraic. Hence d(r) ≥ rm−1

in (0, δ) with m > 0 and δ > 0 common for all such components S. The
assumption f 6≡ g in each neighborhood of zero implies f 6= g on one of these
components S, because the set {f = g}∩S is open-closed in S. But |f(x)−
g(x)| ≥ M |D(Q)(x)| on S, which implies supS(r) |f(x) − g(x)| ≥ Mrm−1

for sufficiently small r. The last inequality contradicts our assumption that
f(x)− g(x) = O(|x|m).

Theorem 3. Let Q be a real polynomial on Rn+1
x,t , monic in t, and let

L > 0. Then there exists N ∈ N such that if Q(x, ψ(x)) = O(|x − a|N )
as x → a, with some real-analytic function ψ defined in a neighborhood of
a ∈ Rn, then there exists an analytic function ϕ defined in a neighborhood
of a ∈ Rn such that Q(x, ϕ(x)) ≡ 0 and ϕ− ψ = O(|x− a|L) as x→ a.

Proof. Replacing Q and ψ by their complexifications, and taking m from
Theorem 2 we get (due to Theorem 1 with L > m) a holomorphic function
ϕ defined in a neighborhood of a such that Q(z, ϕ(z)) ≡ 0 and ϕ − ψ =
O(|z − a|m). But then also Q(z, ϕ(z)) ≡ 0. Moreover ϕ− ψ = O(|z − a|m),
which implies ϕ− ϕ = O(|z − a|m). According to Theorem 2 we get ϕ = ϕ,
i.e. the function ϕ is real.
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