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On growth and zeros of differences of
some meromorphic functions

by Yong Liu (Shaoxing and Joensuu) and Hongxun Yi (Jinan)

Abstract. Let f be a transcendental meromorphic function and

gk(z) = f(z + c1) + · · · + f(z + ck) − kf(z),

G(z) =
f(z + c1) + f(z + c2) + · · · + f(z + ck) − kf(z)

f(z)
.

A number of results are obtained concerning zeros and fixed points of the difference gk(z)
and the divided difference G(z).

1. Introduction and main results. Recently, there has been an in-
creasing interest in studying difference equations in the complex plane. Hal-
burd and Korhonen [HK1, HK2] established a version of Nevanlinna theory
based on difference operators. Bergweiler and Langley [BL] investigated the

existence of zeros of 4f and 4f(z)f(z) , and obtained several profound and sig-

nificant results, which may be viewed as discrete analogues of the following
theorem on the zeros of f ′.

Theorem A ([BE, ELR, H]). Let f be transcendental and meromorphic
in the plane with

lim inf
r→∞

T (r, f)/r = 0.

Then f ′ has infinitely many zeros.

If f satisfies the hypotheses of Theorem A, by Hurwitz’s theorem we
know that if z0 is a zero of f ′(z) then 4cf(z) = f(z + c)− f(z) has a zero
near z0 for all sufficiently small c ∈ C\{0}. Hence it is natural to ask whether
4cf(z) must have infinitely many zeros or not. Bergweiler and Langley [BL]
answered this problem, and obtained the following theorems.
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Theorem B ([BL]). There exists δ0 ∈ (0, 1/2) with the following prop-
erty. Let f be a transcendental entire function with

ρ(f) ≤ ρ < 1/2 + δ0 < 1.

Then

G(z) =
f(z + 1)− f(z)

f(z)

has infinitely many zeros.

Here ρ(f) denotes the order of growth of the meromorphic function f(z).
In what follows λ(f) and λ(1/f) denote the exponents of convergence of the
zeros and poles of f(z), respectively. In this paper, we shall assume that
the reader is familiar with the basic concepts of Nevanlinna theory (see
[H1, YY]).

Theorem C ([BL]). Let f be a function transcendental and meromor-
phic of lower order µ(f) < 1 in the plane. Let c ∈ C \ {0} be such that
at most finitely many poles zj , zk of f satisfy zj − zk = c. Then 4cf(z) =
f(z + c)− f(z) has infinitely many zeros.

Chen and Shon [CS1] considered zeros and fixed points of differences
and divided differences of entire functions with ρ(f) = 1 and obtained the
following theorem.

Theorem D ([CS1]). Let c ∈ C\{0} and let f be a transcendental entire
function with ρ(f) = ρ = 1 that has infinitely many zeros with λ(f) = λ < 1.
Then 4cf(z) = f(z+c)−f(z) has infinitely many zeros and infinitely many
fixed points.

Recently, Chen and Shon [CS2] considered the following three problems:

(i) What conditions will guarantee that the difference f(z + c) − f(z)
has infinitely many zeros for a meromorphic function f?

(ii) What is the exponent of convergence of zeros of the difference
f(z + c)− f(z) if it has infinitely many zeros?

(iii) What can we say about the zeros of

f(z + c)− f(z)− l(z) and
f(z + c)− f(z)

f(z)
− l(z),

where l(z) is a polynomial?

For question (i), the following theorem shows that the conditions that
f satisfies λ(1/f) < λ(f) < 1 or has infinitely many zeros (with λ(f) = 0)
and finitely many poles will guarantee that the difference f(z + c) − f(z)
has infinitely many zeros, without any hypothesis on c.

Theorem E ([CS2]). Let c ∈ C\{0} be a constant and f a meromorphic
function of order of growth ρ(f) = ρ ≤ 1. Suppose that f satisfies λ(1/f) <
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λ(f) < 1 or has infinitely many zeros (with λ(f) = 0) and finitely many
poles. Then

4cf(z) = f(z + c)− f(z)

has infinitely many zeros and satisfies λ(4cf) = λ(f).

Concerning question (ii), Theorem E also shows that if f(z + c)− f(z)
has infinitely many zeros, then λ(f(z + c)− f(z)) = λ(f)

As for question (iii), the following two theorems show that

f(z + c)− f(z)− l(z) and
f(z + c)− f(z)

f(z)
− l(z)

have infinitely many zeros, respectively.

Theorem F ([CS2]). Let c and f(z) satisfy the conditions of Theorem E.
Suppose that l(z) is a polynomial. Then 4cf(z) − l(z) has infinitely many
zeros and satisfies λ(4cf − l) = ρ(f).

Theorem G ([CS2]). Let c ∈ C \ {0} be a constant and f a transcen-
dental meromorphic function of order of growth ρ(f) = ρ < 1 or of the
form f(z) = h(z)eaz where a 6= 0 is a constant and h(z) is a transcendental
moromorphic function with ρ(h) < 1. Suppose that l(z) is a nonconstant
polynomial. Then

G1(z) =
f(z + c)− f(z)

f(z)
− l(z)

has infinitely many zeros.

The aim of the paper is to generalize Theorems E–G. In [CS2], Chen
and Shon consider the zeros of the differences 4cf(z) under the assumption
ρ(f) ≤ 1. We study the zeros of the sum gk(z) = 4c1f(z) + · · · +4ckf(z)
under the assumption ρ(f) < ∞. In particular, we study the densities of

the zeros of gk(z)− l(z) and of Gk(z) = f(z+c1)+···+f(z+ck)−kf(z)
f(z) − l(z). We

prove the following three theorems.

Theorem 1.1. Let f(z) be a finite order meromorphic function with
λ(1/f) < λ(f) < 1. Let c1, . . . , ck ∈ C \ {0} be such that c1 + · · · + ck 6= 0,
let gk(z) = f(z+ c1) + · · ·+ f(z+ ck)−kf(z), and suppose gk(z) 6≡ 0. Then:

(i) If ρ(f) = ρ < 1, we have λ(gk) = λ(f).
(ii) If 1 ≤ ρ(f) = ρ <∞, we have λ(gk) ≥ λ(f).

Theorem 1.2. Let f, cj (j = 1, . . . , k), gk(z) satisfy the conditions of
Theorem 1.1. Suppose that l(z) is a nonconstant polynomial, and let gk(z, L)
:= gk(z)− l(z). Then:

(i) If ρ(f) < 1, we have λ(gk(z, L)) = ρ(f).
(ii) If 1 ≤ ρ(f) <∞, we have λ(gk(z, L)) ≥ 1.
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Theorem 1.3. Let f be a transcendental meromorphic function of order
of growth ρ(f) = ρ < 1 or of the form f(z) = h(z)eaz where a 6= 0 is a
constant and h(z) is a transcendental meromorphic function with ρ(h) < 1.
Let c1, . . . , ck ∈ C \ {0} be such that c1 + · · · + ck 6= 0. Suppose that l(z) is
a nonconstant polynomial. Then

(1.3) Gk(z) =
f(z + c1) + · · ·+ f(z + ck)− kf(z)

f(z)
− l(z)

has infinitely many zeros.

Remark. In the special case when l(z) = z, one obtains results on fixed
points.

2. Some lemmas. In order to prove our theorems, we need the following
lemmas and notions.

Following Hayman [H2, pp. 75–76], we define an ε-set to be a countable
union of open discs not containing the origin and subtending angles at the
origin whose sum is finite. If E is an ε-set then the set of r ≥ 1 for which the
circle S(0, r) = {z ∈ C : |z| = r} meets E has finite logarithmic measure,
and for almost all real θ the intersection of E with the ray arg z = θ is
bounded.

Bergweiler and Langley [BL] have shown that differences of meromorphic
functions of order less than one behave asymptotically like their derivatives
in the complex plane.

Lemma 2.1 ([BL]). Let f be transcendental and meromorphic of order
less than 1 in the plane. Let h > 0. Then there exists an ε-set E such that

f(z + c)− f(z) = cf ′(z)(1 + o(1)) as z →∞ in C \ E,
uniformly in c for |c| ≤ h.

The following lemma due to Bergweiler and Langley [BL] gives an asymp-
totic identity involving a meromorphic function of order less than one, its
derivative and its shift.

Lemma 2.2 ([BL]). Let f be a function transcendental and meromorphic
in the plane of order less than 1. Let h > 0. Then there exists an ε-set E
such that

f ′(z + c)

f(z + c)
→ 0,

f(z + c)

f(z)
→ 1 as z →∞ in C \ E,

uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z not
in E the function f has no zeros or poles in |ς − z| ≤ h.

In Lemma 2.1 of [BL], Bergweiler and Langley prove that 4f(z) =

f(z + c) − f(z) and 4f(z)
f are both transcendental. The following lemma
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is a generalization of Lemma 2.1 of [BL] and states that gk(z) = 4c1f(z) +
· · ·+4ckf(z) and G(z) = gk(z)/f(z) are also transcendental.

Lemma 2.3. Let f be a transcendental meromorphic function with ρ(f)
= ρ < 1. Let c1, . . . , ck ∈ C \ {0} be such that c1 + · · ·+ ck 6= 0. Then gk(z)
and G(z) = gk(z)/f(z) are both transcendental.

Proof. Without loss of generality, it may be assumed that c1 = 1 and
Re c2 = min{Re ci : i = 2, . . . , k}. Assume that gk(z) is a rational function.
Then

(2.1) f(z + 1) + f(z + c2) + · · ·+ f(z + ck) = R(z) + kf(z),

where R(z) is a rational function. Suppose that A = {xj + iyj : j = 1, . . . , s}
consists of all poles of R(z).

Set

M = 2 max{|xj |+ |yj |+ 1 + · · ·+ |ck| : j = 1, . . . , s}

and

D1 = {z : Re z > M}, D2 = {z : Re z < −M},
D3 = {z : Im z > M}, D4 = {z : Im z < −M}.

Now we prove that f(z) has at most finitely many poles. Suppose, contrary
to the assertion, that f(z) has infinitely many poles. Then there is at least
one Dj such that f(z) has infinitely many poles in Dj .

If f(z) has infinitely many poles in D1, let z0 be one. If Re c2 ≥ 0, then
for each mi ∈ N, i = 1, . . . , k, zm1,...,mk = z0 +m1 +m2c2 + · · ·+mkck ∈ D1

and R(zm1,...,mk) 6=∞. By (2.1), we find that f(z) has an infinite sequence
of poles of the form

{zm1,...,mk = z0 +m1 +m2c2 + · · ·+mkck : mi ∈ N (1 ≤ i ≤ k)}.

Moreover, it can be seen from (2.1) that for each pole in this sequence
there is another pole within a distance of 1 + · · ·+ |ck|, and so λ(1/f) ≥ 1,
a contradiction.

If Re c2 < 0, and there exist some cj (2 ≤ j ≤ k) such that cj = c2;
without loss of generality, we may suppose that c2 = · · · = ct (2 ≤ t ≤ k).
Then we can rewrite (2.1) as

(2.2) f(z + 1− c2) + f(z + ct+1 − c2) + · · ·+ f(z + ck − c2)− kf(z − c2)
= R(z − c2)− (t− 1)f(z).

For each mi ∈ N, i = 1, 2, t+ 1, . . . , k,

z∗m1,m2,mt+1,...,mk
= z0 +m1(1− c2)−m2c2

+mt+1(ct+1 − c2) + · · ·+mk(ck − c2) ∈ D1
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and R(z∗m1,m2,mt+1,··· ,mk) 6=∞. From (2.2), we find that f(z) has an infinite
sequence of poles of the form

{z∗m1,m2,mt+1,··· ,mk = z0 +m1(1− c2)−m2c2 +mt+1(ct+1 − c2)
+ · · ·+mk(ck − c2), mi ∈ N (i = 1, 2, t+ 1, . . . , k)}.

So λ(1/f) ≥ 1, a contradiction.
If f has infinitely many poles in D2 (or D3, or D4), using a similar

method, we obtain λ(1/f) ≥ 1, a contradiction. Hence f has at most finitely
many poles.

Thus, there exists a rational function R1 such that h(z) = f(z)−R1(z)
is a transcendental entire function. By (2.1), we have

(2.3) h(z + c1) + · · ·+ h(z + ck) = kh(z) + P (z),

where P (z) = R(z) + kR1(z)−R1(z+ c1)− · · ·−Rk(z+ ck). Since h(z+ cj)
(j = 1, . . . , k) and h(z) are entire functions, we infer that P (z) is a polyno-
mial. By Lemma 2.1, there exists an ε-set E such that

(2.4) h(z+cj)−h(z) = cjh
′(z)(1+o(1)) (j = 1, . . . , k) as z →∞ in C\E.

If P (z) ≡ 0, by (2.3) and (2.4), as z →∞ in C \ E, we have

(c1 + · · ·+ ck)h
′(z)(1 + o(1)) = 0,

and since c1+· · ·+ck 6= 0, we obtain h′(z) = 0 (as z 6∈ E). This is impossible.
Hence P (z) 6≡ 0. Set degP = l ≥ 0; then P (z) = czl(1+o(1)), where c (6= 0)
is a constant. By (2.3) and (2.4), as z →∞ in C \ E, we get

(c1 + · · ·+ ck)h
′(z)(1 + o(1)) = czl(1 + o(1)),

which contradicts the fact that h′(z) is transcendental.
Next, we assume that G(z) is a rational function. Then

f(z + c1) + · · ·+ f(z + ck)− kf(z)

f(z)
= θ(z),

where θ(z) is a rational function, By Lemma 2.1, there exists an ε-set E
such that

(2.5)
(c1 + · · ·+ ck)f

′(z)(1 + o(1))

f(z)
= θ(z) as z →∞ in C \ E;

however, since f(z) is transcendental and has either infinitely many poles or
infinitely many zeros, we conclude that f ′(z)/f(z) must be transcendental,
so (2.5) is impossible.

Remark. Lemma 2.3 is also proved in [LY], but the methods are partly
different.

The following lemma is the classical logarithmic derivative estimate due
to Gundersen [G].
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Lemma 2.4 ([G]). Let f be a transcendental meromorphic function with
ρ(f) = ρ < ∞. Let ε > 0 be a given constant. Then there exists a set
E ⊂ (1,∞) with finite logarithmic measure such that for all |z| 6∈ E ∪ [0, 1]
and for any integers k and j such that k > j ≥ 0, we have∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ−1+ε).
The following lemma is a generalization of Borel’s Theorem on combi-

nations of entire functions.

Lemma 2.5 ([YY, pp. 79–80]). Let fj(z) (j = 1, . . . , n) (n ≥ 2) be
meromorphic functions, and suppose that there are entire functions gj(z)
(j = 1, . . . , n) that satisfy:

(i) f1(z)e
g1(z) + · · ·+ fk(z)e

gk(z) ≡ 0.
(ii) When 1 ≤ j < k ≤ n, then gj(z)− gk(z) is not a constant.
(iii) When 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, then

T (r, fj) = o{T (r, egh−gk)} (r →∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic
measure.

Then fj ≡ 0 (j = 1, . . . , n).

3. Proof of Theorem 1.1

Proof of Claim (i). Suppose that λ(1/f) < λ(f) < 1 and ρ(f) < 1. By
Lemma 2.3, gk(z) is transcendental. Let f(z) = u(z)/v(z), where u(z) and
v(z) are the canonical products (v(z) may be a polynomial) formed by the
zeros and the poles of f(z), respectively, and

λ(1/f) = λ(v) = ρ(v) < λ(f) = λ(u) = ρ(u).

By Lemma 2.1, there exists an ε-set E such that

(3.1) gk(z) = (c1 + · · ·+ ck)f
′(z)(1 + o(1)) as z →∞ in C \ E.

Set

H = {|z| : z ∈ E, gk(z) = 0 or f ′(z) = 0}.
Then H is of finite linear measure. By (3.1), for |z| = r 6∈ H, we obtain

|gk(z)− (c1 + · · ·+ ck)f
′(z)| = |o(1)(c1 + · · ·+ ck)f

′(z)|(3.2)

< |gk(z)|+ |(c1 + · · ·+ ck)f
′(z)|.

Thus gk(z) and −(c1 + · · · + ck)f
′(z) satisfy the assumptions of Rouché’s

theorem. Applying Rouché’s theorem and (3.2), for |z| = r 6∈ H we obtain

(3.3) n(r, 1/gk)− n(r, gk) = n(r, 1/f ′)− n(r, f ′).
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Since f ′ = (u′(z)v(z)− u(z)v′(z))/v2(z), λ(1/f) < λ(f) = ρ(f) < 1, and
ρ(f ′) = ρ(f), we have

λ(1/f ′) = λ(1/f) < λ(f) = ρ(f) = ρ(f ′).

From this and gk(z) = f(z + c1) + · · ·+ f(z + ck)− kf(z), we obtain

(3.4) λ(1/gk) ≤ λ(1/f) < λ(f) = λ(f ′).

Hence, with (3.3) and (3.4), we obtain

λ(gk) = λ(f ′) = λ(f).

Thus (i) holds.

Proof of Claim (ii). Since 1 ≤ ρ(f) < ∞ and λ(1/f) < λ(f) < 1, it
follows from the Hadamard factorization theorem that

f(z) = h(z)eP (z) =
u(z)

v(z)
eP (z),

where P (z) is a nonconstant polynomial, h(z) is a meromorphic function
such that h(z) = u(z)/v(z), u(z) and v(z) are the canonical products (v(z)
may be a polynomial) formed by the zeros and the poles of f(z), respectively,
and

λ(1/f) = λ(v) = ρ(v) = λ(1/h) < λ(f) = λ(u) = ρ(u) = λ(h) = ρ(h) < 1.

Hence

gk(z) = f(z + c1) + · · ·+ f(z + ck)− kf(z)

= h(z + c1)e
P (z)+R1(z) + · · ·+ h(z + ck)e

P (z)+Rk(z) − kh(z)eP (z)

=
(
h(z + c1)e

R1(z) + · · ·+ h(z + ck)e
Rk(z) − kh(z)

)
eP (z) = w(z)eP (z),

where Rj(z) = P (z + cj)− P (z) (j = 1, . . . , k), and

w(z) = h(z + c1)e
R1(z) + · · ·+ h(z + ck)e

Rk(z) − kh(z).

From this, we get λ(1/w) ≤ λ(1/h) = λ(1/f) < λ(f) < 1. Since gk(z) 6= 0,
we have w(z) 6= 0.

Next, suppose, contrary to the assertion, that λ(gk) < λ(f) < 1.

If 1 ≤ ρ(w) < ∞, then there exist a nonconstant polynomial R0(z) and
a nonzero meromorphic function Q(z) such that

(3.5) w(z) = Q(z)eR0(z) =
u1(z)

v1(z)
eR0(z),

where Q(z) = u1(z)/v1(z) with u1(z) and v1(z) being the canonical products
formed by the zeros and the poles of w(z), respectively, and

λ(1/Q) = λ(v1) = ρ(v1) = λ(1/w) ≤ λ(1/f) < 1,

λ(u1) = ρ(u1) = λ(Q) = λ(w) = λ(gk) < 1.
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So, we obtain ρ(Q) = max{λ(Q), λ(1/Q)} < 1. Let ck+1 = 0, h(z) =
h(z)eRk+1(z), where Rk+1(z) = 0. We next consider two cases.

Case (1.1): There exist i, j ∈ {0, 1, . . . , k + 1} such that Rj(z) − Ri(z)
= A is a constant. We need to consider two subcases.

Subcase (1.1.1): Rj(z) − R0(z) is not a constant for any j ∈ {1, . . . ,
k + 1}. Then there exist 1 ≤ i, j ≤ k + 1 such that Rj(z)− Ri(z) = A is a
constant. Hence P (z + cj) − P (z + ci) = A. Since P (z) is a polynomial, it
must have the form P (z) = az + d and a 6= 0. Hence Rj = acj is a constant
for j = 1, . . . , k + 1. From

w(z) = h(z + c1)e
R1(z) + · · ·+ h(z + ck)e

Rk(z) − kh(z),

we get ρ(w) < 1, a contradiction.

Subcase (1.1.2): There exists a j∈{1, . . . , k+1} such that Rj(z)−R0(z)
= A is a constant. If there also exists i ∈ {1, . . . , j−1, j+1, . . . , k+1} such
that Ri(z)−R0(z) = B is a constant, then Rj(z)−Ri(z) = A−B. By Subcase
(1.1.1), Rj is a constant for j = 1, . . . , k+1. Therefore, R0 is then a constant,
a contradiction. If now for arbitrary i, α ∈ {0, 1, . . . , j − 1, j + 1, . . . , k + 1},
Ri(z)−Rα(z) is not a constant, then

(3.6) h(z + c1)e
R1(z) + h(z + c2)e

R2(z) + · · ·+ (eAh(z + cj)−Q(z))eR0(z)

+ h(z + ck)e
Rk(z) − kh(z) = 0.

Since deg(Ri(z) − Rα(z)) ≥ 1, eRi(z)−Rα(z) is of regular growth (see, e.g.,
[H1, p. 7]), and ρ(h(z+ ci)) < 1 and ρ(eAh(z+ cj)−Q(z)) < 1, we conclude
that

T (r, h(z + ci)) = o{T (r, eRi(z)−Rα(z))},
T (r, eAh(z + cj)−Q(z)) = o{T (r, eRi(z)−Rα(z))}.

Thus, from Lemma 2.5 and (3.6), we have h(z) ≡ 0, a contradiction.

Case (1.2): Rj(z)−Ri(z) is not a constant for any i, j ∈ {0, 1, . . . , k+1},
i 6= j. By Lemma 2.5, h(z+cj) ≡ 0 (j = 1, . . . , k), h(z) ≡ 0, a contradiction.

Therefore, ρ(w) < 1. Then there exists a nonzero meromorphic function
Q(z) such that

(3.7) w(z) = h(z + c1)e
R1(z) + · · ·+ h(z + ck)e

Rk(z) − kh(z) = Q(z),

where ρ(Q) = max{λ(Q), λ(1/Q)} < 1. We break the rest of the proof into
three cases.

Case (2.1): There exists exactly one j ∈ {1, . . . , k} such that Rj(z) is a
nonconstant polynomial. From (3.7), we get ρ(w) ≥ 1, a contradiction.

Case (2.2): There exist at least two i, j ∈ {1, . . . , k} such that Ri(z),
Rj(z) are nonconstant polynomials. Without loss of generality, we suppose
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R1(z), . . . , Rm(z) (m ≥ 2) are nonconstant polynomials, while Rm+1, . . . , Rk
are constants. We now rewrite w(z) as follows:

w(z) = h(z + c1)e
R1(z) + · · ·+ h(z + cm)eRm(z)

+ h(z + cm+1)e
Rm+1(z) + · · ·+ h(z + ck)e

Rk(z) − kh(z) = Q(z).

If there exist 1 ≤ i, j ≤ m such that Ri − Rj is a constant, we may apply
Subcase (1.1.1) to deduce that Ri(z) is a constant for i = 1, . . . ,m, a con-
tradiction. Thus for arbitrary i, j ∈ {1, . . . ,m} with i 6= j, Ri −Rj is not a
constant. By Lemma 2.5, we have h(z + cj) ≡ 0, a contradiction.

Case (2.3): Rj is constant for all j ∈ {1, . . . , k}. Using the method
of Subcase (1.1.1), we see that P (z) = az + b, a 6= 0. Substituting this
into w(z), we have

w(z) = h(z + c1)e
ac1 + · · ·+ h(z + ck)e

ack − kh(z).

By Lemma 2.2, there exists an ε-set E such that

(3.8) h(z + c) = h(z)(1 + o(1))

as z →∞ in C \ E. By (3.8), we obtain

w(z) = (eac1 + · · ·+ eack)h(z)(1 + o(1))− kh(z)(3.9)

= (eac1 + · · ·+ eack − k)h(z)(1 + o(1)).

By (3.9) and w(z) 6= 0, we have eac1 + · · ·+ eack 6= k. Since h(z) is transcen-
dental, we know that w(z) is transcendental. Set

H = {|z| : z ∈ E, w(z) = 0 or h(z) = 0},
Then H is of finite linear measure. By (3.9), for |z| = r 6∈ H ∪ [0, 1], we
obtain

(3.10) |w(z)− (eac1 + · · ·+ eack − k)h(z)|
= |(eac1 + · · ·+ eack − k)o(1)| < |w(z)|+ |(eac1 + · · ·+ eack − k)h(z)|.

Applying Rouché’s theorem and (3.10), and using a similar method to the
proof of (i), we obtain

λ(w) = λ(h) = λ(u) = λ(f),

a contradiction. Hence λ(gk) = λ(w) ≥ λ(f). Theorem 1.1 is thus proved.

4. Proof of Theorem 1.2

Proof of Claim (i). Since f satisfies λ(f) > λ(1/f) and ρ(f) < 1, from
Theorem 1.1 and the proof of (i) there, we obtain

ρ(f) = λ(f) = λ(gk) = ρ(gk), ρ(gk) > λ(1/f) ≥ λ(1/gk).

Since gk(z, L) = gk(z)− l(z), where l(z) is a nonzero polynomial, we have

λ(1/gk(z, L)) = λ(1/gk) < λ(gk) = ρ(gk) = ρ(gk(z, L)) < 1.
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As λ(1/gk(z, L)) < ρ(gk(z, L)) < 1, we obtain λ(gk(z, L)) = ρ(gk(z, L)).
Hence, λ(gk(z, L)) = ρ(gk(z, L)) = ρ(gk) = λ(f) = ρ(f).

Proof of Claim (ii). Suppose that λ(gk(z, L)) < 1. Then 1 ≤ ρ(gk(z, L))
= ρ(gk − l) = ρ(gk) <∞. We rewrite gk(z, L) as follows:

gk(z, L) = gk(z)− l(z) = h∗(z)e
L(z),

where L(z) is a nonconstant polynomial and h∗(z) is a meromorphic function
such that

(4.2) λ(h∗) = λ(gk(z, L)) < 1, λ(1/h∗) = λ(1/gk(z, L)) ≤ λ(1/f) < 1.

With (4.2), we have

ρ(h∗) = max{λ(h∗), λ(1/h∗)} < 1.

Since gk(z)− l(z) 6= 0, we obtain h∗(z) 6= 0.

From (4.1) and f(z) = h(z)eP (z), we have

(4.3) h(z + c1)e
P (z+c1) + · · ·+ h(z + ck)e

P (z+ck)

− kh(z)eP (z) − l(z)− h∗(z)eL(z) ≡ 0.

Let h(z)eP (z) = h(z + c0)e
P (z+c0), where c0 = 0. We consider three cases.

Case (1): There exist i, j ∈ {0, 1, . . . , k} such that P (z+ ci)−P (z+ cj)
= A is a constant. Since P (z) is a polynomial, it must have the form P (z) =
az + d and a 6= 0. Hence

(4.4) [h(z+c1)e
ac1 + · · ·+h(z+ck)e

ack−kh(z)]eaz+d−h∗(z)eL(z)−l(z) = 0.

If L(z)− az − d ≡ C, then

[h(z + c1)e
ac1 + · · ·+ h(z + ck)e

ack − kh(z)− h∗(z)eC ]eaz+d − l(z) = 0,

which is impossible. If L(z) − az − d 6≡ C, from Lemma 2.5 we get l(z) ≡
h∗(z) ≡ 0, a contradiction.

Case (2): There exists i ∈ {0, 1, . . . , k} such that P (z+ci)−L(z)=A. If
there also exists j ∈ {0, 1, . . . , i− 1, i+ 1, . . . , k} such that P (z + cj)−L(z)
= B, then P (z + cj) − P (z + ci) = A − B. Using the method of Case (1),
we reach a contradiction. If for arbitrary j 6= i, we have P (zj)− L(z) 6≡ B,
then

h(z + c1)e
P (z+c1) + h(z + c2)e

P (z+c2) + · · ·+ (eAh(z + cj)− h∗(z))eL(z)

+ · · ·+ h(z + ck)e
P (z+ck) − kh(z)eP (z) − l(z) = 0.

From Lemma 2.5, we have l(z) ≡ h(z) ≡ 0, a contradiction.

Case (3): For arbitrary i, t, j ∈ {0, 1, . . . , k}, i 6= t, such that P (z+ci)−
P (z + ct) is not a constant, P (z + cj) − L(z) is also not a constant. From
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Lemma 2.5, we obtain h(z+cj) ≡ 0 and l(z) ≡ 0, a contradiction. Therefore,
λ(gk(z, L)) ≥ 1. This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3. Let ρ(f) = ρ < 1. By Lemma 2.3, we see

that f(z+c1)+···+f(z+ck)−kf(z)
f(z) is transcendental, and hence so is Gk(z). By

Lemma 2.1, there exists an ε-set E such that

(5.1) h(z + c)− h(z) = cf ′(z)(1 + o(1))

as z → ∞ in C \ E. By Lemma 2.4, for a given ε > 0, there exists a set
H1 ⊂ (1,∞) with finite logarithmic measure such that for all z satisfying
|z| 6∈ H1 ∪ [0, 1], we have

(5.2)

∣∣∣∣f ′(z)f(z)

∣∣∣∣ ≤ |z|ρ−1+ε.
Set

H2 = {|z| : z ∈ E, Gk(z) = 0 or l(z) = 0}.
Then H2 has finite linear measure. For large |z| = r 6∈ [0, 1]∪H1 ∪H2, from
(5.1) and (5.2), we see

|Gk(z) + l(z)| =
∣∣∣∣(c1 + · · ·+ ck)

f ′(z)

f(z)
(1 + o(1))

∣∣∣∣(5.3)

≤ |(c1 + · · ·+ ck)(1 + o(1))| |z|ρ−1+ε

< |Gk(z)|+ |l(z)|,
since ρ < 1. Thus Gk(z) and l(z) satisfy the conditions of Rouché’s theorem.
Applying Rouché’s theorem and (5.3), for |z| = r 6∈ [0, 1]∪H1 ∪H2 we have

(5.4) n(r, 1/Gk)− n(r,Gk) = n(r, 1/l)− n(r, l) = deg l.

Since Gk is transcendental and ρ(Gk) < 1, we know that at least one of
n(r,Gk)→∞ and n(r, 1/Gk)→∞ is true as r →∞. Hence, by (5.4), both
are true. Hence Gk(z) must have infinitely many zeros.

Suppose now that f(z) = h(z)eaz, where a 6= 0 is a constant, and h(z)
is a transcendental meromorphic function such that ρ(h) < 1. Substituting
this into Gk(z), we obtain

(5.5) Gk(z) =
h(z + c1)e

ac1 + · · ·+ h(z + ck)e
ack − kh(z)

h(z)
− l(z).

If eac1 + · · · + eack − k = 0, then using the same method as in the
first part of the proof, and (5.5), we deduce that Gk(z) has infinitely many
zeros.

If eac1 + · · · + eack − k 6= 0, then by Lemma 2.1 and (5.2), for a given
ε > 0, there exist an ε-set E and a set H1 ⊂ (1,∞) with finite logarithmic
measure such that for all z satisfying |z| 6∈ E ∪ [0, 1] ∪H1, we have
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(5.6)

∣∣∣∣h(z + c1)e
ac1 + · · ·+ h(z + ck)e

ack − kh(z)

h(z)

∣∣∣∣
=

∣∣∣∣(c1eac1 + · · ·+ cke
ack)

h′

h
+ eac1 + · · ·+ eack − k

∣∣∣∣
≤ |c1eac1 + · · ·+ cke

ack | |z|ρ−1+ε + |eac1 + · · ·+ eack − k|.
Set

H2 = {|z| : z ∈ E, Gk(z) = 0 or l(z) = 0}.
Then H2 have finite linear measure. From (5.5) and (5.6), we see that

(5.7) |Gk(z) + l(z)|
= |c1eac1 + · · ·+ cke

ack ||z|ρ−1+ε + |eac1 + · · ·+ eack − k|
< |Gk(z)|+ |l(z)|.

Thus Gk(z) and l(z) satisfy the assumptions of Rouché’s theorem. Applying
Rouché’s theorem and (5.7), for |z| = r 6∈ [0, 1] ∪H1 ∪H2 we obtain (5.4).
Using the same argument as in the proof of Lemma 2.3, we show that Gk(z)
is transcendental. Applying the same method as in the first part of the proof,
we obtain n(r, 1/Gk)→∞. Theorem 1.3 is proved.
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