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The analysis of blow-up solutions to a semilinear parabolic
system with weighted localized terms

by Haihua Lu (Nanjing and Nantong), Feng Wang (Changzhou) and
Qiaoyun Jiang (Nantong)

Abstract. This paper deals with blow-up properties of solutions to a semilinear
parabolic system with weighted localized terms, subject to the homogeneous Dirichlet
boundary conditions. We investigate the influence of the three factors: localized sources
up(x0, t), vn(x0, t), local sources um(x, t), vq(x, t), and weight functions a(x), b(x), on the
asymptotic behavior of solutions. We obtain the uniform blow-up profiles not only for the
cases m, q ≤ 1 or m, q > 1, but also for m > 1 & q < 1 or m < 1 & q > 1.

1. Introduction and main results. In this paper, we consider the
following semilinear parabolic problem with localized sources:

(1.1)


ut = ∆u+ a(x)um(x, t)vn(x0, t), x ∈ B, t > 0,
vt = ∆v + b(x)up(x0, t)vq(x, t), x ∈ B, t > 0,
u(x, t) = v(x, t) = 0, x ∈ ∂B, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ B,

where B = B(0, R) is the open ball of RN centered at the origin with ra-
dius R, m, q ≥ 0 and n, p > 0 are constants, and x0 ∈ B is a fixed point.
The initial data u0, v0 ∈ C0(B) are nonnegative and nontrivial. Many local-
ized problems arise in applications and have been widely studied. Problem
(1.1) models a variety of phenomena, such as chemical reactions due to
catalysis (see [14]), heat transfer with inter localized sources, or population
dynamics. Using the methods of [3] and [18] we know that (1.1) has a non-
negative local solution, and that the Comparison Principle is true. Moreover,
if m,n, p, q ≥ 1 then the uniqueness result holds. Using the methods of [8],
we can also prove that under some assumptions the solution to (1.1) blows
up in finite time. Throughout this paper we always assume
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(H1) a, b, u0, v0 ∈ C(B̄) ∩ C2(B); a(x), b(x), u0(x), v0(x) ≥ 0, 6≡ 0 in B
and u0(x) = v0(x) = 0 on ∂B.

(H2) a(x), b(x), u0(x), v0(x) are radially symmetric, a′(r), b′(r) ≤ 0 and
u′0(x), v′0(x) < 0 for r ∈ (0, R] with r = |x|.

(H3) ∆u0(x) + um0 (x)vn0 (x0) ≥ 0 and ∆v0(x) + up0(x0)vq0(x) ≥ 0 in
B(0, R).

Denote Ba = {x ∈ B : a(x) > 0}. Under assumptions (H1) and (H2) we
can see that there exists an Ra ∈ (0, R] such that Ba = BRa(0). We may
also assume 0 6= x0 ∈ Ba. From (H1)–(H3) we can easily deduce that the
solution (u(x, t), v(x, t)) = (u(r, t), v(r, t)) is radially symmetric and satisfies
ur ≤ 0, vr ≤ 0, ut ≥ 0, vt ≥ 0 by the maximum principle.

In order to motivate the main results for problem (1.1), we recall some
classical results. In the last few years, a lot of effort has been devoted to study
the properties of solutions to localized problems. The blow-up of solutions
to the scalar problem

(1.2)


ut −∆u = um(x, t)up(x0(t), t)− µuq(x, t), x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

has been studied by many authors (see [1, 18, 19, 20]). Souplet [18] obtained a
sharp blow-up exponent for system (1.2), and later introduced a new method
to investigate the profile of the blow-up solution to (1.2) with m = µ = 0 in
[19], where it was proved that

lim
t→T

(T − t)1/(p−1)u(x, t) = lim
t→T

(T − t)1/(p−1)‖u(t)‖∞ = (p− 1)−1/(p−1).

Wang [21, 22] discussed the finite time blow-up of the positive solution to
the problem

(1.3)


ut = ∆u+ umvn, vt = ∆v + upvq, x ∈ Ω, t > 0,
u(x, t) = v(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

and evaluated the blow-up rate of the solution to (1.3) with Ω = BR(0); he
found that under suitable conditions,

c(T − t)−α ≤ max
Ω̄

u(·, t) ≤ C(T − t)−α,

c(T − t)−β ≤ max
Ω̄

v(·, t) ≤ C(T − t)−β

for some positive constants c and C, where T is the blow-up time and

(1.4) α =
1 + n− q

np− (1−m)(1− q)
, β =

1 + p−m
np− (1−m)(1− q)
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is the unique positive solution of the linear system

(1.5)
(
m− 1 n

p q − 1

)(
α

β

)
=
(

1
1

)
.

Recently, Liu et al. [10] have studied the problem

(1.6)


ut −∆u = a(x)g(t), x ∈ B, t > 0,
u(x, t) = 0, x ∈ ∂B, t > 0,
u(x, 0) = u0(x), x ∈ B,

and found, with G(t) =
	t
0 g(s) ds, that

lim
t→T

u(x, t)
G(t)

= a(x)

uniformly on any compact subset of B. Li and Wang [8] also studied problem
(1.1) with a(x) = b(x) = 1, and proved: (i) when m, q ≤ 1, (1.1) has uniform
blow-up profiles; (ii) when m, q > 1, (1.1) presents single point blow-up
patterns. Kong et al. [5] also studied the single equation

(1.7)


ut = ∆u+ a(x)up(x, t)uq(0, t), x ∈ B, t > 0,
u(x, t) = 0, x ∈ ∂B, t > 0,
u(x, 0) = u0(x), x ∈ B.

They obtained the blow-up sets and blow-up rates. Han and Gao [4] extended
the results of [5] with uq(0, t) replaced by uq(x0, t) in (1.7), and they obtained
the blow-up rate

(1.8) c(T − t)−1/(p+q−1) ≤ max
Ω̄

u(·, t) ≤ C(T − t)−1/(p+q−1)

for some positive constants c and C, where T is the blow-up time, 0 ≤ p < 1
and p+ q > 1.

There are many other results for parabolic equations with nonlocal or
localized nonlinearities. We refer to [2, 7, 9, 12, 13, 15] and the references
therein. Many of them considered the blow-up rates or uniform blow-up
profiles for the cases m ≤ 1, q ≤ 1 or m > 1, q > 1. However, very few
papers considered the case m > 1 and q < 1, or the case m < 1 and
q > 1. In this paper, we give the uniform blow-up profiles for such cases in
Theorem 1.4.

Our main results read as follows.

Theorem 1.1. If 0 ≤ m, q ≤ 1 and np − (1 −m)(1 − q) > 0, then the
solution of (1.1) blows up everywhere in B.

Theorem 1.2. If m, q > 1 and np−(1−m)(1−q) > 0, then the blow-up
set of the solution only consists of one point x = 0.
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Theorem 1.3. Assume that np− (1−m)(1− q) > 0, 0 ≤ m, q ≤ 1, and
(u, v) is a classical solution of (1.1) which blows up in finite time T .

(i) If m, q < 1, then

lim
t→T

max
B̄

u(·, t)(T − t)α =
(

α

a(0)

)α(βa(0)
αb(0)

) n
np−(m−1)(q−1)

,

lim
t→T

max
B̄

v(·, t)(T − t)β =
(

β

b(0)

)β(αb(0)
βa(0)

) p
np−(m−1)(q−1)

.

(ii) If m = 1 or q = 1, then

lim
t→T

max
B̄
|ln(T − t)|−1 lnu(·, t) =

1 + n− q
np

,

lim
t→T

max
B̄
|ln(T − t)|−1 ln v(·, t) =

1 + p−m
np

.

Theorem 1.4. Assume that np − (1 −m)(1 − q) > 0, n > q − 1 6= 0,
p > m − 1 6= 0, and (u, v) is a classical solution of (1.1) which blows up in
finite time T . Then

lim
t→T

max
B̄

u(·, t)(T − t)α =
(

α

a(0)

)α(βa(0)
αb(0)

) n
np−(m−1)(q−1)

,

lim
t→T

max
B̄

v(·, t)(T − t)β =
(

β

b(0)

)β(αb(0)
βa(0)

) p
np−(m−1)(q−1)

.

Remark. If q < 1 (resp. m < 1), then the hypothesis n > q − 1 6= 0
(resp. p > m − 1 6= 0) in Theorem 1.4 may be omitted. Moreover, if 0 ≤
m, q < 1, then the result of Theorem 1.4 is consistent with Theorem 1.3(i).
Furthermore, the assumptions of Theorem 1.4 allow m > 1 and q < 1, or
m < 1 and q > 1.

This paper is organized as follows. In Section 2, we will prove Theorems
1.1 and 1.2. Theorems 1.3 and 1.4 will be proved in Section 3.

2. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. The hypotheses (H1) and (H2) imply that

max
B̄

u(·, t) = u(0, t), max
B̄

v(·, t) = v(0, t).

Suppose a(x) ≥ ρ > 0 and b(x) ≥ ρ > 0 on some B̄1 ⊂ B, where ρ is a
positive constant. Then the solution (u, v) of (1.1) satisfies

ut ≥ ∆u+ ρum(x, t)vn(x0, t), x ∈ B1, t > 0,
vt ≥ ∆v + ρup(x0, t)vq(x, t), x ∈ B1, t > 0,
u(x, t) = v(x, t) = 0, x ∈ ∂B1, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ B1,
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and (u, v) blows up in finite time for large initial data with 0 ≤ m, q ≤ 1
and np− (1−m)(1− q) > 0. Denote

(2.1)


g(t) = vn(x0, t), G(t) =

t�

0

g(s) ds,

h(t) = up(x0, t), H(t) =
t�

0

h(s) ds.

Noting that ∆u(0, t) ≤ 0 and ∆v(0, t) ≤ 0, we have

(2.2) ut(0, t) ≤ a(0)um(0, t)vn(x0, t), vt(0, t) ≤ b(0)up(x0, t)vq(0, t).

Integrating (2.2) from 0 to t we have

(2.3)



1
1−m

u1−m(0, t) ≤ a(0)G(t) +
1

1−m
u1−m

0 if 0 ≤ m < 1,

1
1− q

v1−q(0, t) ≤ b(0)H(t) +
1

1− q
v1−q

0 if 0 ≤ q < 1,

lnu(0, t) ≤ a(0)G(t) + lnu0(0) if m = 1,
ln v(0, t) ≤ b(0)H(t) + ln v0(0) if q = 1.

Thus limt→T G(t) = limt→T H(t) =∞, since limt→T u(0, t) = limt→T v(0, t)
= ∞. Denote by G1(t, τ ;x, ξ) the Green’s function associated with the op-
erator ∂/∂t−∆ along with the homogeneous Dirichlet boundary condition
in B1 × (0, T ). For any given x∗ ∈ B1, we know

(2.4)



u(x∗, t) =
�

B1

G1(t, 0;x∗, ξ)u0(ξ) dξ

+
t�

0

�

B1

G1(t, τ ;x∗, ξ)a(ξ)um(ξ, τ)g(τ) dξ dτ,

v(x∗, t) =
�

B1

G1(t, 0;x∗, ξ)v0(ξ) dξ

+
t�

0

�

B1

G1(t, τ ;x∗, ξ)b(ξ)h(τ)vq(ξ, τ) dξ dτ.

Then for any t ∈ (0, T ) and τ > 0, we have

(2.5)


u(x∗, t) ≥ ρ

t�

0

�

B1

G1(t, τ ;x∗, ξ)um(ξ, τ)g(τ) dξ dτ,

v(x∗, t) ≥ ρ
t�

0

�

B1

G1(t, τ ;x∗, ξ)h(τ)vq(ξ, τ) dξ dτ.
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For any compact subset B2 ⊂ B1, by the strong maximum principle, there
exists an ε0 = ε0(B2) > 0 such that

(2.6)


�

B2

G1(t, τ ;x∗, ξ)um(ξ, τ) dξ ≥ ε0,

�

B2

G1(t, τ ;x∗, ξ)vq(ξ, τ) dξ ≥ ε0,

uniformly for all t ∈ (τ, T ) and τ > 0. It follows from (2.4) to (2.6) that

u(x∗, t) ≥ ρε0G(t), v(x∗, t) ≥ ρε0H(t), t ∈ (τ, T ), τ > 0.

Thus, limt→T u(x∗, t) = limt→T v(x∗, t) = ∞ because limt→T G(t) =
limt→T H(t) = ∞. The arbitrariness of x∗ implies that (u, v) blows up ev-
erywhere in B.

Proof of Theorem 1.2. Suppose on the contrary that (u, v) blows up
at another point x∗ 6= 0. We may assume that limt→T u(x∗, t) = ∞. Set
r∗ = |x∗|; then r∗ > 0. Since u(x, t) = u(r, t) is nonincreasing in r,
limt→T supu(r, t) =∞ for any r ∈ [0, r∗] with r = |x|.

Fix 0 < δ1 < η1 < min{Ra, r∗N−1/2} and set K0 = {x ∈ B : δ1 <
xi < η1, i = 1, . . . , N}. Clearly, a(x) ≥ δ0 on K̄0 for some δ0. Define

J(x, t) = ux1 + c(x)um1(x, t), (x, t) ∈ K0 × [0, T ),

where 1 < m1 < m,

c(x) = ε

N∏
k=1

sin(µ0(xk − δ1)) with µ0 =
π

η1 − δ1

and ε > 0 to be determined later. A direct computation yields

Jt −∆J = utx1 +m1c(x)um1−1ut −
(
∆ux1 + um1∆c+m1c(x)um1−1∆u

+ 2m1u
m1−1∇u∇c+m1(m1 − 1)c(x)um1−2|∇u|2

)
≤ (a(x)umvn(x0, t))x1 +m1a(x)c(x)um+m1−1vn(x0, t)
− 2m1u

m1−1∇u∇c− um1∆c

= a′(r)
x1

r
umvn(x0, t) +ma(x)um−1vn(x0, t)ux1

+m1a(x)c(x)um+m1−1vn(x0, t)− 2m1u
m1−1∇u∇c− um1∆c.

Put b0 = ma(x)um−1vn(x0, t) − Am1u
m1−1, where A = (2∇u∇c)/ux1 is

bounded by 2εr∗µ0N
1/2/δ1. We have
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(2.7) Jt −∆J − b0J

≤ −c(x)
(

(m−m1)a(x)um+m1−1vn(x0, t)−Am1u
2m1−1 +

∆c

c
um1

)
≤ −c(x)um1

(
(m−m1)δ0u

m−1vn(x0, t)−Am1u
m1−1 +

∆c

c

)
for (x, t) ∈ K0 × [t1, T ) with t1 close to T since m1 < m. Remember that
v(r, t) > δ2 on B1 for some constants δ2 > 0. As m1 < m, there exists ε1 > 0
so small that for all 0 < ε < ε1,

(2.8) (m−m1)δ0δ
n
2u

m−1 −Am1u
m1−1 −Nµ2

0 ≥ 0

for (x, t) ∈ K0×[t1, T ) with t1 close to T . Consequently, from (2.7) and (2.8),

(2.9) Jt −∆J − b0J ≤ 0, (x, t) ∈ K0 × [t1, T ).

Moreover, the assumption u′0(r) < 0 gives that ur(r, t) < 0 for (r, t) ∈ B1,
and so ux1 = urx1/r < 0 for (x, t) ∈ K̄0 × [t1, T ). We have

(2.10) J(x, t) = ux1(x, t) < 0 on ∂K0 × (t1, T ).

We can choose ε2 > 0 so small that for all 0 < ε < ε2,

J(x, t1) = ux1(x, t1) + c(x)um1(x, t1)(2.11)
≤ max

x∈K̄0

ux1(x, t1) + εmax
x∈K̄0

um1(x, t1) < 0

for all x ∈ K0. Fix 0 < ε < min{ε1, ε2}. Application of the Comparison
Principle to (2.9)–(2.11) shows that J(x, t) ≤ 0 for (x, t) ∈ K̄0× [t1, T ), i.e.,

(2.12) − ux1u
−m1 ≥ c(x), (x, t) ∈ K̄0 × [t1, T ).

Fix (a2, . . . , aN ) ∈ RN−1 and take a = (δ1, a2, . . . , aN ), a = (η1, a2, . . . , aN ).
Integrating (2.12) from a to a yields

0 <
η1�

δ1

c(x) dx1 ≤
1

m1 − 1
u1−m1(a, t).

The fact that lim supt→T u(ā, t) = ∞ and m1 > 1 leads to a contradiction.
Therefore, u blows up only at a single point x = 0, and so does the solution
(u, v) of problem (1.1).

3. Proof of Theorems 1.3 and 1.4. In this section we study the
uniform blow-up profiles for problem (1.1) to prove Theorem 1.3–1.4. Some-
times we write f(t) ∼ g(t) as t→ T for limt→T f(t)/g(t) = 1. The following
two lemmas hold.
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Lemma 3.1. Under the assumptions of Theorem 1.3, the following state-
ments hold uniformly on any compact subset of Ba.

(i) If m < 1 and q < 1, then

u1−m(x, t) ∼ (1−m)a(0)G(t), v1−q(x, t) ∼ (1− q)b(0)H(t).

(ii) If m = 1 and q < 1, then

lnu(x, t) ∼ a(0)G(t), v1−q(x, t) ∼ (1− q)b(0)H(t).

(iii) If m = 1 and q = 1, then

lnu(x, t) ∼ a(0)G(t), ln v(x, t) ∼ b(0)H(t).

(iv) If m < 1 and q = 1, then

u1−m(x, t) ∼ (1−m)a(0)G(t), ln v(x, t) ∼ b(0)H(t).

Proof. (i) Assume m < 1 and q < 1. At the maximum point x = 0 of
the solution (u, v), we have ∆u(0, t) ≤ 0 and ∆v(0, t) ≤ 0, and thus

(3.1) ut(0, t)u−m(0, t) ≤ a(0)g(t), vt(0, t)v−q(0, t) ≤ b(0)h(t).

Integrating (3.1) from 0 to t, we have

lim
t→T

u1−m(0, t)
(1−m)G(t)

≤ a(0), lim
t→T

v1−q(0, t)
(1− q)H(t)

≤ b(0),

i.e.,

(3.2) lim
t→T

sup
x∈Ba

u1−m(x, t)
(1−m)G(t)

≤ a(0), lim
t→T

sup
x∈Ba

v1−q(x, t)
(1− q)H(t)

≤ b(0).

On the other hand, direct computations demonstrate

1
1−m

∂u1−m

∂t
=

1
1−m

∆u1−m +mu−m−1|∇u|2 + a(x)g(t)

≥ 1
1−m

∆u1−m + a(x)g(t).

Similarly,

1
1− q

∂v1−q

∂t
≥ 1

1− q
∆v1−q + b(x)h(t).

Consequently,
(

1
1−mu

1−m, 1
1−qv

1−q) is a supersolution of the problem

(3.3)


wt = ∆w + a(x)g(t), zt = ∆z + b(x)h(t), x ∈ B, 0 < t < T,

w(x, t) = z(x, t) = 0, x ∈ ∂B, 0 < t < T,

w(x, 0) =
u1−m

0 (x)
1−m

, z(x, 0) =
v1−q

0 (x)
1− q

, x ∈ B.
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Analogously to the proof of Theorem 4.1 in [19], we can prove

(3.4) lim
t→T

inf
x∈Ba

w(x, t)
G(t)

≥ a(x), lim
t→T

inf
x∈Ba

z(x, t)
H(t)

≥ b(x)

uniformly on compact subsets of Ba, and hence

(3.5) lim
t→T

inf
x∈Ba

u1−m(x, t)
(1−m)G(t)

≥ a(0), lim
t→T

inf
x∈Ba

v1−q(x, t)
(1− q)H(t)

≥ b(0)

uniformly on compact subsets of Ba. The inequalities (3.2) and (3.5) yield

(3.6) lim
t→T

u1−m(x, t)
(1−m)G(t)

= a(0), lim
t→T

v1−q(x, t)
(1− q)H(t)

= b(0)

uniformly on compact subsets of Ba.
(ii) Assume m = 1 and q < 1. By the argument in case (i), we have,

similarly to (3.2),

(3.7) lim
t→T

sup
x∈Ba

lnu(x, t)
G(t)

≤ a(0), lim
t→T

sup
x∈Ba

v1−q(x, t)
(1− q)H(t)

≤ b(0).

We can find that
(
lnu, 1

1−qv
1−q) is a supersolution of (3.3) with w(x, 0) =

lnu0(x), z(x, 0) = 1
1−qv

1−q
0 (x). Proceeding as in case (i), we arrive at the

corresponding conclusion.
Cases (iii) and (iv) can be treated similarly.

Lemma 3.2. Under the assumptions of Theorem 1.3, for any given con-
stants δ, ε and ρ satisfying 0 < δ, ε < 1 and ρ > 1, there exists T̃ such that
for all t ∈ [T̃ , T ], the following statements hold.

(i) If m, q < 1, then

ε(b(0)δ)
n

1−q (1 + p−m)((1− q)H(t))
1+n−q

1−q

≤ (a(0)ρ)
p

1−m (1 + n− q)((1−m)G(t))
1+p−m
1−m ,

ε(a(0)δ)
p

1−m (1 + n− q)((1−m)G(t))
1+p−m
1−m

≤ (b(0)ρ)
n

1−q (1 + p−m)((1− q)H(t))
1+n−q

1−q .

(ii) If m = 1 and q < 1, then

ln(ερδ
n

1−q ) + ln
pa(0)b−1(0)
1 + n− q

+
1 + n− q

1− q
ln((1− q)b(0)H(t))

≤ pρa(0)G(t),

pδa(0)G(t) ≤ ln(δε−1ρ
n

1−q ) + ln
pa(0)b−1(0)
1 + n− q

+
1 + n− q

1− q
ln((1− q)b(0)H(t)).
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(iii) If m = q = 1, then

ln
ερpa(0)
δnb(0)

+ nδb(0)H(t) ≤ pρa(0)G(t),

pδa(0)G(t) ≤ ln
δpa(0)
ερnb(0)

+ nδb(0)H(t).

(iv) If m < 1 and q = 1, then

nδb(0)H(t) ≤ ln(δε−1ρ
p

1−m ) + ln
na−1(0)b(0)
1 + p−m

+
1 + p−m

1−m
ln((1−m)a(0)G(t)),

ln(ερδ
p

1−m ) + ln
na−1(0)b(0)
1 + p−m

+
1 + p−m

1−m
ln((1−m)a(0)G(t))

≤ nρb(0)H(t).

Proof. Assume m, q < 1. Observe that

G′(t) = g(t) = vn(x0, t), H ′(t) = h(t) = up(x0, t).

By Lemma 3.1(i), for any δ < 1 < ρ, there exists t0 < T such that

(δ(1−m)a(0)G(t))
p

1−m ≤ H ′(t) ≤ (ρ(1−m)a(0)G(t))
p

1−m , t ∈ [t0, T ),

(δ(1− q)b(0)H(t))
n

1−q ≤ G′(t) ≤ (ρ(1− q)b(0)H(t))
n

1−q , t ∈ [t0, T ).

Thus, for any t ∈ [t0, T ),

(3.8)
(δ(1−m)a(0)G(t))

p
1−m

(ρ(1− q)b(0)H(t))
n

1−q
≤ dH

dG
≤ (ρ(1−m)a(0)G(t))

p
1−m

(δ(1− q)b(0)H(t))
n

1−q
.

In view of the right inequality of (3.8), for any t ∈ [t0, T ),

(3.9) (δ(1− q)b(0)H(t))
n

1−q dH ≤ (ρ(1−m)a(0)G(t))
p

1−mdG.

Integrating (3.9) yields, for t0 ≤ t < T ,

(3.10)
(1− q)(δ(1− q)b(0))

n
1−q

1 + n− q
H

1+n−q
1−q (s)|tt0

≤ (1−m)(ρ(1−m)a(0))
p

1−m

1 + p−m
G

1+p−m
1−m (s)|tt0

≤ (1−m)(ρ(1−m)a(0))
p

1−m

1 + p−m
G

1+p−m
1−m (t).

Since limt→T H(t) = ∞ and q < 1, for any 0 < ε < 1 there exists t̃0 with
t0 < t̃0 < T such that

H
1+n−q

1−q (t0) ≤ (1− ε)H
1+n−q

1−q (t), t ∈ [t̃0, T ).
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Hence, from (3.10) it can be deduced that for t̃0 < t < T ,

(3.11) ε(b(0))δ)
n

1−q (1 + p−m)((1− q)H(t))
1+n−q

1−q

≤ (a(0)ρ)
p

1−m (1 + n− q)((1−m)G(t))
1+p−m
1−m .

Application of a similar analysis to the left inequality of (3.8) shows that
there exists t∗0 < T such that for t∗0 < t < T ,

(3.12) ε(a(0)δ)
p

1−m (1 + n− q)((1−m)G(t))
1+p−m
1−m

≤ (b(0)ρ)
n

1−q (1 + p−m)((1− q)H(t))
1+n−q

1−q .

Set T̃ = max{t̃0, t∗0}; then (3.11) and (3.12) yield (i) of Lemma 3.11.
Analogously, we can draw the other conclusions of the lemma.

Proof of Theorem 1.3. Choose {δi}∞i=1, {εi}∞i=1, {ρi}∞i=1 satisfying 0 <
δi, εi < 1 and ρi > 1 with δi, εi, ρi → 1. Putting (δ, ε, ρ) = (δi, εi, ρi) in
Lemma 3.2, we have T̃i < T .

(i) Assume m, q < 1. From Lemma 3.1(i) it follows that there exist
{ti}∞i=1 with ti < T and ti → T as i→∞, such that for any t with ti < t < T ,

(3.13) (δi(1−m)a(0)G(t))
1

1−m ≤ u(x0, t) ≤ (ρi(1−m)a(0)G(t))
1

1−m .

Denote T ∗i = max{ti, T̃i}. Then (3.13) and Lemma 3.2(i) assert that for
T ∗i ≤ t < T ,

H ′(t) ≥ δ
p

1−m
i ((1−m)a(0)G(t))

p
1−m(3.14)

≥ δ
pα

β(1−q)
i (δi/ρi)

p2

(1−m)(1+p−m) (εiβ/α)
p

1+p−m

· (a(0))
p

1+p−m (b(0))
np

(1−q)(1+p−m) ((1− q)H(t))
pα

β(1−q) ,

H ′(t) ≤ ρ
pα

β(1−q)
i (ρi/δi)

p2

(1−m)(1+p−m) (β/(εiα))
p

1+p−m(3.15)

· (a(0))
p

1+p−m (b(0))
np

(1−q)(1+p−m) ((1− q)H(t))
pα

β(1−q) ,

where α, β are given by (1.4). Notice that

1− pα

β(1− q)
= −np− (1−m)(1− q)

(1− q)(1 + p−m)
= − 1

β(1− q)
< 0.

Integrating (3.14) and (3.15) from t to T and using limt→T H(t) = ∞, we
find that, for T ∗i ≤ t < T ,

(3.16) C−1
i β(β/α)−

p
1+p−m

≤ (a(0))
p

1+p−m (b(0))
np

(1−q)(1+p−m) (T − t)((1− q)H(t))
1

β(1−q)

≤ c−1
i β(β/α)−

p
1+p−m ,
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where

ci = δ
pα

β(1−q)
i

(
δi
ρi

) p2

(1−m)(1+p−m)

ε
p

1+p−m
i ,

Ci = ρ
pα

β(1−q)
i

(
ρi
δi

) p2

(1−m)(1+p−m)

ε
p

1+p−m
i .

Since ci → 1 and Ci → 1 on account of δi, εi, ρi → 1, and T ∗i → T as i→∞,
by letting i→∞ in (3.16) we find

((1−q)H(t))
1

1−q∼(a(0))
−pβ

1+p−m (b(0))
−npβ

(1−q)(1+p−m)ββ
(
α

β

) p
np−(1−m)(1−q)

(T−t)−β,

i.e.

(3.17) ((1− q)b(0)H(t))
1

1−q ∼
(

β

b(0)

)β(αb(0)
βa(0)

) p
np−(m−1)(q−1)

(T − t)−β.

Similarly, it can be inferred that

(3.18) ((1−m)a(0)G(t))
1

1−m ∼
(

α

a(0)

)α(βa(0)
αb(0)

) n
np−(m−1)(q−1)

(T − t)−α.

From Lemma 3.1(i), (3.17) and (3.18), we know that

u(x, t)(T − t)α ∼
(

α

a(0)

)α(βa(0)
αb(0)

) n
np−(m−1)(q−1)

,

v(x, t)(T − t)β ∼
(

β

b(0)

)β(αb(0)
βa(0)

) p
np−(m−1)(q−1)

uniformly on any compact subset of Ba. That is, the conclusion (i) holds
uniformly on any compact subset of Ba.

(ii) Assume m = 1 or q = 1. We divide this case into three subcases:
(1) m = 1, q < 1; (2) m = q = 1; and (3) m < 1, q = 1. We first discuss
subcase (1). As in the proof of case (i), it follows from Lemmas 3.1(ii) and
3.2(ii) that for T ∗i ≤ t ≤ T ,

G′(t) ≥ δ
n

1−q
i ((1− q)b(0)H(t))

n
1−q

≥ δ
n

1−q
i (εi(1 + n− q)(pδi)−1ρ

− n
1−q

i a−1(0)b(0))
n

1+n−q

· exp
{

npδi
1 + n− q

a(0)G(t)
}

= (δi/ρi)
n2

(1−q)(1+n−q) (εip−1(1 + n− q)a−1(0)b(0))
n

1+n−q

· exp
{

npδi
1 + n− q

a(0)G(t)
}
,
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G′(t) ≤ (ρi/δi)
n2

(1−q)(1+n−q) ((pεi)−1(1 + n− q)a−1(0)b(0))
n

1+n−q

· exp
{

npρi
1 + n− q

a(0)G(t)
}
.

Hence, for T ∗i ≤ t < T ,

(3.19)



exp
{
−npρia(0)G(t)

1 + n− p

}
G′(t)

≥ (δi/ρi)
n2

(1−q)(1+n−q) (εip−1(1 + n− p)a−1(0)b(0))
n

1+n−q ,

exp
{
−npδia(0)G(t)

1 + n− p

}
G′(t)

≤ (ρi/δi)
n2

(1−q)(1+n−q) ((pεi)−1(1 + n− p)a−1(0)b(0))
n

1+n−q .

Define A = − ln(np) + (1−q) ln(1+n−q)
1+n−q . Integrating (3.19) from t to T and

using limt→T G(t) =∞, we deduce that for t ∈ [T ∗i , T ),

(3.20)
1
ρi

(ĉi + |ln(T − t)|) ≤ npa(0)
1 + n− q

G(t) ≤ 1
δi

(Ĉi + |ln(T − t)|),

where

ĉ = A− n2 + (1− q)(1 + n− q)
(1− q)(1 + n− q)

ln ρi

+
n ln(pεiδ

n
1−q
i )

1 + n− q
− (1− q) ln a(0)

1 + n− q
− n ln b(0)

1 + n− q
,

Ĉ = A− n2 + (1− q)(1 + n− q)
(1− q)(1 + n− q)

ln δi

+
n ln(pε−1

i ρ
n

1−q
i )

1 + n− q
− (1− q) ln a(0)

1 + n− q
− n ln b(0)

1 + n− q
.

By combining (3.20) and Lemma 3.2(ii), it follows that for T ∗i ≤ t < T ,

δi
ρi

(ci + |ln(T − t)|) ≤ n

1− q
ln((1− q)b(0)H(t))(3.21)

≤ ρi
δi

(Ci + |ln(T − t)|),

where

ci = ĉi −
nρi

δi(1 + n− q)
ln
(
p(1 + n− q)−1ε−1

i δiρ
n

1−q
i a(0)b−1(0)

)
,

Ci = Ĉi −
nδi

ρi(1 + n− q)
ln
(
p(1 + n− q)−1εiρiδ

n
1−q
i a(0)b−1(0)

)
.
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Consequently, (3.20) and (3.21) guarantee that for T ∗i < t < T ,

(3.22)



ĉi + |ln(T − t)|
ρi|ln(T − t)|

≤ npa(0)G(t)
(1 + n− p)|ln(T − t)|

≤ Ĉi + |ln(T − t)|
δi|ln(T − t)|

,

δi(ci + |ln(T − t)|)
ρi|ln(T − t)|

≤ n ln((1− q)b(0)H(t))
(1− q)|ln(T − t)|

≤ ρi(Ci + |ln(T − t)|)
δi|ln(T − t)|

.

Notice that ĉi → Ĉi and ci → Ci and are bounded because δi, εi, ρi → 1 as
i→∞. By letting i→∞ in (3.22), we get

lim
t→T

a(0)G(t)|ln(T − t)|−1 =
1 + n− q

np
,

lim
t→T

ln((1− q)b(0)H(t))|ln(T − t)|−1 =
1− q
n

.

As v1−q(x, t) ∼ (1−q)b(0)H(t) uniformly on compact subsets of Ba, we find
that, uniformly on compact subsets of Ba,

(3.23) ln v(x, t) ∼ 1
1− q

ln((1− q)b(0)H(t)).

Therefore, it can be deduced from Lemma 3.1(ii), (3.22) and (3.23) that
uniformly on compact subsets of Ba,

(3.24)


lnu(x, t) ∼ a(0)G(t) ∼ 1 + n− q

np
|ln(T − t)|,

ln v(x, t) ∼ 1
n
|ln(T − t)|.

Thereby, uniformly on any compact subset of Ba,

(3.25)


limt→T |ln(T − t)|−1 lnu(x, t) =

1 + n− q
np

,

limt→T |ln(T − t)|−1 ln v(x, t) =
1
n
.

Subcases (2) and (3) can be verified similarly.

Proof of Theorem 1.4. To consider the uniform blow-up profiles of
maxB̄ u(·, t) and maxB̄ v(·, t), we only need to consider the problem

(3.26)

{
ut = ∆u+ a(0)um(x, t)vn(x0, t), x ∈ B, t > 0,
vt = ∆v + b(0)up(x0, t)vq(x, t), x ∈ B, t > 0.

Since for N = 1 problem (1.1) has the blow-up rate given by (1.8), we
can denote u = C1(T − t)−β1 , v = C2(T − t)−β2 , where C1, C2, β1, β2 are
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constants to be determined later. By (3.26), we have

(3.27)

{
C1β1(T − t)−β1−1 = a(0)Cm1 (T − t)−β1mCn2 (T − t)−β2n,

C2β2(T − t)−β2−1 = b(0)Cp1 (T − t)−β1pCq2(T − t)−β2q.

Then {
−β1 − 1 = −β1m− β2n,

−β2 − 1 = −β1p− β2q,

{
C1β1 = a(0)Cm1 C

n
2 ,

C2β2 = b(0)Cp1C
q
2 .

That is,

(3.28)
(
m− 1 n

p q − 1

)(
β1

β2

)
=
(

1
1

)
,

{
Cm−1

1 Cn2 = β1/a(0),
Cp1C

q−1
2 = β2/b(0).

It is obvious that (α, β)T solves the first equations of (3.28), where (α, β)T

is given by (1.4). To obtain the solution (C1, C2)T , we first consider the
problem (

m− 1 n

p q − 1

)(
l1

l2

)
=
(

ln α
a(0)

ln β
b(0)

)
,

which has a unique solution

(l1, l2)T =
(n ln β

b(0) − (q − 1) ln α
a(0)

np− (m− 1)(q − 1)
,
p ln α

a(0) − (m− 1) ln β
b(0)

np− (m− 1)(q − 1)

)T
.

Let l1 = lnC1, l2 = lnC2. Then (C1, C2)T = (el1 , el2)T solves the second
equations of (3.28). Notice that

n ln
β

b(0)
−(q−1) ln

α

a(0)
= n ln

β

b(0)
−n ln

α

a(0)
+n ln

α

a(0)
−(q−1) ln

α

a(0)

= n ln
βa(0)
αb(0)

+(n+1−q) ln
α

a(0)
,

and

p ln
α

a(0)
− (m− 1) ln

β

b(0)
= p ln

αb(0)
βa(0)

+ (p+ 1−m) ln
β

b(0)
.

Then

C1 =
(

α

a(0)

)α(βa(0)
αb(0)

) n
np−(m−1)(q−1)

,

C2 =
(

β

b(0)

)β(αb(0)
βa(0)

) p
np−(m−1)(q−1)

.

Thus, the proof is complete.
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