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The Abhyankar–Jung theorem for excellent
henselian subrings of formal power series

by Krzysztof Jan Nowak (Kraków)

Abstract. Given an algebraically closed field K of characteristic zero, we prove the
Abhyankar–Jung theorem for any excellent henselian ring whose completion is a formal
power series ring K[[z]]. In particular, examples include the local rings which form a
Weierstrass system over the field K.

The Abhyankar–Jung theorem may be regarded as a higher dimensional
counterpart of the Newton–Puiseux theorem. It asserts that the roots of a
Weierstrass (formal or convergent) polynomial over an algebraically closed
field of characteristic zero with discriminant being a normal crossing are
fractional (formal or convergent) series. The first proof for the case of two
complex variables was due to H. W. Jung [6]. The general result for the
algebroid case (for several variables and an arbitrary ground field) was es-
tablished by S. S. Abhyankar [1] by means of purely algebraic methods,
namely, some properties of the Galois group of the polynomial under study.
The methods of Jung and Abhyankar are described e.g. in [8].

The classical proofs of the Newton–Puiseux theorem applied Newton’s
algorithm to compute, term by term, the fractional series (called Puiseux
series) arising as t-roots of an algebraic equation f(x, t) = 0. This algorithm,
invented in “Methodus fluxionum et serierum infinitorum” (see [11], and also
[19]), uses the so-called Newton polygon, determined by the exponents of a
given polynomial.

More recently, I. Luengo [9] deduced the Abhyankar–Jung theorem by
analyzing, by analogy with the one variable case, the Newton polyhedron
of the polynomial under study. This was done by applying his statement
that a quasiordinary formal Weierstrass polynomial f(x; t) ∈ K[[x]][t] with
vanishing coefficient of tn−1, n = deg f , is ν-quasiordinary in the sense of
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Hironaka [5]; the latter is a certain property of the Newton polyhedron.
However, his proof of this statement seems to contain—as indicated in [7]—
an essential gap. Paper [7] by K. Kiyek and J. L. Vicente was intended
to provide a proof for both the formal and convergent cases in a language
scholarly acceptable today. Their approach, relying heavily on ramification
theory (as developed by A. Grothendieck in [4]), followed an idea taken from
Zariski’s paper [23].

In our paper, we generalize the Abhyankar–Jung theorem to the case of
any excellent henselian ring whose completion is a power series ring over
an algebraically closed field K of characteristic zero; this covers the clas-
sical ones of formal and convergent series. The proofs we present here are
very short. In the convergent case, we use a well-known lifting criterion for
unramified covers and the Riemann removable singularity theorem (cf. our
topological proof of Puiseux’s theorem in [12]). The passage upwards, to
the formal power series ring, and next downwards, to an excellent henselian
subring, is attained here by means of the Artin approximation theorem. In
our approach, an arbitrary algebraically closed field K of characteristic zero
is regarded as an o-minimal expansion of a maximal real subfield R of K.
Due to the theory developed by Y. Peterzil and S. Starchenko [17, 18], the
field K over R can be treated, in many respects, in the same way as the com-
plex field C over the real field R. Often the results about K-differentiability
are even stronger than the classical ones, because the topology of definable
sets is tame. However, techniques concerning convergent power series and
analytic prolongation are unavailable.

In our subsequent papers [14, 15], we shall apply the version of the
Abhyankar–Jung theorem presented here to o-minimal structures determined
by a convergent Weierstrass system.

From now on K denotes an algebraically closed field of characteristic
zero and R a maximal real subfield of K; obviously, R is a real closed field
and K = R[

√
−1 ]. As in the classical case, we may identify K with R2

and equip it with the product topology inherited from the ordered field R.
Given any o-minimal expansion R of the real closed field R, one can develop,
similarly to the case of ordinary holomorphic functions, the theory of K-
differentiable functions definable in the structure R. Observe that in the
case of a polynomial, the K-derivatives and the formal derivatives in the
polynomial ring coincide, and thus the notion of derivative for polynomial
mappings is independent of the initial choice of the maximal real subfield R.

The analogues of the most classical results, including the Cauchy–
Riemann equations, Riemann removable singularity theorem, maximum
principle as well as the Weierstrass preparation and division theorems, have
been established by Y. Peterzil and S. Starchenko [17, 18]. Consequently, the
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ring K〈z〉, z = (z1, . . . , zm), of K-differentiable R-definable function germs
at 0 ∈ Km is a noetherian local ring with maximal ideal generated by the
m coordinates, and its completion is the formal power series ring K[[z]].
Moreover, the ring K〈z〉 is regular, henselian and excellent (by a Jacobian
criterion; cf. [10, Section 40, Theorem 102]). In this fashion, a major part
of the classical complex analytic geometry can be carried over to the K-
differentiable setting. In particular, we have at our disposal K-differentiable
analogues of the results concerning ramified and unramified analytic cover-
ings. Their proofs can be repeated mutatis mutandis; for instance, the topo-
logical notions such as “neighbourhood”, “connected”, “compact”, “proper”
etc., have to be replaced by “definable neighbourhood”, “definably connected”,
“definably compact”, “definably proper” etc.

We call a polynomial

f(z; t) = tn + a1(z)tn−1 + · · ·+ an(z) ∈ K[[z]][t], z = (z1, . . . , zm),

quasiordinary if its discriminant D(z) is a normal crossing:

D(z) = zγ · u(z) with γ ∈ Nm, u(z) ∈ K[[z]], u(0) 6= 0.

We say that f(z; t) is a Weierstrass polynomial if its coefficients ai(z) belong
to the maximal ideal ofK[[z]], i.e. ak(0) = 0. For any integers r1, . . . , rm > 0,
put

K〈z1/r1
1 , . . . , z1/rm

m 〉 := {α(z1/r1
1 , . . . , z1/rm

m ) : α(z) ∈ K〈z〉};
when r1 = · · · = rm = r, we shall denote the above K-algebra by K〈z1/r〉.
Now we can readily establish a K-differentiable version of

Abhyankar–Jung Theorem. Every quasiordinary polynomial

f(z; t) = tn + a1(z)tn−1 + · · ·+ an(z) ∈ K〈z〉[t]
has all its roots in K〈z1/r〉 for some r ∈ N; actually one can take r = n!.

To see this, since the ringK〈z〉 is henselian, we may assume that f(z; t) is
a Weierstrass polynomial. We may also suppose f(z; t) is irreducible. As we
have already outlined, each ring K〈z〉[t] under consideration can be treated
exactly in the same way as in the classical complex analytic geometry. There-
fore, without loss of generality, we may confine ourselves to the case of the
ring of convergent complex power series. For simplicity, we shall denote germs
and their representatives in a common neighbourhood U ⊂ Cm by the same
symbols. We may take U to be a polydisk Bm

ε with Bε = {c ∈ C : |c| < ε},
ε > 0. Let

V := {(z, t) ∈ U × C : f(z; t) = 0}
be the zero locus of the polynomial f(z; t), and

p : Cm
z × Ct → Cm

z , p(z, t) = z,
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the canonical projection. Then S := {z ∈ U : D(z) = 0} is the ramification
divisor of the ramified analytic covering res p : V → U . Since D(z) is a
normal crossing, U \S ⊃ (B∗

ε )
m with B∗

ε := Bε \ {0}. Denote by Z the cross
U \ (B∗

ε )
m. Then S ⊂ Z and

res p : (V \ p−1(Z))→ (B∗
ε )
m

is a proper unramified covering. Clearly, the group

p∗(π1(V \ p−1(Z))) ⊂ π1((B∗
ε )
m) = Zm

contains r ·Zm for some integer r > 0; here π1(E) denotes the first homotopy
group of an arc-connected set E. Put δ := ε1/r and

ϕ : (B∗
δ )
m → (B∗

ε )
m, ϕ(z) := zr = (zr1, . . . , z

r
m).

Then we have
ϕ∗(π1((B∗

δ )
m)) ⊂ p∗(π1(V \ p−1(Z))).

By a well-known lifting criterion (see e.g. [3, p. 20]), there is a continuous
mapping

G : (B∗
δ )
m → V \ p−1(Z)

such that p ◦G = ϕ. It is easy to check that G is a holomorphic mapping of
the formG(z) = (zr, g(z)). Further, the mappingG is open and proper, hence
closed, and thus surjective, because the set V \ p−1(Z) is connected. Since
G is a bounded mapping on (B∗

δ )
m, it extends—by virtue of the Riemann

removable singularity theorem—to a surjective holomorphic mapping G :
Bm
δ → V . Hence

V = {(zr, g(z)) : z ∈ Bm
δ } or equivalently V = {(z, g(z1/r)) : z ∈ Bm

ε },

where z1/r
i denotes a multi-valued function. This proves the first part of the

theorem.
Finally, since res p : (V \ p−1(Z)) → (B∗

ε )
m is an n-fold covering, we

actually get
r1 · Z⊕ · · · ⊕ rm · Z ⊂ p∗(π1(V \ p−1(Z)))

for some positive integers r1, . . . , rm ≤ n. We may thus take r to be the least
common multiple of r1, . . . , rm, concluding the proof of the theorem.

Let us mention that for the one-dimensional version of the theorem, i.e.,
the Newton–Puiseux theorem, the estimate of r can be deduced from the
algebraic proofs as well (e.g. the one given in [13]).

Remark 1. Suppose that the discriminant D(z) of the polynomial f(z; t)
is a normal crossing of the form

D(z) = zγ11 · · · z
γp
p · u(z) with u(0) 6= 0, 0 ≤ p ≤ m.
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Then, considering the restrictions of the polynomial f(z; t) to the affine lines
parallel to the coordinate axes, we see that

(r · Zp)⊕ Zm−p ⊂ p∗(π1(V \ p−1(S))).

Consequently, all the roots of the polynomial f(z; v) belong to the ring
K〈z1/r

1 , . . . , z
1/r
p , zp+1, . . . , zm〉.

Going upwards, we shall prove the Abhyankar–Jung theorem for the for-
mal power series rings. So let K be an algebraically closed field of charac-
teristic zero and

f(z; t) = tn + a1(z)tn−1 + · · ·+ an(z) ∈ K[[z]][t]

be a quasiordinary Weierstrass polynomial with discriminant D(z) = zγ ·
u(z), u(0) 6= 0. Take a maximal real subfield R ofK and the o-minimal struc-
ture R = (R,<, 0, 1,+,−, ·), and consider the ring K〈z〉, z = (z1, . . . , zm), of
K-differentiable R-definable function germs at 0 ∈ Km. Since K〈z〉 is an ex-
cellent henselian ring, it has the Artin approximation property (cf. [21, 22]).
Therefore the polynomial f(z; t) can be approximated in the Krull topology
by a sequence of quasiordinary Weierstrass polynomials fk(z; t) ∈ K〈z〉[t].
Indeed, the discriminant D(z) of the polynomial f(z, t) can be expressed as

D(z) = P (a1(z), . . . , an(z)) where P (T1, . . . , Tn) ∈ Z[T1, . . . , Tn].

Our assertion thus follows from the Artin approximation theorem applied to
the system of two polynomial equations

P (A1, . . . , An) = zγ · U, U · V = 1,

with indeterminates A1, . . . , An, U, V .
Now, by the K-differentiable version of the Abhyankar–Jung theorem,

each polynomial fk(z; t) has all its roots in K〈z1/r〉[t] with r = n!. Therefore,
the proof will be completed once we know that the roots depend continu-
ously in the Krull topology on the coefficients. But this follows immediately
from the corollary to a valuation theorem on the continuity of roots (cf. [2,
Section 4, Theorem 2]; see also [20, Proposition 7]), recalled in the proposi-
tion below. Indeed, we apply this corollary to the valuation of the quotient
field of the ring K[[z1/r]], r = n!, which extends the order function.

Proposition. Let (F, v) be a valued field with value group Γ . Consider
two monic polynomials of degree n :

f(t) = tn + a1t
n−1 + · · ·+ an, g(t) = tn + b1t

n−1 + · · ·+ bn

with integral coefficients ai, bi ∈ F (i.e. v(ai), v(bi) ≥ 0 for i = 1, . . . , n).
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Suppose that

f(t) =
n∏
i=1

(t− αi) and g(t) =
n∏
i=1

(t− βi),

where αi, βi ∈ F, i = 1, . . . , n. Define a strictly increasing error function
Φj(γ) of the root αj of f(t) by putting

Φj : Γ ∩ {∞} → Γ ∩ {∞}, Φj(γ) :=
n∑
i=1

min{γ, v(αj − αi)}.

Then, after performing a suitable permutation of the roots, we have

Φj(v(αj − βj)) ≥ v(f − g), j = 1, . . . , n,

where, for a polynomial h ∈ F [t], v(h) stands for the minimum of the values
of its coefficients.

The proof of this proposition consists in analyzing the valuation Newton
polygons of the two polynomials under study. We wish to emphasize that
whereas it is usually difficult to determine the roots by means of the coeffi-
cients, the computation of the values of the roots by means of the values of
the coefficients is quite easy.

Corollary. Under the above assumptions, we have

n · v(αj − βj) ≥ v(f − g), j = 1, . . . , n,

after performing a suitable permutation of the roots.

In our case, however, the conclusion of this corollary can be obtained
by yet another, even simpler, reasoning. Indeed, let αi,k(z) ∈ K〈z1/r〉, i =
1, . . . , n, be the roots of the polynomials fk(z; t), k ∈ N. Since the discrim-
inants of all polynomials fk(z; t) are of the form Dk(z) = zγ · uk(z) with
uk(0) 6= 0, we get

ord(αi,k − αj,k) ≤ γ for all k ∈ N, 1 ≤ i, j ≤ n, i 6= j.

Therefore, our assertion follows from an elementary

Claim. Under the assumptions of the foregoing proposition, for each
root αi of f(t) there is a root βj of g(t) such that n · v(αi − βj) ≥ v(f − g).

To prove the claim, take any root α = αi. It is not difficult to check that

v(α) ≥ min{v(ai)/i : i = 1, . . . , n} ≥ 0.

Clearly,
n∏
j=1

(α−βj) = g(α) = g(α)−f(α) = (b1−a1)αn−1+(b2−a2)αn−2+· · ·+(bn−an),



Abhyankar–Jung theorem 227

and thus
n∑
j=1

v(α− βj) ≥ min{v(b1 − a1) + (n− 1)v(α), . . . , v(bn − an)}

≥ min{v(b1 − a1), . . . , v(bn − an) =: v(f − g).
Hence n · v(α− βj) ≥ v(f − g) for some j = 1, . . . , n, as asserted.

At this stage we can turn to the Abhyankar–Jung theorem for any excel-
lent henselian ring whose completion is a formal power series ring over K,
stated below.

Main Theorem. Let K be an algebraically closed field of characteristic
zero, and K〈z〉 be an excellent henselian ring whose completion is a power
series ring K[[z]], z = (z1, . . . , zm). Then every quasiordinary polynomial

f(z; t) = tn + a1(z)tn−1 + · · ·+ an(z) ∈ K〈z〉[t]
has all its roots in

K〈z1/r〉 := {α(z1/r) : α(z) ∈ K〈z〉}
for some r ∈ N; actually one can take r = n!.

Our proof will again make use of the Artin approximation property. By
virtue of the Abhyankar–Jung theorem for formal power series, all n roots
of the polynomial f(z; t) can be represented in the following form:

αi(z) =
r−1∑

γ1,...,γm=0

αi,γ(z) · zγ/r, i = 1, . . . , n,

where r = n!. After substitution of the term

A =
r−1∑

γ1,...,γm=0

Aγ · zγ/r

for the indeterminate t in the polynomial f(z; t), we get rm polynomial equa-
tions in the indeterminates Aγ with coefficients from K〈z〉; those coefficients
are linear combinations of the products of the ai(z)’s by some powers of the
variables z. Clearly,

(α1,γ(z))γ , . . . , (αn,γ(z))γ
are the sole n solutions to this system of polynomial equations. Hence and
by the Artin approximation theorem, the components of these n solutions
belong to the ring K〈z〉, as required.

Remark 2. We have proven, in fact, that all roots of the polynomial
f(z; t) belong to

r−1∑
γ1,...,γm=0

K〈z〉 · zγ/r.
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Corollary (Real version of the Abhyankar–Jung theorem). Let R be
a real closed field and R〈x〉 an excellent henselian ring whose completion
is a power series ring R[[x]], x = (x1, . . . , xm). Then every quasiordinary
polynomial

f(x; t) = tn + a1(x)tn−1 + · · ·+ an(x) ∈ K〈x〉[t]

has a factorization of the form

f(x; t) =
p∏
i=1

(t− ϕi(x1/r))
q∏
j=1

(t2 − αj(x1/r)t+ βj(x1/r)),

where r ∈ N, p+ 2q = n, ϕi, αj , βj ∈ R〈x〉; actually one can take r = n!.

Indeed, it suffices to apply the theorem to the excellent henselian ring
R〈x〉 ⊗R R(

√
−1) whose completion is R(

√
−1) [[x]].

Remark 3. The foregoing results apply to the ring of quasianalytic germs
in one variable since it is a discrete valuation ring. Therefore, a counterpart
of the Newton–Puiseux theorem is valid in the quasianalytic setting.

We conclude this paper with the following comment. In [16], we gen-
eralized the Abhyankar–Jung theorem—making use of Luengo’s statement
from [9] that every quasiordinary Weierstrass polynomial in the Tschirn-
hausen form is ν-quasiordinary in the sense of Hironaka—to the case of
henselian k[x]-algebras of formal power series, which are closed under recip-
rocal, power substitution and division by a coordinate. This allowed us to
carry over that theorem to the local rings of quasianalytic function germs in
several variables in polynomially bounded o-minimal structures. However,
those results of ours bear a relative character, because it turned out, as
already mentioned, that Luengo’s proof seems to have an essential gap.
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