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On the value distribution of differential polynomials of
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Abstract. Let f be a transcendental meromorphic function of infinite order on C,
let k ∈ N and ϕ = ReP , where R 6≡ 0 is a rational function and P is a polynomial, and
let a0, a1, . . . , ak−1 be holomorphic functions on C. If all zeros of f have multiplicity at
least k except possibly finitely many, and f = 0⇔ f (k) +ak−1f

(k−1) + · · ·+a0f = 0, then
f (k) + ak−1f

(k−1) + · · ·+ a0f − ϕ has infinitely many zeros.

1. Introduction. Let f and g be meromorphic functions on C, and let
a, b be two complex numbers. If g = b whenever f = a, we write f = a ⇒
g = b. If f = a ⇒ g = b and g = b ⇒ f = a, we write f = a ⇔ g = b. The
order ρ(f) (see [8, 14]) of the meromorphic function f is defined as

ρ(f) = lim
r→∞

log T (r, f)
log r

.

In 1959, Hayman [7] proved the following result, which is known as Hay-
man’s Alternative.

Theorem A. Let f be a transcendental meromorphic function on C.
Then either f assumes every finite value infinitely often, or every derivative
of f assumes every finite nonzero value infinitely often.

This result has undergone various extensions (see [1, 2, 4, 5, 9, 11, 12, 13],
etc.). In 2001, Fang [5] proved the following result for functions of infinite
order.

Theorem B. Let f be a transcendental meromorphic function of infinite
order on C. If f = 0⇔ f ′ = 0, then f ′ − b(z) has infinitely many zeros for
any b(z) ∈ S, where S = {azn : a ∈ C \ {0}, n = 0, 1, 2, . . .}.

In 2005, the first author [12] proved
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Theorem C. Let f be a transcendental meromorphic function on C, and
let R ( 6≡ 0) be a rational function and k ∈ N. Suppose that all zeros of f have
multiplicity at least k except possibly finitely many, and f = 0 ⇔ f (k) = 0.
Then f (k) −R has infinitely many zeros.

A natural problem arises: Can the rational function R in Theorem C be
replaced by a more general meromorphic function? In this paper, for the
case of f with infinite order, we prove the following result.

Theorem 1. Let f be a transcendental meromorphic function of infinite
order on C, let k ∈ N and ϕ = ReP , where R 6≡ 0 is a rational function and
P is a polynomial, and let a0, a1, . . . , ak−1 be holomorphic functions on C.
Set

(∗) L[f ] := f (k) + ak−1f
(k−1) + · · ·+ a0f.

Suppose that all zeros of f have multiplicity at least k except possibly finitely
many, and f = 0⇔ L[f ] = 0. Then L[f ]− ϕ has infinitely many zeros.

Remark 1. Obviously, the assumption “all zeros of f have multiplicity
at least k, and f = 0 ⇔ L[f ] = 0” is equivalent to “all zeros of f have
multiplicity at least k + 1, and f = 0⇐ L[f ] = 0”.

Theorem 2. Let f be a transcendental meromorphic function of infinite
order on C, let k ∈ N and ϕ = ReP , where R 6≡ 0 is a rational function and
P is a polynomial, and let a0, a1, . . . , ak−1 be holomorphic functions on C.
If f has only finitely many zeros, then L[f ] − ϕ has infinitely many zeros,
where L[f ] is defined in (∗).

From Theorems 1 and 2, we get

Corollary 1. Let f be a transcendental meromorphic function of infi-
nite order on C, let k ∈ N and ϕ = ReP , where R 6≡ 0 is a rational function
and P is a polynomial. Suppose that all zeros of f have multiplicity at least
k except possibly finitely many, and f = 0 ⇔ f (k) = 0. Then f (k) − ϕ has
infinitely many zeros.

Corollary 2. Let f be a transcendental meromorphic function of infi-
nite order on C, let k ∈ N and ϕ = ReP , where R 6≡ 0 is a rational function
and P is a polynomial. If f has only finitely many zeros, then f (k) − ϕ has
infinitely many zeros.

Remark 2. As Hayman’s inequality [7, 8] for small functions is still un-
known, Theorem 2 and Corollary 2 are not direct consequences of Hayman’s
inequality.

2. Some lemmas. The following three lemmas are due to Liu, Nevo
and Pang [9].
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Lemma 1. Let k be a positive integer and let {fn} be a family of functions
meromorphic on ∆ = {z : |z| < 1}, all of whose zeros have multiplicity at
least k + 1. If an → a, |a| < 1, and f#

n (an) → ∞, then there exist a
subsequence of {fn} (which we still write as {fn}), a sequence of points
zn ∈ D, zn → z0, |z0| < 1, and a sequence of positive numbers ρn → 0 such
that

gn(ζ) =
fn(zn + ρnζ)

ρkn
→ g(ζ)

locally uniformly with respect to the spherical metric, where g is a noncon-
stant meromorphic function on C, such that g#(ζ) ≤ g#(0) = k + 1, and

ρn ≤M/
k+1

√
f#
n (an), where M is independent of n.

Here, as usual, g#(ζ) = |g′(ζ)|/(1 + |g(ζ)|2) is the spherical derivative
of g. The above lemma is in fact another version of Zalcman’s Lemma (see
[3, 10, 11, 15, 16], etc.). The main difference here is the estimate of ρn in
the vicinity of some point of nonnormality. Moreover, by using the Ahlfors–
Shimizu characteristic function, we can deduce (as in [10] or [11]) that the
limit function g in Lemma 1 has order at most 2 since g#(ζ) ≤ g#(0) = k+1.

Lemma 2. Let f be a meromorphic function of infinite order on C. Then
there exist points zn → ∞ such that for every N > 0, f#(zn) > |zn|N if n
is sufficiently large.

Lemma 3. Let R(z) 6≡ 0 be a rational function. Then there exists k > 0
such that |zR′(z)| ≤ k|R(z)| for large enough z.

The next lemma is due to Fang [5] and Fang–Zalcman [6].

Lemma 4. Let f be a meromorphic function of finite order on C, b a
nonzero complex number, and k a positive integer. If all zeros of f have
multiplicity at least k, f = 0⇔ f (k) = 0, and f (k) 6= b, then f is a constant.

3. Proofs of theorems

Proof of Theorem 1. Suppose that L[f ](z)−ϕ(z) has finitely many zeros.
Then, for large z, we have

(1)
L[f ](z)
ϕ(z)

6= 1.

Set

(2) F (z) = f(z)/ϕ(z).

Obviously, the order of F is equal to that of f , and so F is of infinite
order. By Lemma 2, there exist points zn → ∞ such that for every N > 0
and sufficiently large n we have F#(zn) > |zn|N . Noting that ϕ(z) has only
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finitely many zeros and poles, we find that all zeros of F (z+zn) (for large n)
in ∆ have multiplicity at least k + 1.

Then, by Lemma 1, there exist a subsequence of {F (z + zn)} (without
loss of generality, we may still write it as F (z + zn)), a sequence of points
z′n → z0 and |z0| < 1, and a sequence of positive numbers ρn → 0 such that
ρn ≤M/ k+1

√
F#(zn) and

(3) gn(ζ) =
F (zn + z′n + ρnζ)

ρkn
→ g(ζ)

locally uniformly with respect to the spherical metric, where g is a noncon-
stant meromorphic function on C, and M is independent of n. Moreover,
g is of order at most 2. By Hurwitz’s theorem, all zeros of g have multiplicity
at least k + 1.

By simple calculation, for 0 ≤ i ≤ k, we have

(4) F (i)(z) =
f (i)(z)
ϕ(z)

−
i∑

j=1

(
i

j

)
F (i−j)(z)

ϕ(j)(z)
ϕ(z)

.

Obviously, ϕ(j)(z) =
∑j

m=0

(
j
m

)
R(m)(z)(eP (z))(j−m), so that ϕ(j)(z)/ϕ(z) is

a polynomial of R(m)(z)/R(z) and P (m)(z) (m = 1, . . . , j). Now we rewrite
(4) as

(5) F (i)(z) =
f (i)(z)
ϕ(z)

−
i∑

j=1

Qj(z)F (i−j)(z),

where Qj(z) is a polynomial of R(m)(z)/R(z) and P (m)(z) (m = 1, . . . , j)
for j = 1, . . . , i.

Thus, from (3) and (5), we have

ρk−in g(i)
n (ζ) = F (i)(zn + z′n + ρnζ)

=
f (i)(zn + z′n + ρnζ)
ϕ(zn + z′n + ρnζ)

−
i∑

j=1

Qj(zn + z′n + ρnζ)F (i−j)(zn + z′n + ρnζ)

=
f (i)(zn + z′n + ρnζ)
ϕ(zn + z′n + ρnζ)

−
i∑

j=1

ρjnQj(zn + z′n + ρnζ)
F (i−j)(zn + z′n + ρnζ)

ρjn

for i = 0, 1, . . . , k.
Now we show that on each compact subset of C,

(6) lim
n→∞

ρjnQj(zn + z′n + ρnζ) = 0 for 1 ≤ j ≤ i ≤ k.

First, by Lemma 3, we get

(7) lim
n→∞

R(m)(zn + z′n + ρnζ)
R(zn + z′n + ρnζ)

= 0 (1 ≤ m ≤ j).
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On the other hand, for large n, we have

(8) P (m)(zn + z′n + ρnζ) = O(zpn),

where p = max{degP −m, 0} and 1 ≤ m ≤ j. Noting that, for sufficiently
large n and every N > 0,

ρn ≤
M

k+1
√
F#(zn)

< M |zn|−N/(k+1),

for any given α > 0 we have

ραn|zn|p < Mα|zn|p−αN/(k+1) → 0,

since we can choose N so large that p−αN/(k+ 1) < 0. This and (8) imply
that, for any given α > 0,

(9) lim
n→∞

ραnP
(m)(zn + z′n + ρnζ) = 0 for 1 ≤ m ≤ j,

Recalling that Qj(z) is a polynomial of R(m)(z)/R(z) and P (m)(z) (m =
1, . . . , j), from (7) and (9) we obtain (6).

We note that F (i−j)(zn + z′n + ρnζ)/ρjn is locally bounded on C minus
the set of poles of g(ζ) since F (zn + z′n + ρnζ)/ρkn → g(ζ). Then, on every
compact subset of C which contains no poles of g(ζ), we have

f (k)(zn + z′n + ρnζ)
ϕ(zn + z′n + ρnζ)

→ g(k)(ζ),

and
f (i)(zn + z′n + ρnζ)
ϕ(zn + z′n + ρnζ)

→ 0,

for i = 0, 1, . . . , k − 1, and thus

(10)
L[f ](zn + z′n + ρnζ)
ϕ(zn + z′n + ρnζ)

→ g(k)(ζ),

since a0, . . . , ak−1 are holomorphic.
We claim

(i) g(ζ) = 0⇔ g(k)(ζ) = 0;
(ii) g(k) 6= 1 on C.

Obviously, g(ζ) = 0 ⇒ g(k)(ζ) = 0. Now suppose g(k)(ζ0) = 0. Since
all zeros of g(ζ) have multiplicity at least k+1, we know that g(k)(ζ) 6≡ 0.
Hurwitz’s theorem implies that there exist ζn → ζ0 such that (for n suffi-
ciently large)

L[f ](zn + z′n + ρnζn) = 0.

It follows that f(zn + z′n + ρnζn) = 0. Hence g(ζ0) = limn→∞ gn(ζn) = 0. So
g(k)(ζ) = 0⇒ g(ζ) = 0. This proves (i).
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Next we prove (ii). From (1) and (10), Hurwitz’s theorem shows that
on C minus the poles of g, the derivative g(k) is either identically 1, or
never equal to 1. Clearly, the same alternative also holds on the whole C. If
g(k)(ζ) ≡ 1, then g is a polynomial of degree k. But this contradicts the fact
all zeros of g have multiplicity at least k + 1. So we get (ii).

Thus by Lemma 4, g must be a constant, contradiction. This completes
the proof of Theorem 1.

Proof of Theorem 2. Since f has only finitely many zeros, by applying
Hurwitz’s theorem, we deduce from (3) that g 6= 0. Then, by using the same
argument as in the proof of Theorem 1, we can prove Theorem 2. Here we
omit the details.
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