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Abstract. Let f be a transcendental meromorphic function of infinite order on C,
let £ € N and ¢ = Re”, where R # 0 is a rational function and P is a polynomial, and
let ap,a1,...,ax—1 be holomorphic functions on C. If all zeros of f have multiplicity at
least k except possibly finitely many, and f = 0 < f® a1 fFD 4. .4 q0f =0, then
f® Lap o fE Y 4 4 4o f — ¢ has infinitely many zeros.

1. Introduction. Let f and g be meromorphic functions on C, and let
a,b be two complex numbers. If g = b whenever f = a, we write f = a =
g=bIlff=a=g=band g=b= f =a, we write f =a < g=">0. The
order p(f) (see [8,14]) of the meromorphic function f is defined as

— log T'(r, f)
= lim ——~.
p(f) = lim —— o

In 1959, Hayman [7] proved the following result, which is known as Hay-

man’s Alternative.

THEOREM A. Let f be a transcendental meromorphic function on C.
Then either f assumes every finite value infinitely often, or every derivative
of f assumes every finite nonzero value infinitely often.

This result has undergone various extensions (see [11 2} 4} 5, 9] [1T], 12 T3],
etc.). In 2001, Fang [5] proved the following result for functions of infinite
order.

THEOREM B. Let f be a transcendental meromorphic function of infinite
order on C. If f =0 < f' =0, then f' — b(2) has infinitely many zeros for
any b(z) € S, where S ={az":a € C\ {0}, n=0,1,2,...}.

In 2005, the first author [12] proved
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THEOREM C. Let f be a transcendental meromorphic function on C, and
let R (# 0) be a rational function and k € N. Suppose that all zeros of f have
multiplicity at least k except possibly finitely many, and f = 0 < f*) = 0.
Then %) — R has infinitely many zeros.

A natural problem arises: Can the rational function R in Theorem C be
replaced by a more general meromorphic function? In this paper, for the
case of f with infinite order, we prove the following result.

THEOREM 1. Let f be a transcendental meromorphic function of infinite
order on C, let k € N and ¢ = Re”, where R # 0 is a rational function and

P is a polynomial, and let ag,a1,...,ap_1 be holomorphic functions on C.
Set

Suppose that all zeros of f have multiplicity at least k except possibly finitely
many, and f =0 < L[f] =0. Then L[f] — ¢ has infinitely many zeros.

REMARK 1. Obviously, the assumption “all zeros of f have multiplicity
at least k, and f = 0 < L[f] = 0” is equivalent to “all zeros of f have
multiplicity at least k + 1, and f =0 <« L[f] =0".

THEOREM 2. Let f be a transcendental meromorphic function of infinite
order on C, let k € N and ¢ = Re”, where R # 0 is a rational function and
P is a polynomial, and let ag,a1,...,ar_1 be holomorphic functions on C.
If f has only finitely many zeros, then L[f] — ¢ has infinitely many zeros,
where L[f] is defined in ().

From Theorems 1 and 2, we get

COROLLARY 1. Let f be a transcendental meromorphic function of infi-
nite order on C, let k € N and ¢ = Rel’, where R # 0 is a rational function
and P is a polynomial. Suppose that all zeros of f have multiplicity at least
k except possibly finitely many, and f = 0 < f&) = 0. Then f* — ¢ has
infinitely many zeros.

COROLLARY 2. Let f be a transcendental meromorphic function of infi-
nite order on C, let k € N and o = Rer’, where R # 0 is a rational function
and P is a polynomial. If f has only finitely many zeros, then f*) — © has
infinitely many zeros.

REMARK 2. As Hayman’s inequality [7, [§] for small functions is still un-
known, Theorem [2]and Corollary [2 are not direct consequences of Hayman’s
inequality.

2. Some lemmas. The following three lemmas are due to Liu, Nevo
and Pang [9].
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LEMMA 1. Let k be a positive integer and let { f,} be a family of functions
meromorphic on A = {z : |z| < 1}, all of whose zeros have multiplicity at
least k + 1. If a, — a, |a|] < 1, and f#(an) — oo, then there emist a
subsequence of {fn} (which we still write as {f,}), a sequence of points
zn € D, z, — 20, |20| < 1, and a sequence of positive numbers p, — 0 such
that

4n(0) = f(;“) =90

locally uniformly with respect to the spherical metric, where g is a noncon-
stant meromorphic function on C, such that g” (¢) < g7 (0) = k + 1, and

pn < M) "R f#(an), where M is independent of n.

Here, as usual, g7 (¢) = |¢’(¢)|/(1 + |g(¢)|?) is the spherical derivative
of g. The above lemma is in fact another version of Zalcman’s Lemma (see
[3, 10} [T, 15 16], etc.). The main difference here is the estimate of p,, in
the vicinity of some point of nonnormality. Moreover, by using the Ahlfors—
Shimizu characteristic function, we can deduce (as in [10] or [II]) that the
limit function g in Lemmahas order at most 2 since g7 (¢) < g7 (0) = k+1.

LEMMA 2. Let f be a meromorphic function of infinite order on C. Then
there exist points z, — oo such that for every N > 0, f#(z,) > |z.|™ if n
s sufficiently large.

LEMMA 3. Let R(z) # 0 be a rational function. Then there exists k > 0
such that |zR/(2)| < k|R(2)| for large enough =.

The next lemma is due to Fang [5] and Fang—Zalcman [6].

LEMMA 4. Let f be a meromorphic function of finite order on C, b a
nonzero complexr number, and k a positive integer. If all zeros of f have
multiplicity at least k, f =0 < f¥) =0, and f*) #£b, then f is a constant.

3. Proofs of theorems

Proof of Theorem 1. Suppose that L[f](z)—y(z) has finitely many zeros.
Then, for large z, we have

(1)
Set
(2) F(z) = f(2)/e(2).

Obviously, the order of F' is equal to that of f, and so F' is of infinite

order. By Lemma 2, there exist points z, — oo such that for every N > 0
and sufficiently large n we have F#(z,) > |z,|". Noting that ¢(z) has only
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finitely many zeros and poles, we find that all zeros of F(z+ z,) (for large n)
in A have multiplicity at least k + 1.

Then, by Lemma [l there exist a subsequence of {F(z + z,)} (without
loss of generality, we may still write it as F'(z + z,)), a sequence of points
zl — zp and |zp| < 1, and a sequence of positive numbers p, — 0 such that

pn < M/ *R/F#(z,) and
F(Zn + Z + PnC)

(3) gn () = o —9(¢)

locally uniformly with respect to the spherical metric, where g is a noncon-
stant meromorphic function on C, and M is independent of n. Moreover,
g is of order at most 2. By Hurwitz’s theorem, all zeros of g have multiplicity
at least k + 1.

By simple calculation, for 0 < i < k, we have

(@) P =L -5 (e 28

o(2) Jlﬂ

(
Obviously, V) (z (ﬂn) (ePE)0=m) 5o that ¢ (2)/@(2) is
a polynomial of R(m ( )/R(z) and P(m)( ) (m=1,...,7). Now we rewrite

as

() FO(z) =

FO(2) - ¢ Pl
202) le( JEY T (2),

J=
where Q;(z ) is a polynomial of R(™(2)/R(z) and P (z) (m = 1,...,)
for j =1,.

Thus, from and , we have

Pl (Q) = (Z + 2 +pnC)

_ f(”(zn + 21, + pu)
¢(2n + 2, + pnC)

N Z Qj(zn + 2, + PnC)F(i_j)(Zn + 25 + pnC)

o f()(Zn—l-Z +pn€ (l j)(zn‘FZ;L‘i‘pnC)
— o(zn + 2, + pl) ZPJQ] o0t 2+ pud) o

fori=0,1,...,k.
Now we show that on each compact subset of C,

(6) lim o/ Q;(zn + 25 +pnl) =0 for 1 <j<i<k.
n—oo
First, by Lemma [3| we get

R(m)('zn + 2, + pnC)
li “ = 1 <m <j).
g M Rt ) 0 ST
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On the other hand, for large n, we have
(8) P (2 + 21, + puC) = O(28),

where p = max{deg P — m,0} and 1 < m < j. Noting that, for sufficiently
large n and every N > 0,

M
S S V)
10” k+1 F#(Zn) ’ n|
for any given o > 0 we have
palznl? < MOz, PN/ g,
since we can choose N so large that p—aN/(k+ 1) < 0. This and imply
that, for any given a > 0,

(9) Jim PO (2 4 21, 4 paC) =0 for 1< m < j,

Recalling that Q;(z) is a polynomial of R(™(2)/R(z) and P™(2) (m =
1,...,7), from and @D we obtain @

We note that F0=9(z, + 2, + pn¢)/plh is locally bounded on C minus
the set of poles of g(¢) since F(z, + 2, + pn()/pk — g(¢). Then, on every
compact subset of C which contains no poles of g({), we have

Ptz +000)
(P(Zn + 25, + pnC) g (g)7

and ‘
f(Z)(zn + 2], + pnC) =0,
o(2n + 25, + puC)

fori=0,1,...,k— 1, and thus

/
(10) L[f] (Zn +/Zn + pnC) N g(k)(g)’

©(zn + 23, + pnC)
since aq, ..., ar_1 are holomorphic.
We claim

(1) 9(¢) = 0= g™(¢) =0;

(ii) g #1 on C.

Obviously, g(¢) = 0 = ¢®)(¢) = 0. Now suppose g*)(¢y) = 0. Since
all zeros of ¢(¢) have multiplicity at least k+1, we know that ¢(¥)(¢) # 0.
Hurwitz’s theorem implies that there exist (;, — (p such that (for n suffi-
ciently large)

It follows that f(zn + 2}, + pnCn) = 0. Hence g(¢o) = limy, o0 gn(¢n) = 0. So
g®)(¢) = 0= g(¢) = 0. This proves (i).
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Next we prove (ii). From and (10), Hurwitz’s theorem shows that
on C minus the poles of g, the derivative ¢*) is either identically 1, or
never equal to 1. Clearly, the same alternative also holds on the whole C. If
g(k)(g) = 1, then g is a polynomial of degree k. But this contradicts the fact
all zeros of g have multiplicity at least k + 1. So we get (ii).

Thus by Lemma [4, g must be a constant, contradiction. This completes
the proof of Theorem [T m

Proof of Theorem 2. Since f has only finitely many zeros, by applying
Hurwitz’s theorem, we deduce from that g # 0. Then, by using the same
argument as in the proof of Theorem [I, we can prove Theorem [2l Here we
omit the details. u
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