On the value distribution of differential polynomials of meromorphic functions

by YAN XU and HUILING QIU (Nanjing)

Abstract. Let f be a transcendental meromorphic function of infinite order on \mathbb{C} , let $k \in \mathbb{N}$ and $\varphi = Re^P$, where $R \neq 0$ is a rational function and P is a polynomial, and let $a_0, a_1, \ldots, a_{k-1}$ be holomorphic functions on \mathbb{C} . If all zeros of f have multiplicity at least k except possibly finitely many, and $f = 0 \Leftrightarrow f^{(k)} + a_{k-1}f^{(k-1)} + \cdots + a_0f = 0$, then $f^{(k)} + a_{k-1}f^{(k-1)} + \cdots + a_0f - \varphi$ has infinitely many zeros.

1. Introduction. Let f and g be meromorphic functions on \mathbb{C} , and let a, b be two complex numbers. If g = b whenever f = a, we write $f = a \Rightarrow g = b$. If $f = a \Rightarrow g = b$ and $g = b \Rightarrow f = a$, we write $f = a \Leftrightarrow g = b$. The order $\rho(f)$ (see [8, 14]) of the meromorphic function f is defined as

$$\rho(f) = \lim_{r \to \infty} \frac{\log T(r, f)}{\log r}.$$

In 1959, Hayman [7] proved the following result, which is known as Hayman's Alternative.

THEOREM A. Let f be a transcendental meromorphic function on \mathbb{C} . Then either f assumes every finite value infinitely often, or every derivative of f assumes every finite nonzero value infinitely often.

This result has undergone various extensions (see [1, 2, 4, 5, 9, 11, 12, 13], etc.). In 2001, Fang [5] proved the following result for functions of infinite order.

THEOREM B. Let f be a transcendental meromorphic function of infinite order on \mathbb{C} . If $f = 0 \Leftrightarrow f' = 0$, then f' - b(z) has infinitely many zeros for any $b(z) \in S$, where $S = \{az^n : a \in \mathbb{C} \setminus \{0\}, n = 0, 1, 2, \ldots\}$.

In 2005, the first author [12] proved

2010 Mathematics Subject Classification: Primary 30D35.

Key words and phrases: meromorphic function, Zalcman's lemma, infinite order, zero.

THEOREM C. Let f be a transcendental meromorphic function on \mathbb{C} , and let $R \ (\not\equiv 0)$ be a rational function and $k \in \mathbb{N}$. Suppose that all zeros of f have multiplicity at least k except possibly finitely many, and $f = 0 \Leftrightarrow f^{(k)} = 0$. Then $f^{(k)} - R$ has infinitely many zeros.

A natural problem arises: Can the rational function R in Theorem C be replaced by a more general meromorphic function? In this paper, for the case of f with infinite order, we prove the following result.

THEOREM 1. Let f be a transcendental meromorphic function of infinite order on \mathbb{C} , let $k \in \mathbb{N}$ and $\varphi = Re^P$, where $R \neq 0$ is a rational function and P is a polynomial, and let $a_0, a_1, \ldots, a_{k-1}$ be holomorphic functions on \mathbb{C} . Set

(*)
$$L[f] := f^{(k)} + a_{k-1}f^{(k-1)} + \dots + a_0f.$$

Suppose that all zeros of f have multiplicity at least k except possibly finitely many, and $f = 0 \Leftrightarrow L[f] = 0$. Then $L[f] - \varphi$ has infinitely many zeros.

REMARK 1. Obviously, the assumption "all zeros of f have multiplicity at least k, and $f = 0 \Leftrightarrow L[f] = 0$ " is equivalent to "all zeros of f have multiplicity at least k + 1, and $f = 0 \Leftrightarrow L[f] = 0$ ".

THEOREM 2. Let f be a transcendental meromorphic function of infinite order on \mathbb{C} , let $k \in \mathbb{N}$ and $\varphi = Re^P$, where $R \neq 0$ is a rational function and P is a polynomial, and let $a_0, a_1, \ldots, a_{k-1}$ be holomorphic functions on \mathbb{C} . If f has only finitely many zeros, then $L[f] - \varphi$ has infinitely many zeros, where L[f] is defined in (*).

From Theorems 1 and 2, we get

COROLLARY 1. Let f be a transcendental meromorphic function of infinite order on \mathbb{C} , let $k \in \mathbb{N}$ and $\varphi = Re^P$, where $R \neq 0$ is a rational function and P is a polynomial. Suppose that all zeros of f have multiplicity at least k except possibly finitely many, and $f = 0 \Leftrightarrow f^{(k)} = 0$. Then $f^{(k)} - \varphi$ has infinitely many zeros.

COROLLARY 2. Let f be a transcendental meromorphic function of infinite order on \mathbb{C} , let $k \in \mathbb{N}$ and $\varphi = Re^P$, where $R \neq 0$ is a rational function and P is a polynomial. If f has only finitely many zeros, then $f^{(k)} - \varphi$ has infinitely many zeros.

REMARK 2. As Hayman's inequality [7, 8] for small functions is still unknown, Theorem 2 and Corollary 2 are not direct consequences of Hayman's inequality.

2. Some lemmas. The following three lemmas are due to Liu, Nevo and Pang [9].

LEMMA 1. Let k be a positive integer and let $\{f_n\}$ be a family of functions meromorphic on $\Delta = \{z : |z| < 1\}$, all of whose zeros have multiplicity at least k + 1. If $a_n \to a$, |a| < 1, and $f_n^{\#}(a_n) \to \infty$, then there exist a subsequence of $\{f_n\}$ (which we still write as $\{f_n\}$), a sequence of points $z_n \in D, z_n \to z_0, |z_0| < 1$, and a sequence of positive numbers $\rho_n \to 0$ such that

$$g_n(\zeta) = \frac{f_n(z_n + \rho_n \zeta)}{\rho_n^k} \to g(\zeta)$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on \mathbb{C} , such that $g^{\#}(\zeta) \leq g^{\#}(0) = k + 1$, and $\rho_n \leq M / \sqrt[k+1]{f_n^{\#}(a_n)}$, where M is independent of n.

Here, as usual, $g^{\#}(\zeta) = |g'(\zeta)|/(1+|g(\zeta)|^2)$ is the spherical derivative of g. The above lemma is in fact another version of Zalcman's Lemma (see [3, 10, 11, 15, 16], etc.). The main difference here is the estimate of ρ_n in the vicinity of some point of nonnormality. Moreover, by using the Ahlfors– Shimizu characteristic function, we can deduce (as in [10] or [11]) that the limit function g in Lemma 1 has order at most 2 since $g^{\#}(\zeta) \leq g^{\#}(0) = k+1$.

LEMMA 2. Let f be a meromorphic function of infinite order on \mathbb{C} . Then there exist points $z_n \to \infty$ such that for every N > 0, $f^{\#}(z_n) > |z_n|^N$ if n is sufficiently large.

LEMMA 3. Let $R(z) \neq 0$ be a rational function. Then there exists k > 0 such that $|zR'(z)| \leq k|R(z)|$ for large enough z.

The next lemma is due to Fang [5] and Fang–Zalcman [6].

LEMMA 4. Let f be a meromorphic function of finite order on \mathbb{C} , b a nonzero complex number, and k a positive integer. If all zeros of f have multiplicity at least k, $f = 0 \Leftrightarrow f^{(k)} = 0$, and $f^{(k)} \neq b$, then f is a constant.

3. Proofs of theorems

Proof of Theorem 1. Suppose that $L[f](z) - \varphi(z)$ has finitely many zeros. Then, for large z, we have

(1)
$$\frac{L[f](z)}{\varphi(z)} \neq 1.$$

Set

(2)
$$F(z) = f(z)/\varphi(z).$$

Obviously, the order of F is equal to that of f, and so F is of infinite order. By Lemma 2, there exist points $z_n \to \infty$ such that for every N > 0 and sufficiently large n we have $F^{\#}(z_n) > |z_n|^N$. Noting that $\varphi(z)$ has only

finitely many zeros and poles, we find that all zeros of $F(z+z_n)$ (for large n) in Δ have multiplicity at least k+1.

Then, by Lemma 1, there exist a subsequence of $\{F(z + z_n)\}$ (without loss of generality, we may still write it as $F(z + z_n)$), a sequence of points $z'_n \to z_0$ and $|z_0| < 1$, and a sequence of positive numbers $\rho_n \to 0$ such that $\rho_n \leq M/ {}^{k+1}\sqrt{F^{\#}(z_n)}$ and

(3)
$$g_n(\zeta) = \frac{F(z_n + z'_n + \rho_n \zeta)}{\rho_n^k} \to g(\zeta)$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on \mathbb{C} , and M is independent of n. Moreover, g is of order at most 2. By Hurwitz's theorem, all zeros of g have multiplicity at least k + 1.

By simple calculation, for $0 \le i \le k$, we have

(4)
$$F^{(i)}(z) = \frac{f^{(i)}(z)}{\varphi(z)} - \sum_{j=1}^{i} \binom{i}{j} F^{(i-j)}(z) \frac{\varphi^{(j)}(z)}{\varphi(z)}.$$

Obviously, $\varphi^{(j)}(z) = \sum_{m=0}^{j} {j \choose m} R^{(m)}(z) (e^{P(z)})^{(j-m)}$, so that $\varphi^{(j)}(z)/\varphi(z)$ is a polynomial of $R^{(m)}(z)/R(z)$ and $P^{(m)}(z)$ $(m = 1, \ldots, j)$. Now we rewrite (4) as

(5)
$$F^{(i)}(z) = \frac{f^{(i)}(z)}{\varphi(z)} - \sum_{j=1}^{i} Q_j(z) F^{(i-j)}(z),$$

where $Q_j(z)$ is a polynomial of $R^{(m)}(z)/R(z)$ and $P^{(m)}(z)$ (m = 1, ..., j) for j = 1, ..., i.

Thus, from (3) and (5), we have

$$\begin{split} \rho_n^{k-i} g_n^{(i)}(\zeta) &= F^{(i)}(z_n + z'_n + \rho_n \zeta) \\ &= \frac{f^{(i)}(z_n + z'_n + \rho_n \zeta)}{\varphi(z_n + z'_n + \rho_n \zeta)} - \sum_{j=1}^i Q_j(z_n + z'_n + \rho_n \zeta) F^{(i-j)}(z_n + z'_n + \rho_n \zeta) \\ &= \frac{f^{(i)}(z_n + z'_n + \rho_n \zeta)}{\varphi(z_n + z'_n + \rho_n \zeta)} - \sum_{j=1}^i \rho_n^j Q_j(z_n + z'_n + \rho_n \zeta) \frac{F^{(i-j)}(z_n + z'_n + \rho_n \zeta)}{\rho_n^j} \end{split}$$

for i = 0, 1, ..., k.

Now we show that on each compact subset of \mathbb{C} ,

(6)
$$\lim_{n \to \infty} \rho_n^j Q_j(z_n + z'_n + \rho_n \zeta) = 0 \quad \text{for } 1 \le j \le i \le k.$$

First, by Lemma 3, we get

(7)
$$\lim_{n \to \infty} \frac{R^{(m)}(z_n + z'_n + \rho_n \zeta)}{R(z_n + z'_n + \rho_n \zeta)} = 0 \quad (1 \le m \le j).$$

On the other hand, for large n, we have

(8)
$$P^{(m)}(z_n + z'_n + \rho_n \zeta) = O(z_n^p),$$

where $p = \max\{\deg P - m, 0\}$ and $1 \le m \le j$. Noting that, for sufficiently large n and every N > 0,

$$\rho_n \le \frac{M}{k + \sqrt[k]{F^{\#}(z_n)}} < M |z_n|^{-N/(k+1)},$$

for any given $\alpha > 0$ we have

$$\rho_n^{\alpha} |z_n|^p < M^{\alpha} |z_n|^{p - \alpha N/(k+1)} \to 0,$$

since we can choose N so large that $p - \alpha N/(k+1) < 0$. This and (8) imply that, for any given $\alpha > 0$,

(9)
$$\lim_{n \to \infty} \rho_n^{\alpha} P^{(m)}(z_n + z'_n + \rho_n \zeta) = 0 \quad \text{for } 1 \le m \le j,$$

Recalling that $Q_j(z)$ is a polynomial of $R^{(m)}(z)/R(z)$ and $P^{(m)}(z)$ (m = 1, ..., j), from (7) and (9) we obtain (6).

We note that $F^{(i-j)}(z_n + z'_n + \rho_n \zeta)/\rho_n^j$ is locally bounded on \mathbb{C} minus the set of poles of $g(\zeta)$ since $F(z_n + z'_n + \rho_n \zeta)/\rho_n^k \to g(\zeta)$. Then, on every compact subset of \mathbb{C} which contains no poles of $g(\zeta)$, we have

$$\frac{f^{(k)}(z_n + z'_n + \rho_n \zeta)}{\varphi(z_n + z'_n + \rho_n \zeta)} \to g^{(k)}(\zeta),$$

and

$$\frac{f^{(i)}(z_n + z'_n + \rho_n \zeta)}{\varphi(z_n + z'_n + \rho_n \zeta)} \to 0,$$

for i = 0, 1, ..., k - 1, and thus

(10)
$$\frac{L[f](z_n + z'_n + \rho_n \zeta)}{\varphi(z_n + z'_n + \rho_n \zeta)} \to g^{(k)}(\zeta),$$

since a_0, \ldots, a_{k-1} are holomorphic.

We claim

(i) $g(\zeta) = 0 \Leftrightarrow g^{(k)}(\zeta) = 0;$ (ii) $g^{(k)} \neq 1$ on \mathbb{C} .

Obviously, $g(\zeta) = 0 \Rightarrow g^{(k)}(\zeta) = 0$. Now suppose $g^{(k)}(\zeta_0) = 0$. Since all zeros of $g(\zeta)$ have multiplicity at least k+1, we know that $g^{(k)}(\zeta) \neq 0$. Hurwitz's theorem implies that there exist $\zeta_n \to \zeta_0$ such that (for n sufficiently large)

$$L[f](z_n + z'_n + \rho_n \zeta_n) = 0.$$

It follows that $f(z_n + z'_n + \rho_n \zeta_n) = 0$. Hence $g(\zeta_0) = \lim_{n \to \infty} g_n(\zeta_n) = 0$. So $g^{(k)}(\zeta) = 0 \Rightarrow g(\zeta) = 0$. This proves (i).

Next we prove (ii). From (1) and (10), Hurwitz's theorem shows that on \mathbb{C} minus the poles of g, the derivative $g^{(k)}$ is either identically 1, or never equal to 1. Clearly, the same alternative also holds on the whole \mathbb{C} . If $g^{(k)}(\zeta) \equiv 1$, then g is a polynomial of degree k. But this contradicts the fact all zeros of g have multiplicity at least k + 1. So we get (ii).

Thus by Lemma 4, g must be a constant, contradiction. This completes the proof of Theorem 1. \blacksquare

Proof of Theorem 2. Since f has only finitely many zeros, by applying Hurwitz's theorem, we deduce from (3) that $g \neq 0$. Then, by using the same argument as in the proof of Theorem 1, we can prove Theorem 2. Here we omit the details.

Acknowledgments. We wish to thank the referee for his/her valuable comments and suggestions.

The first author was supported by NSFC (Grant No. 10871094).

References

- W. Bergweiler, On the product of a meromorphic function and its derivatives, Bull. Hong Kong Math. Soc. 1 (1997), 97–101.
- [2] W. Bergweiler and X. C. Pang, On the derivatives of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 278 (2003), 285–292.
- H. H. Chen and Y. X. Gu, An improvement of Marty's criterion and its applications, Sci. China Ser. A (6) 36 (1993), 674–681.
- [4] M. L. Fang, A note on a problem of Hayman, Analysis 20 (2000), 45-49.
- [5] —, Picard values and normality criterion, Bull. Korean Math. Soc. (2) 38 (2001), 379–387.
- [6] M. L. Fang and L. Zalcman, Normal families and shared values of meromorphic functions, Ann. Polon. Math. 80 (2003), 133–141.
- [7] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. 70 (1959), 9–42.
- [8] —, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [9] X. J. Liu, S. Nevo and X. C. Pang, On the kth derivative of meromorphic functions with zeros of multiplicity at least k + 1, J. Math. Anal. Appl. 348 (2008), 516–529.
- [10] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325–331.
- [11] Y. F. Wang and M. L. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica (N.S.) 14 (1998), 17–26.
- [12] Y. Xu, On the value distribution of derivatives of meromorphic functions, Appl. Math. Lett. 18 (2005), 597–602.
- [13] —, Picard values and derivatives of meromorphic functions, Kodai Math. J. 28 (2005), 99–105.
- [14] L. Yang, Value Distribution Theory, Springer & Sci. Press, Berlin, 1993.
- [15] L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813–817.

[16] L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. 35 (1998), 215–230.

Yan Xu Department of Mathematics Nanjing Normal University Nanjing 210046, P.R. China E-mail: xuyan@njnu.edu.cn Huiling Qiu Department of Applied Mathematics Nanjing Audit University Nanjing 210029, P.R. China E-mail: qiuhuiling1304@sina.com

Received 17.9.2009 and in final form 12.11.2009

(2081)