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3-submersions from QR-hypersurfaces of
quaternionic Kähler manifolds

by Gabriel Eduard V̂ılcu (Ploieşti and Bucureşti)

Abstract. We study 3-submersions from a QR-hypersurface of a quaternionic Kähler
manifold onto an almost quaternionic hermitian manifold. We also prove the non-existence
of quaternionic submersions between quaternionic Kähler manifolds which are not locally
hyper-Kähler.

1. Introduction. In [WTS] B. Watson introduced the notion of 3-
submersion, as a Riemannian submersion from an almost contact metric
manifold onto an almost quaternionic manifold, which commutes with the
structure tensors of type (1, 1). In [IMV1] and [IMV2], this concept has been
extended in quaternionic setting. In this paper we study 3-submersions from
QR-hypersurfaces of quaternionic Kähler manifolds, we give an example and
obtain some obstructions to the existence of quaternionic submersions.

The study of QR-submanifolds of a quaternionic Kähler manifold was
initiated by A. Bejancu [BJC]. Among all submanifolds of a quaternionic
Kähler manifold, QR-submanifolds have been intensively studied by several
authors [AG, BEJ, BF, GS, KP, KPK, MNG, SHN1, SHN2]. In Section 2
we recall the definitions and basic properties of quaternionic manifolds and
QR-submanifolds of a quaternionic Kähler manifold.

On the other hand, R. Güneş, B. Şahin and S. Keleş [GS] have shown that
a QR-submanifold admits an almost contact 3-structure under some condi-
tions. In Section 3 we see that on an orientable hypersurface of a quaternionic
Kähler manifold there exists a natural almost contact metric 3-structure.
This result will allow us to define the concept of QR 3-submersion. In Sec-
tion 4 we obtain some properties for this kind of submersions and give an
example. In the last section we prove the non-existence of quaternionic sub-
mersions between quaternionic Kähler non-locally hyper-Kähler manifolds.
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2. Preliminaries. Let M be a differentiable manifold of dimension n
and assume that there is a rank 3-subbundle σ of End(TM) which is locally
spanned by an almost hypercomplex structure, i.e. a triple {J1, J2, J3} of
almost complex structures satisfying the quaternionic identities:

(2.1)
{
J2
α = −Id, ∀α ∈ {1, 2, 3},
J1J2 = −J2J1 = J3.

Then the bundle σ is called an almost quaternionic structure on M and
{J1, J2, J3} is called a canonical local basis of σ. Moreover, (M, g) is then
said to be an almost quaternionic manifold. It is easy to see that any almost
quaternionic manifold is of dimension n = 4m.

A Riemannian metric g is adapted to the quaternionic structure σ if
(2.2) g(JαX, JαY ) = g(X,Y ), ∀α ∈ {1, 2, 3},
for all vector fields X,Y on M and any local basis {J1, J2, J3} of σ. Moreover,
(M,σ, g) is then said to be an almost quaternionic hermitian manifold.

If the bundle σ is parallel with respect to the Levi-Civita connection ∇
of g, then (M,σ, g) is said to be a quaternionic Kähler manifold. Equiva-
lently, there exists locally defined 1-forms ω1, ω2, ω3 such that

(2.3)


∇XJ1 = ω3(X)J2 − ω2(X)J3,

∇XJ2 = −ω3(X)J1 + ω1(X)J3,

∇XJ3 = ω2(X)J1 − ω1(X)J2,

for any vector field X on M . In particular, if ω1 = ω2 = ω3 = 0, then
(M,σ, g) is said to be a locally hyper-Kähler manifold.

We remark that any quaternionic Kähler manifold M is an Einstein
space, provided that dimM > 4. Moreover, M is irreducible (if Ric 6= 0) or
locally hyper-Kähler manifold (if Ric = 0) (see [AL, BES, ISH, SLM]).

Let (M,σ, g) be an almost quaternionic hermitian manifold. If X ∈ TpM ,
p ∈ M , then the 4-plane Q(X) spanned by {X, J1X, J2X,J3X} is called a
quaternionic 4-plane. A 2-plane in TpM spanned by {X,Y } is called half-
quaternionic if Q(X) = Q(Y ).

The sectional curvature for a half-quaternionic 2-plane is called quater-
nionic sectional curvature. A quaternionic Kähler manifold is a quaternionic
space form if its quaternionic sectional curvatures are equal to a constant,
say c. It is well-known that a quaternionic Kähler manifold (M,σ, g) is a
quaternionic space form (denoted M(c)) if and only if its curvature tensor is

R(X,Y )Z =
c

4

{
g(Z, Y )X − g(X,Z)Y +

3∑
α=1

[g(Z, JαY )JαX(2.4)

− g(Z, JαX)JαY + 2g(X, JαY )JαZ]
}

for all vector fields X,Y, Z on M and any local basis {J1, J2, J3} of σ.
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Let (M,σ, g) be a quaternionic Kähler manifold and let M be a real
submanifold of M . Then M is said to be a QR-submanifold if there exists a
vector subbundle D of the normal bundle TM⊥ such that:

(i) Jα(Dp) = Dp for all p ∈M and α ∈ {1, 2, 3};
(ii) Jα(D⊥p ) ⊂ TpM for all p ∈ M and α ∈ {1, 2, 3}, where D⊥ is the

complementary orthogonal bundle to D in TM⊥ (see [BJC]).

3. QR-hypersurfaces and almost contact metric 3-structures.
Let M be an orientable hypersurface of a quaternionic Kähler manifold
(M,σ, g) and ξ a unit normal field on M . If we take D = 0, then D⊥ = TM⊥

and we conclude that M is a QR-submanifold of M .
Let {Jα}α∈{1,2,3} and {J ′α}α∈{1,2,3} be two local bases defined on coordi-

nate neighborhoods U and U
′ with U ∩ U ′ 6= ∅. Then, on U ,

ξα = −Jαξ, ∀α ∈ {1, 2, 3},

defines tangent vector fields to M and similarly, on U
′,

ξ′α = −J ′αξ, ∀α ∈ {1, 2, 3},
defines tangent vector fields to M .

Moreover, on U ∩ U ′ we have

ξ′α =
3∑

β=1

cαβξβ, ∀α ∈ {1, 2, 3},

where C = (cαβ)α,β∈{1,2,3} ∈ SO(3). Thus, we obtain a distribution V on
M , which is locally generated by {ξα}α∈{1,2,3}. Let H be the orthogonal
complementary distribution to V with respect to the Riemannian metric g
induced by g on M . We remark that for each p ∈M , Hp is Jα-invariant for
all α ∈ {1, 2, 3}.

We recall that the distribution V is integrable if and only if M is a mixed
geodesic QR-hypersurface of M , i.e.

(3.1) B(U,X) = 0, ∀U ∈ Γ (V), ∀X ∈ Γ (H),

where B is the second fundamental form of M in M (see [BJC]).

Definition 3.1 ([BLR]). Let M be a differentiable manifold equipped
with a triple (φ, ξ, η), where φ is a field of endomorphisms of tangent spaces,
ξ is a vector field and η is a 1-form on M . If

(3.2) φ2 = −I + η ⊗ ξ, η(ξ) = 1,

then we say that (φ, ξ, η) is an almost contact structure on M .

Definition 3.2 ([KUO]). Let M be a differentiable manifold which ad-
mits three almost contact structures (φα, ξα, ηα), α ∈ {1, 2, 3}, satisfying the
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following conditions:

ηα(ξβ) = 0, ∀α 6= β,(3.3)
φα(ξβ) = −φβ(ξα) = ξγ ,(3.4)
ηα ◦ φβ = −ηβ ◦ φα = ηγ ,(3.5)

φαφβ − ηβ ⊗ ξα = −φβφα + ηα ⊗ ξβ = φγ ,(3.6)

where in (3.4)–(3.6), (α, β, γ) is an even permutation of (1, 2, 3). Then the
manifold M is said to have an almost contact 3-structure (φα, ξα, ηα)α∈{1,2,3}.

Definition 3.3 ([KUO]). Let (M, g) be a Riemannian manifold en-
dowed with an almost contact 3-structure (φα, ξα, ηα)α∈{1,2,3} such that

ηα(X) = g(X, ξα), ∀α ∈ {1, 2, 3},(3.7)
g(φαX,φαY ) = g(X,Y )− ηα(X)ηα(Y ), ∀α ∈ {1, 2, 3},(3.8)

for all vector fields X,Y on M . Then we say that M admits an almost
contact metric 3-structure.

Definition 3.4 ([BLR]). We say that an almost contact metric 3-struc-
ture (φα, ξα, ηα)α∈{1,2,3} on a Riemannian manifold (M, g) is a 3-cosymplectic
structure if

(3.9) (∇Xφα)(Y ) = 0, (∇Xηα)(Y ) = 0, ∀α ∈ {1, 2, 3}.
Let M be an orientable hypersurface of a quaternionic Kähler manifold

M . If S : TM → H is the canonical projection, then any local vector field
X on M can be expressed as follows:

(3.10) X = SX +
3∑

α=1

ηα(X)ξα,

where
(3.11) ηα(X) = g(X, ξα), ∀α ∈ {1, 2, 3}.
From (3.10) we have

(3.12) JαX = JαSX +
3∑

β=1

ηβ(X)Jαξβ, ∀α ∈ {1, 2, 3}.

From (3.12) we obtain the decomposition

(3.13) JαX = φαX + FαX,

where φαX is the tangential part of JαX given by

(3.14) φαX = JαSX + ηβ(X)ξγ − ηγ(X)ξβ,

and FαX is the normal part of JαX given by

(3.15) FαX = ηα(X)ξ,

for all α ∈ {1, 2, 3}, where (α, β, γ) is an even permutation of (1, 2, 3).
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By straightforward computations, we can easily see that (φα, ξα, ηα)α
defined by (3.11), (3.14) and (3.15) is an almost contact metric 3-structure
on M and so we have the next result (see also [GS]).

Proposition 3.5. Any QR-hypersurface of a quaternionic Kähler man-
ifold admits a natural almost contact metric 3-structure.

4. 3-submersions of QR-hypersurfaces

Definition 4.1. Let M be a mixed geodesic QR-hypersurface of a
quaternionic Kähler manifold M endowed with the natural almost con-
tact metric 3-structure (φα, ξα, ηα)α∈{1,2,3} given by Proposition 3.5, and
let (M ′, σ′, g′) be an almost quaternionic hermitian manifold. We say that a
Riemannian submersion π : M →M ′ is a QR 3-submersion if the following
conditions are satisfied:

(i) Kerπ∗ = V;
(ii) for each p ∈M , σ′π(p) admits a canonical local basis {J ′1, J ′2, J ′3} such

that
π∗φα = J ′απ∗, ∀α ∈ {1, 2, 3}.

Remark 4.2. We recall that the sections of V, respectively H, are called
vertical, respectively horizontal, vector fields. A Riemannian submersion π :
M →M ′ determines two (1, 2) tensor fields T and A on M by the formulas

T (E,F ) = TEF = h∇vEvF + v∇vEhF,(4.1)
A(E,F ) = AEF = v∇hEhF + h∇hEvF,(4.2)

for any E,F ∈ Γ (TM), where v and h are the vertical and horizontal
projections (see [KO, ON]).

We remark that for U, V ∈ Γ (V), TUV coincides with the second fun-
damental form of the immersion of the fiber submanifolds, and for X,Y ∈
Γ (H), AXY = 1

2v[X,Y ], reflecting the complete integrability of the hori-
zontal distribution H.

A horizontal vector field X on M is said to be basic if X is π-related to
a vector field X ′ on M ′. It is clear that every vector field X ′ on M ′ has a
unique horizontal lift X to M , and X is basic.

Remark 4.3. If π : M →M ′ is a Riemannian submersion and X,Y are
basic vector fields on M , π-related to X ′ and Y ′ on M ′, then we have the
following properties (see [BES, FIP, ON]):

(i) h[X,Y ] is a basic vector field and π∗h[X,Y ] = [X ′, Y ′] ◦ π;
(ii) h(∇XY ) is a basic vector field π-related to ∇′X′Y ′, where ∇ and ∇′

are the Levi-Civita connections on M and M ′;
(iii) [E,U ] ∈ Γ (V) for all U ∈ Γ (V) and E ∈ Γ (TM).
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Proposition 4.4. Let M be a mixed geodesic QR-hypersurface of a
quaternionic Kähler manifold (M,σ, g) and let (M ′, σ′, g′) be an almost
quaternionic hermitian manifold. If π : M → M ′ is a QR 3-submersion,
then the distributions V and H are invariant by φα for all α ∈ {1, 2, 3}.

Proof. Let V ∈ Γ (V). Then

π∗φαV = J ′απ∗V = 0,

and so φα(V) ⊂ V.
On the other hand, for any X ∈ Γ (H) and V ∈ Γ (V), we derive from

(3.8) that
g(φαX,V ) = −g(X,φαV ) = 0,

and thus φα(H) ⊂ H.

Theorem 4.5. Let π : M → M ′ be a QR 3-submersion such that
the canonical almost contact 3-structure (φα, ξα, ηα)α∈{1,2,3} on M is a 3-
cosymplectic structure. Then M ′ is locally hyper-Kähler.

Proof. For any local basic vector fields X,Y on M , π-related to X ′ and
Y ′ on M ′, from (3.9) we have

(4.3) ∇XφαY − φα∇XY = 0, ∀α ∈ {1, 2, 3}.
and from (4.3) we deduce

(4.4) π∗(∇XφαY )− π∗φα∇XY = 0, ∀α ∈ {1, 2, 3}.
Thus, since Y is a basic vector field π-related to Y ′, also φαY is basic and
π-related to J ′αY

′, and taking account of Definition 4.1 and Remark 4.3, we
deduce from (4.4) that

∇′X′J ′αY ′ − J ′α∇′X′Y ′ = 0, ∀α ∈ {1, 2, 3},
thus (∇′X′J ′α)Y ′ = 0, and so M ′ is locally hyper-Kähler.

Corollary 4.6. LetM be a totally geodesic QR-hypersurface of a quater-
nionic Kähler manifold (M,σ, g), and (M ′, σ′, g′) be an almost quaternionic
hermitian manifold. If π : M → M ′ is a QR 3-submersion such that ξ1, ξ2
and ξ3 are parallel in M , then M ′ is locally hyper-Kähler.

Proof. In this case (φα, ξα, ηα)α∈{1,2,3} is a 3-cosymplectic structure on
M (see [GS]) and the proof is obvious from Theorem 4.5.

Theorem 4.7. Let M be a mixed geodesic QR-hypersurface of a quater-
nionic Kähler manifold (M,σ, g), (M ′, σ′, g′) be an almost quaternionic her-
mitian manifold and π : M → M ′ be a QR 3-submersion. If the natural al-
most contact metric 3-structure (φα, ξα, ηα)α∈{1,2,3} on M is 3-cosymplectic,
then the fiber submanifolds are totally geodesic immersed and the horizontal
distribution is integrable.
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Proof. Since M is 3-cosymplectic we have

(4.5) ∇UφαV = φα∇UV, ∀α ∈ {1, 2, 3},
for all U, V ∈ Γ (V). Taking the horizontal components, we obtain

(4.6) TUφαV = φαTUV, ∀α ∈ {1, 2, 3},
which immediately implies

(4.7) TUV = −TφαUφαV, ∀α ∈ {1, 2, 3}.
From (4.7), taking account of (3.6), we obtain T = 0. Similarly we obtain
A = 0 and the proof is now complete, via Remark 4.2.

Let M be an orientable submanifold of a Riemannian manifold (M, g).
We say that M is a totally umbilical submanifold of M if the second funda-
mental form h of M satisfies

(4.8) h(E,F ) = g(E,F )H, ∀E,F ∈ Γ (TM),

where H is the mean curvature vector field on M . Moreover, if H is non-zero
and parallel in the normal bundle TM⊥, then M is called an extrinsic sphere.

By using the Gauss equation, (2.4) and the Gray-O’Neill equation (see
[BES, FIP, MNG, ON]), we can easily prove the next result.

Theorem 4.8. Let M be a QR extrinsic hypersphere of a flat quater-
nionic Kähler manifold (M,σ, g) and let (M ′, σ′, g′) be another quaternionic
Kähler manifold. If π : M →M ′ is a QR 3-submersion, then M ′ is a quater-
nionic space form.

Example 4.9. Let S4m+3 be the standard hypersphere in R4m+4. Then
the canonical mapping π : S4m+3 → Pm(H) is a QR 3-submersion.

5. Quaternionic submersions

Definition 5.1 ([IMV1]). Let (M,σ, g) and (N, σ′, g′) be two almost
quaternionic hermitian manifolds. A map f : M → N is said to be (σ, σ′)-
holomorphic at a point x ∈M if for any J ∈ σx there exists J ′ ∈ σ′f(x) such
that f∗ ◦ J = J ′ ◦ f∗. Moreover, we say that f is (σ, σ′)-holomorphic if it is
(σ, σ′)-holomorphic at each x ∈M .

Definition 5.2 ([IMV2]). Let (M,σ, g) and (N, σ′, g′) be two almost
quaternionic hermitian manifolds. A Riemannian submersion π : M → N
which is a (σ, σ′)-holomorphic map is called a quaternionic submersion.

Theorem 5.3. Let π : (M,σ, g)→ (N, σ′, g′) be a quaternionic submer-
sion such that (M,σ, g) is a quaternionic Kähler manifold. Then (N, σ′, g′)
is a quaternionic Kähler manifold.

Proof. Let X∗, Y∗ ∈ Γ (TN) be such that π∗X = X∗, π∗Y = Y∗, where
X,Y ∈ Γ (TM). Then
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(∇′X∗J
′
α)Y∗ = ∇′X∗(J

′
αY∗)− J ′α(∇′X∗Y∗)(5.1)

= ∇′π∗X(J ′απ∗Y )− J ′α(∇′π∗Xπ∗Y )
= ∇′π∗X(π∗(JαY ))− J ′απ∗(h∇XY )
= π∗(h∇X(JαY ))− π∗(Jα(h∇XY )) = π∗((∇XJα)Y ).

Since (M,σ, g) is a quaternionic Kähler manifold we have (2.3) and we
can define 1-forms ω′1, ω

′
2, ω
′
3 on N by

(5.2) ω′α(X∗) ◦ π = ωα(X), ∀α ∈ {1, 2, 3},
for any local vector field X∗ on N and X a real basic vector field on M such
that π∗X = X∗.

From (2.3), (5.1) and (5.2) we deduce that for all α ∈ {1, 2, 3},
(5.3) (∇′X∗J

′
α)Y∗ = ω′α+2(X∗)J ′α+1Y∗ − ω′α+1(X∗)J ′α+2Y∗

for any local vector fields X∗, Y∗ on M ′, where the indices are taken from
{1, 2, 3} modulo 3. Thus we conclude that (N, σ′, g′) is a quaternionic Kähler
manifold.

Corollary 5.4. Let π : (M,σ, g) → (N, σ′, g′) be a quaternionic sub-
mersion such that (M,σ, g) is a quaternionic Kähler manifold. Then both
(M,σ, g) and (N, σ′, g′) are locally hyper-Kähler manifolds.

Proof. In this case the vertical and horizontal distributions are both
integrable (see [IMV2]) and so we can easily conclude that (M,σ, g) is a
locally hyper-Kähler manifold. The assertion now follows from the above
theorem.

Corollary 5.5. There are no quaternionic submersions between quater-
nionic Kähler manifolds which are not locally hyper-Kähler.

Proof. The assertion is obvious from the above corollary.
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