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On a homology of algebras with unit

by Jacek Dębecki (Kraków)

Abstract. We present a very general construction of a chain complex for an arbitrary
(even non-associative and non-commutative) algebra with unit and with any topology over
a field with a suitable topology. We prove that for the algebra of smooth functions on a
smooth manifold with the weak topology the homology vector spaces of this chain complex
coincide with the classical singular homology groups of the manifold with real coefficients.
We also show that for an associative and commutative algebra with unit endowed with
the discrete topology this chain complex is dual to the de Rham complex.

1. Introduction. Investigating how the exterior derivative acts on linear
natural operators lifting differential forms on smooth manifolds to product
preserving bundle functors leads to a chain complex of any Weil algebra (see
[2] and [3]). But the same construction may be carried out in a more gen-
eral situation, namely for any (even non-associative and non-commutative)
algebra with unit and with any topology over a field with a suitable topol-
ogy, for instance, over the field of real or complex numbers with the usual
topology. In our paper we present this general construction. We also show
that, for the algebra of smooth functions on a smooth manifold with the
weak topology over the field of real numbers with the usual topology, the
homology vector spaces of this chain complex coincide with the classical dif-
ferentiable singular homology groups of the manifold with real coefficients.
This fact is precisely formulated in Theorem 3.9, which is the main result of
the paper.

Whereas the injectivity of the isomorphism in Theorem 3.9 can be de-
duced from the de Rham theorem, its surjectivity seems to be much harder
to prove. For this reason our proof is based on sheaf theory. In Theorem 3.2
we construct a fine resolution of the constant sheaf and in Theorem 3.8 we
show the completeness of the presheaves with which the sheaves of this res-
olution are associated. For the notions and theorems of sheaf theory which
we use we refer the reader to [7].
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We finish the paper with Theorem 4.1 showing that our construction with
the discrete topology on the algebra yields the chain complex dual to the
well known de Rham complex in the special case when the de Rham complex
is defined, that is, when the algebra is associative and commutative. From
this theorem we also conclude that the topology on the algebra with unit
plays a vital role in the construction considered.

The construction described here is relatively simple and very general (and
can be easily generalized even more in one way or another). We have proved
that the chain complex, which it gives in a special but important case, has
good homology vector spaces, so we may hope that it can also be useful when
applied to some other algebras with unit which appear in different branches
of mathematics. Our paper is intended as a motivation for further studies
of the subject, in particular, for studying the André–Quillen homology of
commutative algebras in the context of our construction.

2. The general construction. Let A be a vector space over a field F ,
and let A×A→ A with (a, b) 7→ ab be a bilinear map. Suppose that there is
1 ∈ A such that 1a = a and a1 = a for every a ∈ A. Moreover, we have some
topologies on A and F , the latter being such that the maps F ×F → F with
(α, β) 7→ α+ β and F → F with β 7→ αβ for every α ∈ F are continuous.

We shall construct a chain complex

(2.1) C0A
∂1←− C1A

∂2←− C2A
∂3←− · · ·

of vector spaces over F .
For each p ∈ N we define CpA to be the vector space over F consisting

of all continuous (p + 1)-linear maps f : A × · · · × A → F which are skew-
symmetric in the last p variables and satisfy

(2.2) f(a, b1, . . . , bq−1, cd, bq+1, . . . , bp)

= f(ac, b1, . . . , bq−1, d, bq+1, . . . , bp) + f(da, b1, . . . , bq−1, c, bq+1, . . . , bp)

for every q ∈ {1, . . . , p} and all a, b1, . . . , bq−1, bq+1, . . . , bp, c, d ∈ A.
For every p ≥ 1 and every f ∈ CpA we define ∂pf : A× · · · ×A→ F by

the formula

(2.3) (∂pf)(a, b1, . . . , bp−1) = f(1, a, b1, . . . , bp−1).

We claim that ∂pf ∈ Cp−1A. Obviously, ∂pf is continuous, p-linear and
skew-symmetric in the last p− 1 variables. Furthermore, if p ≥ 2, then
(∂pf)(a, cd, b2, . . . , bp−1) = f(1, a, cd, b2, . . . , bp−1)

= f(c, a, d, b2, . . . , bp−1) + f(d, a, c, b2, . . . , bp−1)

= f(a, c, d, b2, . . . , bp−1) + f(c, a, d, b2, . . . , bp−1)

+ f(d, a, c, b2, . . . , bp−1) + f(a, d, c, b2, . . . , bp−1)
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= f(1, ac, d, b2, . . . , bp−1) + f(1, da, c, b2, . . . , bp−1)

= (∂pf)(ac, d, b2, . . . , bp−1) + (∂pf)(da, c, b2, . . . , bp−1)

for all a, b2, . . . , bp−1, c, d ∈ A, as desired. Of course, ∂p : CpA → Cp−1A is
linear.

What is left is to check that ∂p−1∂p = 0 for every p ≥ 2. We have

(∂p−1(∂pf))(a, b1, . . . , bp−2) = (∂pf)(1, a, b1, . . . , bp−2)

= f(1, 1, a, b1, . . . , bp−2)

for every f ∈ CpA and all a, b1, . . . , bp−2 ∈ A. But f(1, 1, a, b1, . . . , bp−2) = 0,
because

f(1, 1, a, b1, . . . , bp−2) = f(1, 11, a, b1, . . . , bp−2)

= f(11, 1, a, b1, . . . , bp−2) + f(11, 1, a, b1, . . . , bp−2)

= f(1, 1, a, b1, . . . , bp−2) + f(1, 1, a, b1, . . . , bp−2).

Thus our construction is complete. As usual, we can define the homology
vector spaces HpA = ker ∂p/ im ∂p+1 for every p ≥ 1 and H0A = C0A/ im ∂1.

3. The case of a smooth manifold. LetM be an n-dimensional man-
ifold of class C∞, which is Hausdorff and satisfies the second axiom of count-
ability. Of course, the set C∞(M,R) of all functions M → R of class C∞
is an R-algebra with unit and R has the usual topology. We will consider
C∞(M,R) as a topological space with the topology called C∞-compact-open
or weak. This topology is defined by the subbase consisting of the sets{
ψ ∈ C∞(M,R) : ∀x∈K

∣∣∣∣∂|α|(ψ ◦ ξ−1)∂ξα
(ξ(x))− ∂|α|(ϕ ◦ ξ−1)

∂ξα
(ξ(x))

∣∣∣∣ < ε

}
,

where ϕ ∈ C∞(M,R), (U, ξ) is a chart on M , K ⊂ U is compact, α ∈ Nn
and ε > 0 (see for instance [5]).

Thus we have everything we need to construct the chain complex

(3.1) C0(C∞(M,R))
∂1,M←−−− C1(C∞(M,R))

∂2,M←−−− C2(C∞(M,R))
∂3,M←−−− · · ·

in the manner described in Section 2. Our goal is to prove that the homology
vector spaces Hp(C∞(M,R)) of this chain complex coincide with those of the
classical singular homology theory with real coefficients.

For each open subset U of M we have the chain complex

C0(C∞(U,R))
∂1,U←−−− C1(C∞(U,R))

∂2,U←−−− C2(C∞(U,R))
∂3,U←−−− · · ·

constructed in the manner described in Section 2 for the R-algebra C∞(U,R)
with the C∞-compact-open topology. We also define ∂0,U : C0(C∞(U,R))
→ R by the formula

(3.2) ∂0,U (f) = f(1).
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Since f(1, 1) = 0 for every f ∈ C1,U (C∞(U,R)), we see that ∂0,U∂1,U = 0
and we obtain the chain complex

R
∂0,U←−−− C0(C∞(U,R))

∂1,U←−−− C1(C∞(U,R))
∂2,U←−−− C2(C∞(U,R))

∂3,U←−−− · · ·

of real vector spaces (sometimes it will be convenient to write C−1(C∞(U,R))
instead of R in this complex). For every p ≥ 0 and all open subsets U and
V of M such that U ⊂ V we have the linear map

jp,U,V : Cp(C∞(U,R))→ Cp(C∞(V,R))

given by the formula

(jp,U,V (f))(ϕ,ϕ1, . . . , ϕp) = f(ϕ|U , ϕ1|U , . . . , ϕp|U )

for every f ∈ Cp(C∞(U,R)) and all ϕ,ϕ1, . . . , ϕp ∈ C∞(V,R) (note that
jp,U,V (f) is continuous, because the map C∞(V,R) → C∞(U,R) with ϕ 7→
ϕ|U is continuous). We also put j−1,U,V = idR. Of course, if p ≥ −1 and
U, V,W are open subsets of M such that U ⊂ V ⊂ W , then jp,V,W jp,U,V
= jp,U,W . In addition, ∂p,V jp,U,V = jp−1,U,V ∂p,U for every p ≥ 0 and all open
subsets U and V of M such that U ⊂ V .

For any real vector space P we will denote by P ∗ the dual vector space
(i.e. P ∗ consists of all linear maps P → R) and for any linear map r :
P → Q between real vector spaces we will denote by r∗ the dual map (i.e.
r∗ : Q∗ → P ∗ with β 7→ β ◦ r). The above remarks imply that for each
p ≥ −1 the vector spaces Cp(C∞(U,R))∗, where U is an open subset of M ,
and the maps j∗p,U,V , where U and V are open subsets ofM such that U ⊂ V ,
form a presheaf of real vector spaces on the topological space M . We will
denote by Cp(M) the sheaf associated with this presheaf. Since C−1(M)
is nothing but the constant sheaf on M with stalk R, we will write R
rather than C−1(M). The above remarks also imply that for each p ≥ 0
the maps ∂∗p,U , where U is an open subset of M , form a presheaf homomor-
phism. We will denote by ∂p the sheaf homomorphism Cp−1(M) → Cp(M)
associated with this presheaf homomorphism. Therefore we obtain the se-
quence

(3.3) 0→ R ∂0−→ C0(M)
∂1−→ C1(M)

∂2−→ C2(M)
∂3→ · · ·

of sheaves of real vector spaces on M and their homomorphisms such that
∂p+1∂p = 0 for every p ≥ 0.

Our first task is to show that this sequence is a fine resolution of R. To
this end we need the following analogue of the Poincaré lemma.

Lemma 3.1. If (U, ξ) is a chart on M such that ξ(U) is star-shaped,
then the sequence
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(3.4) 0
∂−1,U←−−− R

∂0,U←−−− C0(C∞(U,R))
∂1,U←−−− C1(C∞(U,R))

∂2,U←−−− C2(C∞(U,R))
∂3,U←−−− · · ·

is exact.

Proof. Without loss of generality we may assume that U is an open subset
of Rn and that it is star-shaped with respect to 0.

For every p ≥ 0, every f ∈ Cp(C∞(U,R)) and all ϕ,ϕ1, . . . , ϕp+1 ∈
C∞(U,R) we define

(3.5) (hp,Uf)(ϕ,ϕ1, . . . , ϕp+1)

=

p+1∑
k=1

n∑
j1,...,jp+1=1

(−1)k−1

× f
(
xjk

1�

0

tpϕ(tx)
∂ϕ1

∂xj1
(tx) . . .

∂ϕp+1

∂xjp+1
(tx) dt, xj1 , . . . , x̂jk , . . . , xjp+1

)
.

Here, of course, x1, . . . , xn denote the standard coordinates on Rn and each
xj is treated as the function U → R with x 7→ xj ; the integral is also treated
as a function U → R of the variable x. The Leibniz rule makes it obvious
that hp,U (f) satisfies (2.2). That hp,U (f) is continuous is a consequence of
the continuity of the maps

C∞(U,R)→ C∞(U,R), ψ 7→ ∂ψ

∂xj
,

C∞(U,R)× C∞(U,R)→ C∞(U,R), (χ, ψ) 7→ χψ,

C∞(U,R)→ C∞(U,R), ψ 7→
1�

0

tqψ(tx) dt,

for q ≥ 0. Here, as above, the integral is treated as the function

U → R, x 7→
1�

0

tqψ(tx) dt.

Finally, transposing ϕl and ϕl+1 for l ∈ {1, . . . , p} in (3.5) we see that hp,U (f)
is skew-symmetric in the last p+1 variables, because f is skew-symmetric in
the last p variables. Therefore we have the linear map hp,U : Cp(C∞(U,R))→
Cp+1(C∞(U,R)) for every p ≥ 0. We also define h−1,U : R → C0(C∞(U,R))
by the formula

(3.6) (h−1,Uf)(ϕ) = fϕ(0)

for every f ∈ R and every ϕ ∈ C0(C∞(U,R)), as well as h−2,U : 0 → R by
the formula

(3.7) h−2,U (0) = 0.
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The lemma will be proved once we show that the hp,U , where p ≥ −2,
form a homotopy operator between the identity map of (3.4) and the zero
map of (3.4), that is,

(3.8) hp−1,U∂p,Uf + ∂p+1,Uhp,Uf = f

for every p ≥ −1 and every f ∈ Cp(C∞(U,R)).
According to (3.2), (3.6), (3.7), we have

h−2,U∂−1,Uf + ∂0,Uh−1,Uf = (h−1,Uf)(1) = f

for every f ∈ C−1(C∞(U,R)), which shows (3.8) in the case p = −1. Accord-
ing to (2.3), (3.2), (3.5), (3.6), we have

(h−1,U∂0,Uf + ∂1,Uh0,Uf)(ϕ) = (∂0,Uf)ϕ(0) + (h0,Uf)(1, ϕ)

= f(1)ϕ(0) +
n∑
j=1

f

(
xj

1�

0

∂ϕ

∂xj
(tx) dt

)
= f(1)ϕ(0) + f(ϕ(x)− ϕ(0)) = f(ϕ)

for every f ∈ C0(C∞(U,R)) and every ϕ ∈ C∞(U,R), which shows (3.8) in
the case p = 0. Suppose now that p ≥ 1.

It is well known that the set of polynomials R[x1, . . . , xn] (treated as
functions U → R) is dense in C∞(U,R) (one can prove this fact using the
Bernstein polynomials (see for instance [1]) or the Tonelli polynomials (see
for instance [4])). Thus it suffices to show that both the sides of (3.8) agree on
each (p+1)-tuple of monomials (xα, xα1 , . . . , xαp), where α, α1, . . . , αp ∈ Nn

(as usual, xβ = (x1)β
1
. . . (xn)β

n for every β ∈ Nn).
Let e1, . . . , en denote the standard basis of the real vector space Rn, and

let |β| = β1 + · · ·+ βn for every β ∈ Nn. By induction on |α1 + · · ·+ αp| it
is easy to check that (2.2) implies

(3.9) f(xα, xα1 , . . . , xαp)

=

n∑
j1,...,jp=1

αj11 . . . α
jp
p f(x

α+α1+···+αp−ej1−···−ejp , xj1 , . . . , xjp).

From (2.3), (3.5), (3.9) it follows that

(3.10) (hp−1,U∂p,Uf)(x
α, xα1 , . . . , xαp)

=

p∑
k=1

(−1)k−1
n∑

j1,...,jp=1

α
j1
1 ...α

jp
p

|α+α1+···+αp|

× (∂p,Uf)(x
α+α1+···+αp−ej1−···−êjk−···−ejp , xj1 , . . . , x̂jk , . . . , xjp)
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=

p∑
k=1

(−1)k−1
n∑

j1,...,jp=1

α
j1
1 ...α

jp
p

|α+α1+···+αp|

× f(1, xα+α1+···+αp−ej1−···−êjk−···−ejp , xj1 , . . . , x̂jk , . . . , xjp)

=

p∑
k=1

(−1)k−1
n∑

j,j1,...,jp=1

(α+α1+···+αp)jα
j1
1 ...α

jp
p

|α+α1+···+αp|

× f(xα+α1+···+αp−ej1−···−êjk−···−ejp−ej , xj , xj1 , . . . , x̂jk , . . . , xjp)

(we have written (α+ α1 + · · ·+ αp)
j instead of (α+ α1 + · · ·+ αp − ej1 −

· · · − êjk − · · · − ejp)j in the last line, because f is skew-symmetric in the
last p variables). Exchanging the positions of j and jk and using the skew-
symmetry of f in the last p variables yields

(3.11)
n∑

j,j1,...,jp=1

αjlα
j1
1 ...α

jp
p

|α+α1+···+αp|

× f(xα+α1+···+αp−ej1−···−êjk−···−ejp−ej , xj , xj1 , . . . , x̂jk , . . . , xjp)

= (−1)k−1
n∑

j,j1,...,jp=1

α
jk
l α

j1
1 ...α

jk−1
k−1 αjkα

jk+1
k+1 ...α

jp
p

|α+α1+···+αp|

× f(xα+α1+···+αp−ej1−···−ejp , xj1 , . . . , xjp)

for every l ∈ {1, . . . , p}. Hence if l 6= k, then transposing xjk and xjl , using
the skew-symmetry of f in the last p variables, and exchanging the positions
of jk and jl in the right hand side of (3.11), we see that

(3.12)
n∑

j,j1,...,jp=1

αjlα
j1
1 ...α

jp
p

|α+α1+···+αp|

× f(xα+α1+···+αp−ej1−···−êjk−···−ejp−ej , xj , xj1 , . . . , x̂jk , . . . , xjp) = 0.

Substituting (3.11) with l = k and (3.12) into (3.10) gives

(3.13) (hp−1,U∂p,Uf)(x
α, xα1 , . . . , xαp)

=

p∑
k=1

(−1)k−1
n∑

j,j1,...,jp=1

αjα
j1
1 ...α

jp
p

|α+α1+···+αp|

× f(xα+α1+···+αp−ej1−···−êjk−···−ejp−ej , xj , xj1 , . . . , x̂jk , . . . , xjp)

+

n∑
j1,...,jp=1

|α1+···+αp|α
j1
1 ...α

jp
p

|α+α1+···+αp| f(xα+α1+···+αp−ej1−···−ejp , xj1 , . . . , xjp).
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From (2.3) and (3.5) it follows that

(3.14) (∂p+1,Uhp,Uf)(x
α, xα1 , . . . , xαp) = (hp,Uf)(1, x

α, xα1 , . . . , xαp)

=
n∑

j,j1,...,jp=1

αjα
j1
1 ...α

jp
p

|α+α1+···+αp|f(x
α+α1+···+αp−ej1−···−ejp , xj1 , . . . , xjp)

+

p∑
k=1

(−1)k
n∑

j,j1,...,jp=1

αjα
j1
1 ...α

jp
p

|α+α1+···+αp|

× f(xα+α1+···+αp−ej−ej1−···−êjk−···−ejp , xj , xj1 , . . . , x̂jk , . . . , xjp).

Adding (3.13) to (3.14), we have

(3.15) (hp−1,U∂p,Uf + ∂p+1,Uhp,Uf)(x
α, xα1 , . . . , xαp)

=
n∑

j1,...,jp=1

(|α1+···+αp|+|α|)α
j1
1 ...α

jp
p

|α+α1+···+αp| f(xα+α1+···+αp−ej1−···−ejp , xj1 , . . . , xjp).

Comparing (3.9) and (3.15) we get (3.8), which completes the proof of the
lemma.

Theorem 3.2. The sequence (3.3) is a fine resolution of the constant
sheaf R =M × R.

Proof. From Lemma 3.1 we deduce that if (U, ξ) is a chart on M such
that ξ(U) is star-shaped, then the sequence

0
∂∗−1,U−−−→ R

∂∗0,U−−−→ C0(C∞(U,R))∗
∂∗1,U−−−→ C1(C∞(U,R))∗

∂∗2,U−−−→ C2(C∞(U,R))∗
∂∗3,U−−−→ · · ·

is exact. It follows that the sequence (3.3) is exact.
Fix p ≥ 0 and a locally finite cover {Ui}i∈I ofM by open sets. Let {ψi}i∈I

be a smooth partition of unity on M subordinate to {Ui}i∈I . For every open
subset U of M we define Li,p,U : Cp(C∞(U,R))→ Cp(C∞(U,R)) by setting

(Li,p,Uf)(ϕ,ϕ1, . . . , ϕp) = f(ψi|Uϕ,ϕ1, . . . , ϕp)

for every f ∈ Cp(C∞(U,R)) and all ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R). Obviously,
Li,p,V jp,U,V = jp,U,V Li,p,U for all open subsets U and V of M with U ⊂ V .
Hence for each i ∈ I the maps L∗i,p,U , where U is an open subset of M , form
a presheaf endomorphism. We will denote by Lpi the sheaf endomorphism
Cp(M) → Cp(M) associated with this presheaf endomorphism. It is easily
seen that suppLpi ⊂ Ui for every i ∈ I, because Li,p,U = 0 if U ∩suppψi = ∅,
and that

∑
i∈I L

p
i = idCp , because

∑
i∈I Li,p,U = idCp(C∞(U,R)) for U such

that U ∩Ui for only finitely many i. This means that the sheaf Cp(M) is fine
and the theorem is proved.
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As usual, the fine resolution (3.3) of the constant sheafR =M×R canon-
ically determines a cohomology theory for M with coefficients in sheaves
of real vector spaces over M . For such a sheaf S we denote by Γ (S) the
real vector space of all global continuous sections of S and for a homomor-
phism ν : S → T of such sheaves we write Γ (ν) for the induced linear map
Γ (S)→ Γ (T ) with σ 7→ ν ◦ σ. With the fine resolution (3.3) and each sheaf
S of real vector spaces over M we associate the chain complex

0→ Γ (C0(M)⊗ S) Γ (∂1⊗idS)−−−−−−−→ Γ (C1(M)⊗ S)
Γ (∂2⊗idS)−−−−−−−→ Γ (C2(M)⊗ S) Γ (∂3⊗idS)−−−−−−−→ · · ·

and get Hp(M,S) = ker(Γ (∂p+1 ⊗ idS))/im(Γ (∂p ⊗ idS)) for every p ≥ 1
and H0(M,S) = ker(Γ (∂1 ⊗ idS)). It is well known that for every p ≥ 0
the vector space Hp(M,R) is canonically isomorphic to the pth de Rham
cohomology group of M as well as to the pth singular cohomology group of
M with real coefficients in both the continuous and differentiable versions.

Our next goal is to show that for each p ≥ 0 the presheaf consisting of
Cp(C∞(U,R))∗, where U is an open subset of M , and j∗p,U,V , where U and
V are open subsets of M such that U ⊂ V , is complete. This, of course, will
give us a canonical isomorphism between Cp(C∞(M,R))∗ and Γ (Cp(M)) =
Γ (Cp(M) ⊗ R), and consequently between Hp(C∞(M,R))∗ and Hp(M,R)
for every p ≥ 0 as desired.

Lemma 3.3. Let U be an open subset ofM , p ≥ 0 and f ∈ Cp(C∞(U,R)).
Then there is a compact subset K of U such that f(ϕ,ϕ1, . . . , ϕp) = 0 for all
ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R) such that K ∩ suppϕ = ∅.

Proof. Fix an imbedding U → Rm of class C∞ for an m ∈ N (it exists
due to the Whitney imbedding theorem). Thus U will be thought of as a
submanifold of Rm with the relative topology. Choose a locally finite open
cover {Vi}i∈N of U such that Vi ⊂ U and Vi is compact for each i ∈ N (here
Vi denotes the closure of Vi in Rm).

Let k1, . . . , kp ∈ {1, . . . ,m}. Write g(ϕ) = f(ϕ, xk1 |U , . . . , xkp |U ) for ev-
ery ϕ ∈ C∞(U,R), where x1, . . . , xm stand for the standard coordinates on
Rm and each xj is treated as the function Rm → R with x 7→ xj . We claim
that there are only finitely many i ∈ N for which there is a ϕ ∈ C∞(U,R)
such that suppϕ ⊂ Vi and g(ϕ) 6= 0. Suppose, on the contrary, that we have
i0 < i1 < i2 < · · · and ϕ0, ϕ1, ϕ2, . . . ∈ C∞(U,R) such that suppϕj ⊂ Vij
and cj = g(ϕj) 6= 0 for every j ∈ N. Let

ϕ(x) =
∞∑
j=0

1

cj
ϕj(x)

for every x ∈ U . Since {Vi}i∈N is locally finite, the definition of ϕmakes sense
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and ϕ ∈ C∞(U,R). By the local finiteness of {Vi}i∈N and the continuity of
g : C∞(U,R)→ R,

g(ϕ) = g

(
lim
l→∞

l∑
j=0

1

cj
ϕj

)
= lim

l→∞

l∑
j=0

1

cj
g(ϕj) = lim

l→∞
l =∞,

which is impossible.
From (2.2) it follows that for every ϕ ∈ C∞(U,R) and all η1, . . . , ηp ∈

R[x1, . . . , xm] we have

f(ϕ, η1|U , . . . , ηp|U ) =
m∑

k1,...,kp=1

f

(
ϕ
∂η1
∂xk1

∣∣∣∣
U

· · · ∂ηp
∂xkp

∣∣∣∣
U

, xk1 |U , . . . , xkp |U
)
.

Hence from what has already been proved, we deduce that there are only
finitely many i ∈ N for which there are ϕ ∈ C∞(U,R) and η1, . . . , ηp ∈
R[x1, . . . , xm] such that suppϕ ⊂ Vi and f(ϕ, η1|U , . . . , ηp|U ) 6= 0. But the
set of polynomials R[x1, . . . , xm] (treated as functions U → R) is dense in
C∞(U,R) (to prove this, one can observe that for each ϕ ∈ C∞(U,R) and
each compact subset L of U there is ϕ̃ ∈ C∞(Rm,R) such that ϕ(x) = ϕ̃(x)
for every member x of an open subset of U containing L, and then use the
fact that the set of polynomials R[x1, . . . , xm] is dense in C∞(Rm,R) with the
C∞-compact-open topology). Therefore there are only finitely many i ∈ N
for which there are ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R) such that suppϕ ⊂ Vi and
f(ϕ,ϕ1, . . . , ϕp) 6= 0.

Summing up, we have l ∈ N and i1, . . . , il ∈ N with the property that
f(ϕ,ϕ1, . . . , ϕp) = 0 for every i ∈ N \ {i1, . . . , il} and all ϕ,ϕ1, . . . , ϕp ∈
C∞(U,R) such that suppϕ ⊂ Vi. Set

K =

l⋃
j=1

Vij .

Obviously, K is compact. Assume that ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R) and K ∩
suppϕ = ∅. Taking a smooth partition of unity {ψi}i∈N on U subordinate
to {Vi}i∈N, we get

f(ϕ,ϕ1, . . . , ϕp) = f
( ∞∑
i=1

ψiϕ,ϕ1, . . . , ϕp

)
=

∞∑
i=1

f(ψiϕ,ϕ1, . . . , ϕp) =

l∑
j=1

f(ψijϕ,ϕ1, . . . , ϕp) = 0,

because f is continuous, supp(ψiϕ) ⊂ Vi for every i ∈ N and ψijϕ = 0 for
every j ∈ {1, . . . , l}.
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Lemma 3.4. Let U be an open subset of M , p ≥ 0, f ∈ Cp(C∞(U,R)),
and B a closed subset of U with the property that f(ϕ,ϕ1, . . . , ϕp) = 0
for all ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R) such that B ∩ suppϕ = ∅. Then we have
f(ϕ,ϕ1, . . . , ϕp)=0 for every q ∈ {1, . . . , p} and all ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R)
such that B ∩ suppϕq = ∅.

Proof. We can assume that q = 1. Take ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R) such
that B ∩ suppϕ1 = ∅, and a ξ ∈ C∞(U,R) such that B ∩ supp ξ = ∅ and
ξ(x) = 1 for every x ∈ suppϕ1 (it is easily seen that such a ξ exists). From
(2.2) we have

f(ϕ,ϕ1, . . . , ϕp) = f(ϕ, ξϕ1, ϕ2, . . . , ϕp)

= f(ϕξ, ϕ1, . . . , ϕp) + f(ϕ1ϕ, ξ, ϕ2, . . . , ϕp) = 0,

because ϕ1 = ξϕ1, B∩supp(ϕξ) = ∅ and B∩supp(ϕ1ϕ) = ∅, and the lemma
follows.

Lemma 3.5. Let U be an open subset of M , p ≥ 0, f ∈ Cp(C∞(U,R)),
and let B be a closed subset of U with the property that f(ϕ,ϕ1, . . . , ϕp) = 0
for all ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R) such that B ∩ suppϕ = ∅. Then for each
open subset V of M such that B ⊂ V ⊂ U there is a g ∈ Cp(C∞(V,R)) such
that jp,V,Ug = f .

Proof. Fix an open subset V of M such that B ⊂ V ⊂ U . Observe first
that for each ϕ ∈ C∞(V,R) there is ϕ̃ ∈ C∞(U,R) such that ϕ̃(x) = ϕ(x)
for every point x of an open subset of V containing B. Indeed, one can take
any ξ ∈ C∞(U,R) such that supp ξ ⊂ V and ξ(x) = 1 for every point x of
an open subset of U containing B, and set

(3.16) ϕ̃(x) =

{
ξ(x)ϕ(x) if x ∈ V,
0 if x ∈ U \ supp ξ.

If ϕ,ϕ1, . . . , ϕp ∈ C∞(V,R), then we define
g(ϕ,ϕ1, . . . , ϕp) = f(ϕ̃, ϕ̃1, . . . , ϕ̃p),

where ϕ̃, ϕ̃1, . . . , ϕ̃p are any functions from C∞(U,R) such that ϕ̃(x)=ϕ(x),
ϕ̃1(x) = ϕ1(x), . . . , ϕ̃p(x) = ϕp(x) for every point x of an open subset of V
containing B. This definition is independent of the choice of ϕ̃, ϕ̃1, . . . , ϕ̃p.
Indeed, if ϕ̃′, ϕ̃′1, . . . , ϕ̃′p ∈ C∞(U,R) are also such that ϕ̃′(x) = ϕ(x),
ϕ̃′1(x) = ϕ1(x), . . . , ϕ̃

′
p(x) = ϕp(x) for every point x of an open subset

of V containing B, then B ∩ supp(ϕ̃′ − ϕ̃) = ∅, B ∩ supp(ϕ̃′1 − ϕ̃1) = ∅,
. . . , B ∩ supp(ϕ̃′p − ϕ̃p) = ∅ and it is a simple matter to use the (p + 1)-
linearity of f , the assumed property of B and Lemma 3.4 to show that
f(ϕ̃′, ϕ̃′1, . . . , ϕ̃

′
p) = f(ϕ̃, ϕ̃1, . . . , ϕ̃p).

Of course, g is (p+ 1)-linear and skew symmetric in the last p variables.
It is continuous, because so is the map C∞(V,R) → C∞(U,R) which sends
ϕ to ϕ̃ given by formula (3.16). It is also easy to see that g satisfies (2.2).
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Summing up, g ∈ Cp(C∞(V,R)). The fact that jp,V,Ug = f is an immediate
consequence of the definition of g.

Lemma 3.6. Let U be an open subset of M , A any set, {Uα}α∈A a family
of open subsets of M such that U =

⋃
α∈A Uα, p ≥ 0 and f ∈ Cp(C∞(U,R)).

Then there are s ∈ N, α1, . . . , αs ∈ A and f1 ∈ Cp(C∞(Uα1 ,R)), . . . , fs ∈
Cp(C∞(Uαs ,R)) such that f = jp,Uα1 ,Uf1 + · · ·+ jp,Uαs ,Ufs.

Proof. From Lemma 3.3 we have a compact subset K of U with the
property that f(ϕ,ϕ1, . . . , ϕp) = 0 for all ϕ,ϕ1, . . . , ϕp ∈ C∞(U,R) such
that K∩ suppϕ = ∅. Since K is compact, there are α1, . . . , αs ∈ A such that
K ⊂ Uα1 ∪ · · · ∪ Uαs =: V . From Lemma 3.5 we have a g ∈ Cp(C∞(V,R))
such that jp,V,Ug = f . Take a smooth partition of unity {ξ1, . . . , ξs} on V
subordinate to the cover {Uα1 , . . . , Uαs}. For every i ∈ {1, . . . , s} we define
gi ∈ Cp(C∞(V,R)) by

gi(ϕ,ϕ1, . . . , ϕp) = g(ξiϕ,ϕ1, . . . , ϕp)

for all ϕ,ϕ1, . . . , ϕp ∈ C∞(V,R). We see at once that, for each i ∈ {1, . . . , s},
supp ξi is a closed subset of V with the property that gi(ϕ,ϕ1, . . . , ϕp) = 0 for
all ϕ,ϕ1, . . . , ϕp ∈ C∞(V,R) such that supp ξi ∩ suppϕ = ∅, and in addition
supp ξi ⊂ Uαi . Therefore from Lemma 3.5 for each i ∈ {1, . . . , s} we have an
fi ∈ Cp(C∞(Uαj ,R)) such that gi = jp,Uαi ,V fi. The maps f1, . . . , fs are as
needed, because g =

∑s
i=1 gi and so

f = jp,V,Ug =
s∑
i=1

jp,V,Ugi =
s∑
i=1

jp,V,U jp,Uαi ,V fi =
s∑
i=1

jp,Uαi ,Ufi.

Lemma 3.7. Let U be an open subset of M , A any set, {Uα}α∈A a family
of open subsets of M such that U =

⋃
α∈A Uα, p ≥ 0, s ∈ N, α1, . . . , αs ∈ A,

and f1 ∈ Cp(C∞(Uα1 ,R)), . . . , fs ∈ Cp(C∞(Uαs ,R)) such that

(3.17) jp,Uα1 ,Uf1 + · · ·+ jp,Uαs ,Ufs = 0.

Then for all k, l ∈ {1, . . . , s} with k < l there are fkl ∈ Cp(C∞(Uαk ∩Uαl ,R))
such that

fi =
s∑

l=i+1

jp,Uαi∩Uαl ,Uαifil −
i−1∑
k=1

jp,Uαk∩Uαi ,Uαifki

for every i ∈ {1, . . . , s}.
Proof. Note first that for any open subsets V and W of M such that

V ⊂ W the map jp,V,W : Cp(C∞(V,R)) → Cp(C∞(W,R)) is injective, be-
cause the image of the map C∞(W,R) → C∞(V,R) with ϕ 7→ ϕ|V is dense
in C∞(V,R). In particular, the map jp,

⋃s
i=1 Uαi ,U

: Cp(C∞(
⋃s
i=1 Uαi ,R)) →

Cp(C∞(U,R)) is injective, and from (3.17) it follows that jp,Uα1 ,
⋃s
i=1 Uαi

f1 +

· · ·+ jp,Uαs ,
⋃s
i=1 Uαi

fs = 0. Therefore without restriction of generality we can
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assume U = Uα1∪· · ·∪Uαs . To shorten the notation, we will write Ui instead
of Uαi for i ∈ {1, . . . , s}.

We begin by proving the lemma in the special case when s = 2. Hence
U = U1 ∪ U2, f1 ∈ Cp(C∞(U1,R)), f2 ∈ Cp(C∞(U2,R)), and

jp,U1,Uf1 + jp,U2,Uf2 = 0.

From Lemma 3.3 for each i ∈ {1, 2} we have a compact subset Ki of Ui with
the property that fi(ϕ,ϕ1, . . . , ϕp) = 0 for all ϕ,ϕ1, . . . , ϕp ∈ C∞(Ui,R) such
that Ki ∩ suppϕ = ∅. Take an open subset W of U such that

K1 ∩K2 ⊂W ⊂W ⊂ U1 ∩ U2,

where W denotes the closure of W in U .
We prove that if ψ,ψ1, . . . , ψp ∈ C∞(U1,R) are such thatW ∩suppψ = ∅,

then f1(ψ,ψ1, . . . , ψp) = 0. It is easy to see that there are ψ̃, ψ̃1, . . . , ψ̃p ∈
C∞(U,R) which coincide with ψ,ψ1, . . . , ψp on an open subset of U1 con-
taining K1, and satisfy the condition W ∩ supp ψ̃ = ∅. Taking a smooth
partition of unity {χ1, χ2} on U subordinate to the cover {U \ L2, U \ L1},
where L2 = K2 \W and L1 = K1 \W , we have

f1(ψ,ψ1, . . . , ψp) = f1(ψ̃|U1 , ψ̃1|U1 , . . . , ψ̃p|U1)

= f1((χ1ψ̃)|U1 , ψ̃1|U1 , . . . , ψ̃p|U1) + f1((χ2ψ̃)|U1 , ψ̃1|U1 , . . . , ψ̃p|U1)

= f1((χ1ψ̃)|U1 , ψ̃1|U1 , . . . , ψ̃p|U1) = (jp,U1,Uf1)(χ1ψ̃, ψ̃1, . . . , ψ̃p)

= −(jp,U2,Uf2)(χ1ψ̃, ψ̃1, . . . , ψ̃p) = −f2((χ1ψ̃)|U2 , ψ̃1|U2 , . . . , ψ̃p|U2) = 0,

which is due to the fact that K1 ∩ supp(χ2ψ̃) = ∅ (as L1 ∩ supp(χ2ψ̃) = ∅,
W ∩ supp(χ2ψ̃) = ∅, K1 ⊂ L1 ∪W ) and similarly K2 ∩ supp(χ1ψ̃) = ∅.

SinceW is a closed subset of U1 contained in U1∩U2, on account of what
has just been proved, from Lemma 3.5 we have an f12 ∈ Cp(C∞(U1∩U2,R))
such that

jp,U1∩U2,U1f12 = f1.

It remains to show that −jp,U1∩U2,U2f12 = f2. Let ϕ,ϕ1, . . . , ϕp ∈ C∞(U2,R).
For any ϕ̃, ϕ̃1, . . . , ϕ̃p ∈ C∞(U,R) which coincide with ϕ,ϕ1, . . . , ϕp on an
open subset of U2 containing W , we get

−(jp,U1∩U2,U2f12)(ϕ,ϕ1, . . . , ϕp) = −f12(ϕ|U1∩U2 , ϕ1|U1∩U2 , . . . , ϕp|U1∩U2)

= −f1(ϕ̃|U1 , ϕ̃1|U1 , . . . , ϕ̃p|U1)

= −(jp,U1,Uf1)(ϕ̃, ϕ̃1, . . . , ϕ̃p)

= (jp,U2,Uf2)(ϕ̃, ϕ̃1, . . . , ϕ̃p)

= f2(ϕ,ϕ1, . . . , ϕp),

the last equality being a consequence of the fact that if ψ,ψ1, . . . , ψp ∈
Cp(C∞(U2,R)) are such that W ∩ suppψ = ∅, then f2(ψ,ψ1, . . . , ψp) = 0,
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which can clearly be proved in the same manner as above for f1. This estab-
lishes the lemma in the case s = 2.

Now we proceed by induction on s. Suppose s ≥ 3 and the assertion of
the lemma is true for s− 1. Put V =

⋃s−1
i=1 Ui and

g =
s−1∑
i=1

jp,Ui,V fi.

Of course U = V ∪Us and, by (3.17), jp,V,Ug+jp,Us,Ufs = 0. Therefore, from
what has already been proved, we have an h ∈ Cp(C∞(V ∩ Us)) such that
g = jp,V ∩Us,V h and fs = −jp,V ∩Us,Ush.

Obviously we have V ∩Us =
⋃s−1
i=1 (Ui ∩Us). From Lemma 3.6 we obtain

e1 ∈ Cp(C∞(U1 ∩ Us,R)), . . . , es−1 ∈ Cp(C∞(Us−1 ∩ Us,R)) such that

h =
s−1∑
i=1

jp,Ui∩Us,V ∩Usei.

Write d1 = jp,U1∩Us,U1e1, . . . , ds−1 = jp,Us−1∩Us,Us−1es−1. We see that
s−1∑
i=1

jUi,V (fi − di) = g −
s−1∑
i=1

jp,Ui∩Us,V ei = g − jp,V ∩Us,V h = g − g = 0.

Thus from the assertion of the lemma with s − 1, for k, l ∈ {1, . . . , s − 1}
such that k < l, there are maps fkl ∈ Cp(C∞(Uk ∩ Ul,R)) satisfying

fi − di =
s−1∑
l=i+1

jp,Ui∩Ul,Uifil −
i−1∑
k=1

jp,Uk∩Ui,Uifki

for i ∈ {1, . . . , s− 1}. Moreover, we put

fis = ei

for i ∈ {1, . . . , s− 1}. We get
s∑

l=i+1

jp,Ui∩Ul,Uifil −
i−1∑
k=1

jp,Uk∩Ui,Uifki = (fi − di) + jp,Ui∩Us,Uiei

= (fi − di) + di = fi

for i ∈ {1, . . . , s− 1}, and

−
s−1∑
k=1

jp,Uk∩Us,Usfks = −
s−1∑
k=1

jp,Uk∩Us,Usek = −jp,V ∩Us,Ush = −(−fs) = fs.

Theorem 3.8. For each p ≥ 0 the presheaf consisting of Cp(C∞(U,R))∗,
where U is an open subset of M , and j∗p,U,V , where U and V are open subsets
of M such that U ⊂ V , is complete, that is, for every open subset U of M
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and every family {Uα}α∈A of open subsets of M such that U =
⋃
α∈A Uα the

following conditions hold:

(a) whenever σ, τ ∈ Cp(C∞(U,R))∗ are such that j∗p,Uα,Uσ = j∗p,Uα,Uτ for
all α ∈ A, then σ = τ ,

(b) whenever σα ∈ Cp(C∞(Uα,R))∗, where α ∈ A, satisfy j∗p,Uα∩Uβ ,Uασα
= j∗p,Uα∩Uβ ,Uβσβ for all α, β ∈ A, then there exists σ ∈ Cp(C∞(U,R))∗

such that j∗p,Uα,Uσ = σα for every α.

Proof. Choose any order on A. Lemmas 3.6 and 3.7 say that the sequence
of vector spaces and linear maps∑

(α,β)∈A2, α<β

Cp(C∞(Uα ∩ Uβ,R))
Φ−→
∑
α∈A

Cp(C∞(Uα,R))

Ψ−→ Cp(C∞(U,R))→ 0,

where Φ =
∑

(α,β)∈A2, α<β(jp,Uα∩Uβ ,Uα − jp,Uα∩Uβ ,Uβ ) and Ψ =
∑

α∈A jp,Uα,U ,
is exact. Thus so is the sequence of the dual vector spaces and the dual linear
maps ∏

(α,β)∈A2, α<β

Cp(C∞(Uα ∩ Uβ,R))∗
Φ∗←−

∏
α∈A

Cp(C∞(Uα,R))∗

Ψ∗←−− Cp(C∞(U,R))∗ ← 0,

where Φ∗=
∏

(α,β)∈A2, α<β(j
∗
p,Uα∩Uβ ,Uα − j

∗
p,Uα∩Uβ ,Uβ ) and Ψ

∗=
∏
α∈A j

∗
p,Uα,U

.
But this means that (a) and (b) are satisfied, and the proof is complete.

Let Sp(M,R) for each p ≥ 0 denote the real vector space of differentiable
singular p-chains on M with real coefficients. For each c ∈ Sp(M,R) we
define fc,M : C∞(M,R)× · · · × C∞(M,R)→ R by the formula

fc,M (ϕ,ϕ1, . . . , ϕp) =
�

c

ϕdϕ1 ∧ · · · ∧ dϕp.

It is clear that fc,M is (p+ 1)-linear, skew-symmetric in the last p variables
and satisfies (2.2). A standard verification shows that it is also continuous.
Thus fc,M ∈ Cp(C∞(M,R)).

From Stokes’ theorem we have

f∂c,M (ϕ,ϕ1, . . . , ϕp−1) =
�

∂c

ϕdϕ1 ∧ · · · ∧ dϕp−1

=
�

c

d(ϕdϕ1 ∧ · · · ∧ dϕp−1) =
�

c

1 dϕ ∧ dϕ1 ∧ · · · ∧ dϕp−1

= fc,M (1, ϕ, ϕ1, . . . , ϕp−1) = (∂p,Mfc,M )(ϕ,ϕ1, . . . , ϕp−1)
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for every p ≥ 1, every c ∈ Sp(M,R) and all ϕ,ϕ1, . . . , ϕp−1 ∈ C∞(M,R).
This means that the linear maps

(3.18) Sp(M,R)→ Cp(C∞(M,R)), c 7→ fc,M ,

where p ≥ 0, form a chain map between the complex of differentiable singular
chains on M with real coefficients and the chain complex (3.1).

We can now formulate and prove our main result.

Theorem 3.9. For each p ≥ 0 the linear map (3.18) induces an isomor-
phism between the pth differentiable singular homology group of M with real
coefficients and Hp(C∞(M,R)).

Proof. The cohomology vector spaces of the cochain complex dual to a
chain complex of vector spaces can be naturally identified with the vector
spaces dual to the homology vector spaces of this chain complex. Conse-
quently, the maps between the cohomology vector spaces induced by the
cochain map dual to a chain map between chain complexes of vector spaces
can be naturally identified with the maps dual to the maps between the
homology vector spaces induced by this chain map. Moreover, a linear map
between vector spaces is an isomorphism if and only if the dual map is an
isomorphism. Therefore the theorem will be proved once we show that the
cochain map dual to the chain map consisting of the maps (3.18) induces
isomorphisms between the cohomology vector spaces.

Fix p ≥ 0. For every open subset U of M we define the map

(3.19) Sp(U,R)→ Cp(C∞(U,R)), c 7→ fc,U ,

where Sp(U,R) denotes the real vector space of differentiable singular
p-chains on U with real coefficients, and fc,U : C∞(U,R)×· · ·×C∞(U,R)→ R
is given by

fc,U (ϕ,ϕ1, . . . , ϕp) =
�

c

ϕdϕ1 ∧ · · · ∧ dϕp.

The maps dual to (3.19) form a homomorphism between our presheaf con-
sisting of the vector spaces Cp(C∞(U,R))∗, where U is an open subset of
M , and the maps j∗p,U,V , where U and V are open subsets of M such that
U ⊂ V , and the presheaf of differentiable singular p-chains on M with real
coefficients. Hence we have the homomorphism of the associated sheaves

(3.20) Cp(M)→ Sp(M,R),
induced by this presheaf homomorphism.

We have the commutative diagram

(3.21)
0 −→ R ∂0−→ C0(M)

∂1−→ C1(M)
∂2−→ C2(M)

∂3−→ · · ·
↓ ↓ ↓ ↓

0 −→ R −→ S0(M,R) −→ S1(M,R) −→ S2(M,R) −→ · · ·
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where the first vertical arrow is the identity map on R, the other vertical
arrows are the maps (3.20), the first row is the fine resolution (3.3) of R from
Theorem 3.2 and the second row is the well known fine resolution of R which
is used in the proof that the classical differentiable singular cohomology is
isomorphic with the sheaf cohomology with coefficients in R ([7, 5.31]). That
the first square in (3.21) commutes may be easily seen directly (the sheaf
homomorphism R → S0(M,R) is induced by the presheaf homomorphism
consisting of the maps dual to the linear maps S0(U,R)→ R, where U is an
open subset ofM , which send every x ∈ U to 1). The other squares in (3.21)
commute, because the maps (3.19) commute, by Stokes’ theorem, with the
boundary operators.

Consider the following commutative diagram of cochain complexes of real
vector spaces:

(3.22)
C∗(C∞(M,R)) −→ Γ (C∗(M))

↓ ↓
S∗(M,R) −→ Γ (S∗(M,R))

where C∗(C∞(M,R)) denotes the cochain complex dual to (3.1), S∗(M,R)
the complex of differentiable singular cochains on M with real coefficients,
Γ (C∗(M)) and Γ (S∗(M,R)) the complexes of global continuous sections for
the sheaf complexes C0(M) → C1(M) → C2(M) → · · · and S0(M,R) →
S1(M,R) → S2(M,R) → · · · , which are parts of the rows of (3.21); the
cochain map C∗(C∞(M,R))→ S∗(M,R) is dual to the chain map consisting
of the maps (3.18), the cochain map Γ (C∗(M))→ Γ (S∗(M,R)) is induced by
the maps (3.20), and finally C∗(C∞(M,R)) → Γ (C∗(M)) and S∗(M,R) →
Γ (S∗(M,R)) consist of the maps sending any element α of Cp(C∞(M,R))∗
or Sp(M,R)∗ to the section M → Cp(M) or M → Sp(M,R) with x 7→ ρxα
for p ≥ 0, where ρxα denotes the germ of α at x.

The cochain map C∗(C∞(M,R)) → Γ (C∗(M)) in (3.22) is an isomor-
phism, since for every p ≥ 0 the presheaf consisting of Cp(C∞(U,R))∗, where
U is an open subset of M , and j∗p,U,V , where U and V are open subsets of
M such that U ⊂ V , is complete on account of Theorem 3.8. The cochain
map Γ (C∗(M))→ Γ (S∗(M,R)) in (3.22) induces isomorphisms on cohomol-
ogy, because of the homomorphism (3.21) between the two fine resolutions
of R ([7, 5.24]). Finally, it is well known that the cochain map S∗(M,R)→
Γ (S∗(M,R)) in (3.22) induces isomorphisms on cohomology [7, 5.32]. Conse-
quently, the cochain map C∗(C∞(M,R))→ S∗(M,R) in (3.22) also induces
isomorphisms on cohomology and the proof is complete.

4. The relation to the de Rham complex. Let us now suppose that
A is an associative and commutative F -algebra with unit. In this special
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case the de Rham cochain complex of A can be defined (see for instance [6,
Chapter XIX]). We recall briefly the construction of this complex. Note that
it uses no topologies on A and F .

If M is an A-module, then an F -linear map D : A → M is called a
derivation if D(ab) = aDb + bDa for all a, b ∈ A. The universal derivation
of A is, by definition, a derivation d : A → Ω, where Ω is an A-module,
such that for every A-module M and every derivation D : A → M there is
a unique A-linear map f : Ω → M satisfying f ◦ d = D. Such a universal
derivation exists and is uniquely determined up to a unique isomorphism.
The A-module Ω is called the module of Kähler differentials. For each p ∈ N
the A-module Ωp

A/F is defined to be the pth exterior power
∧pΩ of the

A-module Ω. Each Ωp
A/F is generated as a vector space over F by vectors

of the form a db1 ∧ · · · ∧ dbp, where a, b1, . . . , bp ∈ A. Furthermore, for every
p ≥ 1 there is a unique F -linear map dp : Ωp−1

A/F → Ωp
A/F with the property

that
dp(a db1 ∧ · · · ∧ dbp−1) = da ∧ db1 ∧ · · · ∧ dbp−1

for all a, b1, . . . , bp−1 ∈ A. Then dp ◦ dp−1 = 0 for every p ≥ 2. The cochain
complex of vector spaces over F :

(4.1) Ω0
A/F

d1−→ Ω1
A/F

d2−→ Ω2
A/F

d3−→ · · ·

is called the de Rham complex of A.
The construction of the chain complex (2.1) described in Section 2 can

be also carried out without any topologies on A and F by dropping the
assumption that the maps forming CpA for p ∈ N are continuous. Of course,
this is equivalent to taking the discrete topology on A. We now show that
in the special case of an associative and commutative algebra A with the
discrete topology the chain complex (2.1) is (up to an isomorphism) dual to
the de Rham cochain complex (4.1).

For each p ∈ N we define the F -linear map

(4.2) ϕp : (Ω
p
A/F )

∗ → CpA

by the formula

(ϕpϑ)(a, b1, . . . , bp) = ϑ(a db1 ∧ · · · ∧ dbp)

for every ϑ∈(Ωp
A/F )

∗ and all a, b1, . . . , bp ∈ A (here, as usual, (Ωp
A/F )

∗ stands
for the vector space over F consisting of all F -linear maps Ωp

A/F → F ).

Theorem 4.1. If A is an associative and commutative F -algebra with
unit endowed with the discrete topology, then the maps (4.2) form an iso-
morphism between the chain complex dual to the de Rham cochain complex
(4.1) and the chain complex (2.1).
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Proof. A trivial verification shows that for every p ≥ 1 we have

ϕp−1 ◦ dp∗ = ∂p ◦ ϕp,

where dp∗ : (Ωp
A/F )

∗ → (Ωp−1
A/F )

∗ is given by dp∗(ϑ) = ϑ ◦ dp, which means
that the maps (4.2) form a homomorphism of chain complexes.

Fix a p ≥ 0. The proof will be completed as soon as we can find the map
ψp : CpA→ (Ωp

A/F )
∗ inverse to ϕp.

We first observe that A∗ is an A-module with multiplication given by
(aϑ)(b) = ϑ(ab) for every ϑ ∈ A∗ and all a, b ∈ A. Hence for every q ≥ 0 the
set SqA consisting of all skew-symmetric A-q-linear maps Ω× · · ·×Ω → A∗

is an A-module too.
Let f ∈ CpA. We prove by induction that for every q ∈ {0, . . . , p} and all

c1, . . . , cp−q ∈ A there is a uniquely determined αfc1,...,cp−q ∈ SqA such that

(4.3) (αfc1,...,cp−q(db1, . . . , dbq))(a) = f(a, c1, . . . , cp−q, b1, . . . , bq)

for all a, b1, . . . , bq ∈ A. This is obvious for q = 0. Assume q ∈ {1, . . . , p} and
the assertion holds for q − 1. Let c1, . . . , cp−q ∈ A. It is easy to see that

βfc1,...,cp−q : A→ Sq−1A, c 7→ αfc1,...,cp−q ,c

is a derivation, because Ω is generated as an A-module by vectors of the form
db, where b ∈ A. Since d is the universal derivation, we have the A-linear
map γfc1,...,cp−q : Ω → Sq−1A such that γfc1,...,cp−q ◦ d = βfc1,...,cp−q . Thus(

(γfc1,...,cp−q(db1))(db2, . . . , dbq)
)
(a) = f(a, c1, . . . , cp−q, b1, . . . , bq)

for all a, b1, . . . , bq ∈ A and it suffices to put

αfc1,...,cp−q(ω1, . . . , ωq) = (γfc1,...,cp−qω1)(ω2, . . . , ωq)

for all ω1, . . . , ωq ∈ Ω. The skew-symmetry of αfc1,...,cp−q is a consequence of
(4.3), and the induction is complete.

In particular, for q = p we have αf ∈ SpA such that

(αf (db1, . . . , dbp))(a) = f(a, b1, . . . , bp)

for all a, b1, . . . , bp ∈ A. We now define δf : Ωp
A/F → A∗ to be the A-linear

map such that
δf (ω1 ∧ · · · ∧ ωp) = αf (ω1, . . . , ωp)

for all ω1, . . . , ωp ∈ Ω, and finally

(ψpf)(ω) = (δfω)(1)

for every ω ∈ Ωp
A/F . Therefore ψpf ∈ (Ωp

A/F )
∗ and

(ψpf)(a db1 ∧ · · · ∧ dbp) = f(a, b1, . . . , bp)

for all a, b1, . . . , bp ∈ A, which means that ψp is the map inverse to ϕp.
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Corollary 4.2. If A is an associative and commutative F -algebra with
unit endowed with the discrete topology, then for each p ≥ 0 the homology
vector space HpA of the chain complex (2.1) is isomorphic to the vector space
dual to the pth cohomology vector space of the de Rham cochain complex
(4.1).

It is worth pointing out that Theorem 4.1 not only gives a link between
the chain complex (2.1) and the de Rham complex, but also shows clearly
that the choice of a particular topology on the algebra A in the construction
of (2.1) influences essentially its homology vector spaces. In fact, Theorem 3.9
would not be true if the C∞-compact-open topology on C∞(M,R) was re-
placed by the discrete one. This follows immediately from Theorem 4.1,
because on the one hand, there is no vector space such that its dual vec-
tor space has a countably infinite basis, and on the other hand, there exist
second countable Hausdorff manifolds of class C∞ such that some of their
differentiable singular homology groups with real coefficients have countably
infinite bases.
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