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The kernel theorem for Laplace ultradistributions

by SEAWOMIR MICHALIK (Warszawa)

Abstract. A kernel theorem for spaces of Laplace ultradistributions supported by
an n-dimensional cone of product type is stated and proved.

Introduction. Laurent Schwartz showed in [5] that for every contin-
uous linear map A : D(2) — D’'({2) there exists a unique distribution
K € D'(2 x £2), called the distributional kernel of the operator A, such that

(1) AlpllY] = Klp @] for ¢,¢ € D(R2).

In this paper we give the kernel theorem for the space L/(MT’)(F ) of

(w)
Laplace ultradistributions supported by an n-dimensional cone I" of prod-

uct type (i.e. I' = v + (R4)"™). Namely for any continuous linear map
A Lgﬁ’i)(ﬂ) — L/(Ej\;[)p)(&) there exists K € L/(EUAI[’;EQ)(Fl x I) such that

(1) holds for all ¢ € L{2"(I1), ¥ € L% (). The proof of this theorem is

based on the proof of the S’-version of the kernel theorem given in [7].

Notation. We use the vector notation. In particular, if a, b, v € R™ then
a < bmeans a; < b; fori =1,...,n, [v,00) means [v1,00) X ... X [vy,00)
and x* means z7' ...z7 for v € R}, z € C".

Let I' C U C R” be such that U is open in R", I' is relatively closed in
U and I' CintI" (i.e. I' is a fat set). Then for k € Ng U {oo},

CH(I") := {f : ' — C : there exists g € C*(U) such that g|p = f}.

We write D for the differential operator d/dx.

Let {P;};cr be a family of multinormed vector spaces. Then lii>n76T P;
(resp. lim;er Pr) denotes the inductive limit (resp. projective limit) of Py,
Tel.
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Laplace ultradistributions. Let (M,),cn, be a sequence of positive
numbers satisfying the conditions (see [2]):
(M.0) My=M; =1.
(M.1) M7 < M, 1My for p e N.
(M.2)  There are constants A, H such that

M, < AH? min MyM,_, for p € Ny.
0<q<p

(M.3) There is a constant A such that

o
My M
<A P for p € Np.
Mq pMp-l—l b

q=p+1
The associated function M of the sequence (M)) is defined by
M (p) := sup logi for o > 0.
PENo p
An ultradifferential operator P(D) of class (M,) is defined by
P(D):= Y a.D*
aeN[

where the a, € C satisfy the condition: there are constants K, C < oo such
that

|al

laq| < C for a € Nj.

o]
The entire function C" 3 z — P(z) is called a symbol of class (M,).

DEFINITION 1 (see [3]). Let v € R, I' :== v + (Ry)" = [v,00), w €
(RU {o0})™. The space L/((wj\fp)(F) of Laplace ultradistributions is defined as

the dual space of

where for any a € R",

L) = im L7 (1),
h>0

and for any h > 0,

M, M, e~ D%p(y
Lg,hp)([‘) = {90 €C®(I): QS,JL?I)—'(()O) = sup sup ‘M—()‘ < 00 .
yelraeNy  hI* My
Fix € > 0. We will construct a linear continuous extension mapping

E.: LMy — L) (—e 4+ I)

such that supp(E.p) C —¢/2 + I" for every ¢ € L((IMP)(F).
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Without loss of generality we can assume that ¢ < 1. For k£ € Njj let
Uy ={zeR": —e<zj—vi—ki<l+efori=1,...,n}

be a covering of I' = v + (R;)". Let {¥k}reny be a locally finite partition
of unity (see Proposition 5.2 in [2]) subordinate to {Uy }reny such that:

1) ¢y, € LM (=2 + 1);

2) the family {9y }renp is equibounded in LéMp)(—a +I);
3) supp ¢y C Uy;

4) > ¢p(x)=1lonI.

Furthermore, let E&k be a linear continuous extension operator for ultra-
differentiable functions on the compact set Uy NI (see Theorem 3.1 in [4]):

E.p,: EM) (TN T) — EMe)(R™),
such that:
1) supp(Ee,mb) C (—€/2,¢/2]" + U, N T for every 1 € EM) (T, N T);

2) if p € EM)(TU,, N T') and suppey € Uy N I then supp(Esykw) NI =
supp .

~ Observe that for every k € Ny there exists j € {0,...,n} such that
UrN1I is isometric to [—e,1+¢]? x [0, 1+¢]"77. Hence we may assume that:

3) the family {Esk} reny of operators is equicontinuous.
Now we define E. by

E-(p) =Y Eplnp) for o e LM(D).
keNg

By the properties of the functions {t; }xenn and the mappings {Ee,k}keN{}?
E. is an extension operator and we may estimate pseudonorms of E.(p) by
appropriate pseudonorms of ¢. Therefore E. is a continuous linear extension
mapping.

Following the proof of Proposition 5.1 in [7] and using the mapping E.
we conclude that the space LM )(F) is complete.

Let v1 € R™, v € R™ I := [v1,00), I3 := [v2,00), w1 € (RU{o0})™,

wa € (RU{o0})™. We denote by L/(EUAI/[;)(H, ngjﬂsp)(Fg)) the space of Laplace

ultradistributions on Iy with values in L/(E)Aj)" )(Fg), ie.

M, M,
o (D LGP 0]
if for any ¢ € Lgi\){g)([ﬁ) we have Alyp] € L/(g[)”)(&) and the mapping

(1) 3¢ Algl e L (1)

Ael

(M,
L(ng

is linear and continuous.
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We say that a sequence (A,),en, where A, € L(( p)(F L(( ))(Fg))

w1)
converges to zero in L(Eu ))(F L,((w]\ﬂp )( Iy)) if

lim A,[p][¢)] =0 for every ¢ € L p)(['l) Y eL w2))(F2)

V500 (w1)

Analogously, we say that a sequence (Z,,)l,eN, where 4, € L/((M" ) )(Fl x 1Y),

converges to zero in L(EU ) )(Fl x Iy) if

lim A,[®] =0 for every & € L) (I x Iy).

V00 (w1,w2)

The kernel theorem

THEOREM 1 (The kernel theorem). The mapping

M, M,
T, : L) (I x 1) — 0% (0, L0 (1)
such, that for any A € L(Eu “?2)(1} x Iy),

(2 Tu,(Dlel] = Apey] forpe LW (), ve LlP (1),
is a linear topological isomorphism of the space L(( Mp) (I1 x I3y) onto

UJl,UJQ)
/(( )P)( (( )P)( 2))

The proof is based on the Mazur—Orlicz theorem on the separate conti-
nuity of 2-linear functionals.

THEOREM 2 (Mazur-Orlicz; Theorem 4.7.1 of [1]). Let E', E? be multi-
normed complete vector spaces with the topologies given by non-decreasing
sequences of pseudonorms qi (j=1,2; k=0,1,...). Then each separately
continuous bilinear form @ : E' x E? — C is continuous, i.e. there exist
constants C' < oo and k € Ny such that

(3) 2(¢1,¢2)| < Cap(6)ai(Ga)  for 1€ EY, ¢ € B

Furthermore, we have

THEOREM 3 (see Theorem 1.3 in [8]). Let Ei (j=1,2; k=0,1,...) be
a Banach space with norm qj. such that Eiﬂ C E and q/(¢) < qiﬂ((j)
for ¢j € B} . Let BV := limgen, Ek. Assume that Kj | = {¢; € B/ 4 :
q1.1(¢5) < 1} is precompact in Ej. Let @, : E'xE? - C (v=12,...) be
separately continuous bilinear forms converging to zero, i.e.

Vlg{)@(g,@) =0 for every ¢, € EY, (; € E2.

Then there exist k € Ng and a sequence €, — 04 such that
120(C1 G| < vti1 ()i () for &€ By, G € By, v=12,...
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It is easily seen that the spaces E! := LS p)(Fl) and E? := L,(12 )(Fg)
satisfy the assumptions of Theorems 2 and 3.

In the proof of the kernel theorem we shall use a lemma which generalizes
a theorem on the change of order of integration. The lemma is analogous to
Theorem 18.11 of [6], so we omit its proof.

LEMMA 1. Let g : R" x I' — R, where I' := [v,00), v € R", and let
a € R", h > 0. Put gs(x) := g(s,x), where s € R", x € I. Assume that g
satisfies:

1. For any o € N, D$g(s,x) is continuous on R™ x I,

2. For any s € R", g5 € Liﬂip)(F).

3. For any so € R", lims_,5, gs = gs, N L,(zj,\ip)(F)‘

Let v € CY(R™) and u € Lgf")(lﬂ). Then

(4) | A(s)ulgs] ds = u| | A(s)g,ds].
R" R"
Let v € C°(R") be such that |’y(s)|q((l hp}(gs)(1+ Is1)2... (14 |sn])?
Choose a sequence of functions v, € CO(R") such that v, — v in C°(R"),

|| < |v| and pass to the limit in the already proved formula for v, €
CY(R™). Then we have

LEMMA 2. Under the conditions of Lemma 1, (4) holds for functions

7 € COR™) such that |y(s)|q{s7(gs) (1 +]51])% ... (14 [s])? < C for s € R
with some C < 0.

Proof of Theorem 1. We first observe that the transformation Zy, is well

defined. Indeed, let A € L(( M) )(Fl x I). Then for any a; < w; (j =1,2)

there exist h > 0 and ¢ < oo such that
5) [T, (D]l = |Alp @ 9]
le= 11 Dl p(21)] le™ 272 D724 (22))|

sup  sup
a
hle 1Uw\ocﬂ o€ an€Ny? hl 2|]W|042|

<c sup sup
1€l alean

for g € L&y (I7) and v € LG (1) Thus Ty, (A) € LY (11, LY (1)),

If we have a sequence (A, )yen convergent to zero in L((w ’;32)(F1 x I'y) then
the sequence of the corresponding numbers ¢, in (5) is also convergent to
zero and consequently the sequence (Zpz,(A,))ven is convergent to zero in

L,((M)p)(l“ L((M)”)(FQ)). Thus the operator 7y, is continuous.
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Now we construct a continuous inverse transformation

T L0, L0 (1)) — L0 (1 x 1)

such that IMpIJ\_4p =1d and IJT@IMP =1Id.

Fix A € L/(EJAI/[)”)(H,L,(E%?)(FQ)) and take any ai, as, di, do such that
a; < dj <wj (j =1,2). By Theorem 2 there exist ¢4 < oo, h > 0 such that

(6) |Alg[w]] < chéinz?n(@q;fg’& ()

for p € LY (1), ¢ € LQ(Iy).

By the Hahn—Banach theorem, (6) holds for ¢ € LEZ n ), ¢ e Ld2 h)(Fg)
Put j := bj +in; where b; € R™ with a; < b; < d; and nj € R™ (j =1,2).
Since there exist ¢;, k; (k; := (14 |b;|)/h) such that

M (s
a0, (799) < g exp M (ks (1 + [ns])),

where exp M (k;(1 + |n;])) := [1;2, exp M (k;(1 + |77J])), the function I}

zj — €%i% belongs to L¢(1 h) (Ij) ( =1,2). So we conclude from (6) that

(7) A" [e%2]] < cacrez exp M (ki (1 4+ |mi) exp M (ka(1 + [12]).
Let @ € Ll(l1 ag (I'1 x Iy). Then the Laplace transform £ given by
LD(C) = S@(:p)e_cm dx for Re( > a

r
satisfies

(8) |LP(C1,C2)| < cq 041,(32),1,F1><F2(¢) =: ¢cg < 00.
Put Q(¢1,¢2) := Q1(¢1)Q2(¢2) with

Q;(¢) = (¢ — dj — 1P H ( ki CJ)

b=Po
kil

= g(gj — dj — 1)pot! H (1 — —)

p=po
where my, := M, /M,_1, po is such that m, > 2k;|b;| + k; and |m, — k;(;| >
k;j|¢;| for p > po, j = 1,2. By the Hadamard factorization theorem (Propo-
sitions 4.5 and 4.6 in [2]), @ is a symbol of class (M) and it satisfies the
inequality (see [3], Lemma 3)

o MG e MlG) K

Q¢ G2) = (I m D2 A |n2))?

with some K’ < oo, where (1+ |n;])? == [[2,(1 + 52 (5 =1,2).

N
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Now we can write the mapping IJ\}i

n1+n2
(10) I]T; (A)[@] = <L> Q(Dxl’Dm) S S A[exlﬁ][ea:gg‘g]

! 2mi by +iR™1 by-+iR"2
LP(C1,C2)

QGG T

From (7)-(9) we obtain

Al e el

< cacicace

exp M (k1 (1 + [m|)) exp M (k2 (1 + [n2]))
|Q(C1,¢2)]

_ K
— (I )2+ [n2])?

with some K < oo. Therefore the integral in (10) is convergent (vector
notation!).

Since the ultradifferential operator
Q(Day, D) : LE/(D) — L&)

is continuous (cf. Th. 2.12 in [2]), for A > 0 sufficiently small we have

T3 (D[D)] < Ceago) s ryo sy (@)

1(Mp)
(w1,w2)

with some C < oco. Thus Z,; (A) € L (I x I).

If a sequence (A, )y en is convergent to zero in L(( 5 )(Fl, L((M)p)(Fg)) then
by Theorem 3 the sequence of the corresponding numbers cy4, in (6) con-
verges to zero. Thus the sequence (I]Té (A,))ven is convergent to zero in

1(Mp)
(w1,w2)

Next we show that I]Qi is the inverse mapping to Zys,. To this end we

Iy x I) and we conclude that the operator Z; is continuous.
( p M,

apply the operator Q(D,) to the inversion formula for the Laplace transfor-
mation (see [9]). For ¢ € LM )(F ) we have

2mi Q<)
From the above equality and Lemma 2 we derive that

Tar, Ty (A) [2l9] = T (A)lp )

o(r) = Q(Dy) <L>” S (580(0 d¢, wherex el
b-HiR™

is equal to
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1 ni+nz 51 22C
(3:) @D § | Aol

27 ; ;
b1+iR"™1 by +iR"™2

Lo(C1) L1(C2) dcy dé

Q1(¢1) Q2(¢2)

~—

X

2mi by @1(C1)
z1(1 L " z2(2 57/1@2) :|
< Ale ]K?m') QQ(DxQ)b2+§Rn2 ‘ Q2(¢2) A | da
. L " ‘C@(Cl) z1(1
N (27’(’1) Ql(DﬂCl)b1+§Rn1 QI(C1) A[e HQM dgl
_ L " z1¢1 Lo(C1) :l
- Asz‘) N(D) b1+§Rn1 T ona) W
= Alp][¢].
Similarly we obtain
Ty (Za, (A)) (2]
1 ni+nz
= <2_7TZ) Q(Dévlvaz)

| BRGSOy e agdc

Q(¢1,¢2)

b1 +iR"1 by +iR"™2

[/ 1M LP(C1,C2)
— Al — D,,, Dy, z1itaaCe =27 LD 52T g g

— A[9).
This completes the proof.
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