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The kernel theorem for Laplace ultradistributions

by Sławomir Michalik (Warszawa)

Abstract. A kernel theorem for spaces of Laplace ultradistributions supported by
an n-dimensional cone of product type is stated and proved.

Introduction. Laurent Schwartz showed in [5] that for every contin-
uous linear map A : D(Ω) → D′(Ω) there exists a unique distribution
K ∈ D′(Ω×Ω), called the distributional kernel of the operator A, such that

A[ϕ][ψ] = K[ϕ⊗ ψ] for ϕ,ψ ∈ D(Ω).(1)

In this paper we give the kernel theorem for the space L
′(Mp)
(ω) (Γ ) of

Laplace ultradistributions supported by an n-dimensional cone Γ of prod-
uct type (i.e. Γ = v + (R+)n). Namely for any continuous linear map
A : L(Mp)

(ω1) (Γ1) → L
′(Mp)
(ω2) (Γ2) there exists K ∈ L

′(Mp)
(ω1,ω2)(Γ1 × Γ2) such that

(1) holds for all ϕ ∈ L(Mp)
(ω1) (Γ1), ψ ∈ L(Mp)

(ω2) (Γ2). The proof of this theorem is
based on the proof of the S ′-version of the kernel theorem given in [7].

Notation. We use the vector notation. In particular, if a, b, v ∈ Rn then
a < b means ai < bi for i = 1, . . . , n, [v,∞) means [v1,∞) × . . . × [vn,∞)
and xz means xz11 . . . xznn for x ∈ Rn+, z ∈ Cn.

Let Γ ⊆ U ⊆ Rn be such that U is open in Rn, Γ is relatively closed in
U and Γ ⊆ intΓ (i.e. Γ is a fat set). Then for k ∈ N0 ∪ {∞},

Ck(Γ ) := {f : Γ → C : there exists g ∈ Ck(U) such that g|Γ = f}.
We write D for the differential operator d/dx.

Let {Pτ}τ∈T be a family of multinormed vector spaces. Then lim−→τ∈T Pτ
(resp. lim←−τ∈T Pτ ) denotes the inductive limit (resp. projective limit) of Pτ ,
τ ∈ T.
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Laplace ultradistributions. Let (Mp)p∈N0 be a sequence of positive
numbers satisfying the conditions (see [2]):

(M.0) M0 = M1 = 1.
(M.1) M2

p ≤Mp−1Mp+1 for p ∈ N.
(M.2) There are constants A,H such that

Mp ≤ AHp min
0≤q≤p

MqMp−q for p ∈ N0.

(M.3) There is a constant A such that
∞∑

q=p+1

Mq−1

Mq
≤ Ap Mp

Mp+1
for p ∈ N0.

The associated function M of the sequence (Mp) is defined by

M(%) := sup
p∈N0

log
%p

Mp
for % > 0.

An ultradifferential operator P (D) of class (Mp) is defined by

P (D) :=
∑

α∈Nn0

aαD
α,

where the aα ∈ C satisfy the condition: there are constants K,C <∞ such
that

|aα| ≤ C
K |α|

M|α|
for α ∈ Nn0 .

The entire function Cn 3 z 7→ P (z) is called a symbol of class (Mp).

Definition 1 (see [3]). Let v ∈ Rn, Γ := v + (R+)n = [v,∞), ω ∈
(R ∪ {∞})n. The space L′(Mp)

(ω) (Γ ) of Laplace ultradistributions is defined as
the dual space of

L
(Mp)
(ω) (Γ ) := lim−→

a<ω

L
(Mp)
a (Γ ),

where for any a ∈ Rn,

L
(Mp)
a (Γ ) := lim←−

h>0

L
(Mp)
a,h (Γ ),

and for any h > 0,

L
(Mp)
a,h (Γ ) :=

{
ϕ ∈ C∞(Γ ) : q(Mp)

a,h,Γ (ϕ) := sup
y∈Γ

sup
α∈Nn0

|e−ayDαϕ(y)|
h|α|M|α|

<∞
}
.

Fix ε > 0. We will construct a linear continuous extension mapping

Eε : L(Mp)
a (Γ )→ L

(Mp)
a (−ε+ Γ )

such that supp(Eεϕ) ⊂ −ε/2 + Γ for every ϕ ∈ L(Mp)
a (Γ ).
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Without loss of generality we can assume that ε < 1. For k ∈ Nn0 let

Uk := {x ∈ Rn : −ε < xi − vi − ki < 1 + ε for i = 1, . . . , n}
be a covering of Γ = v + (R+)n. Let {ψk}k∈Nn0 be a locally finite partition
of unity (see Proposition 5.2 in [2]) subordinate to {Uk}k∈Nn0 such that:

1) ψk ∈ L(Mp)
0 (−ε+ Γ );

2) the family {ψk}k∈Nn0 is equibounded in L
(Mp)
0 (−ε+ Γ );

3) suppψk ⊂ Uk;
4)
∑
ψk(x) = 1 on Γ .

Furthermore, let Ẽε,k be a linear continuous extension operator for ultra-
differentiable functions on the compact set U k ∩Γ (see Theorem 3.1 in [4]):

Ẽε,k : E(Mp)(Uk ∩ Γ )→ E(Mp)(Rn),

such that:

1) supp(Ẽε,kψ) ⊂ (−ε/2, ε/2]n + Uk ∩ Γ for every ψ ∈ E (Mp)(Uk ∩ Γ );
2) if ψ ∈ E(Mp)(Uk ∩ Γ ) and suppψ ⊂ Uk ∩ Γ then supp(Ẽε,kψ) ∩ Γ =

suppψ.

Observe that for every k ∈ Nn0 there exists j ∈ {0, . . . , n} such that
Uk∩Γ is isometric to [−ε, 1+ε]j× [0, 1+ε]n−j. Hence we may assume that:

3) the family {Ẽε,k}k∈Nn0 of operators is equicontinuous.

Now we define Eε by

Eε(ϕ) :=
∑

k∈Nn0

Ẽε,k(ψkϕ) for ϕ ∈ L(Mp)
a (Γ ).

By the properties of the functions {ψk}k∈Nn0 and the mappings {Ẽε,k}k∈Nn0 ,
Eε is an extension operator and we may estimate pseudonorms of Eε(ϕ) by
appropriate pseudonorms of ϕ. Therefore Eε is a continuous linear extension
mapping.

Following the proof of Proposition 5.1 in [7] and using the mapping Eε
we conclude that the space L(Mp)

a (Γ ) is complete.
Let v1 ∈ Rn1 , v2 ∈ Rn2 , Γ1 := [v1,∞), Γ2 := [v2,∞), ω1 ∈ (R ∪ {∞})n1,

ω2 ∈ (R∪{∞})n2 . We denote by L′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2)) the space of Laplace

ultradistributions on Γ1 with values in L
′(Mp)
(ω2) (Γ2), i.e.

A ∈ L′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2))

if for any ϕ ∈ L(Mp)
(ω1) (Γ1) we have A[ϕ] ∈ L′(Mp)

(ω2) (Γ2) and the mapping

L
(Mp)
(ω1) (Γ1) 3 ϕ 7→ A[ϕ] ∈ L′(Mp)

(ω2) (Γ2)

is linear and continuous.
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We say that a sequence (Aν)ν∈N, where Aν ∈ L
′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2)),

converges to zero in L
′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2)) if

lim
ν→∞

Aν [ϕ][ψ] = 0 for every ϕ ∈ L(Mp)
(ω1) (Γ1), ψ ∈ L(Mp)

(ω2) (Γ2).

Analogously, we say that a sequence (Ãν)ν∈N, where Ãν ∈ L′(Mp)
(ω1,ω2)(Γ1×Γ2),

converges to zero in L
′(Mp)
(ω1,ω2)(Γ1 × Γ2) if

lim
ν→∞

Ãν [Φ] = 0 for every Φ ∈ L(Mp)
(ω1,ω2)(Γ1 × Γ2).

The kernel theorem

Theorem 1 (The kernel theorem). The mapping

IMp : L′(Mp)
(ω1,ω2)(Γ1 × Γ2)→ L

′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2))

such that for any Ã ∈ L′(Mp)
(ω1,ω2)(Γ1 × Γ2),

IMp(Ã)[ϕ][ψ] := Ã[ϕ⊗ ψ] for ϕ ∈ L(Mp)
(ω1) (Γ1), ψ ∈ L(Mp)

(ω2) (Γ2),(2)

is a linear topological isomorphism of the space L
′(Mp)
(ω1,ω2)(Γ1 × Γ2) onto

L
′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2)).

The proof is based on the Mazur–Orlicz theorem on the separate conti-
nuity of 2-linear functionals.

Theorem 2 (Mazur–Orlicz; Theorem 4.7.1 of [1]). Let E1, E2 be multi-
normed complete vector spaces with the topologies given by non-decreasing
sequences of pseudonorms qjk (j = 1, 2; k = 0, 1, . . .). Then each separately
continuous bilinear form Φ : E1 × E2 → C is continuous, i.e. there exist
constants C <∞ and k ∈ N0 such that

|Φ(ζ1, ζ2)| ≤ Cq1
k(ζ1)q2

k(ζ2) for ζ1 ∈ E1, ζ2 ∈ E2.(3)

Furthermore, we have

Theorem 3 (see Theorem 1.3 in [8]). Let Ej
k (j = 1, 2; k = 0, 1, . . .) be

a Banach space with norm qjk such that Ejk+1 ⊆ Ejk and qjk(ζj) ≤ qjk+1(ζj)

for ζj ∈ Ejk+1. Let Ej := lim←−k∈N0 E
j
k. Assume that Kj

k+1 := {ζj ∈ Ejk+1 :

qjk+1(ζj) ≤ 1} is precompact in Ej
k. Let Φν : E1 × E2 → C (ν = 1, 2, . . .) be

separately continuous bilinear forms converging to zero, i.e.

lim
ν→∞

Φν(ζ1, ζ2) = 0 for every ζ1 ∈ E1, ζ2 ∈ E2.

Then there exist k ∈ N0 and a sequence εν → 0+ such that

|Φν(ζ1, ζ2)| ≤ ενq1
k+1(ζ1)q2

k+1(ζ2) for ζ1 ∈ E1
k+1, ζ2 ∈ E2

k+1, ν = 1, 2, . . .
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It is easily seen that the spaces E1 := L
(Mp)
a1 (Γ1) and E2 := L

(Mp)
a2 (Γ2)

satisfy the assumptions of Theorems 2 and 3.
In the proof of the kernel theorem we shall use a lemma which generalizes

a theorem on the change of order of integration. The lemma is analogous to
Theorem 18.11 of [6], so we omit its proof.

Lemma 1. Let g : Rn × Γ → R, where Γ := [v,∞), v ∈ Rn, and let
a ∈ Rn, h > 0. Put gs(x) := g(s, x), where s ∈ Rn, x ∈ Γ. Assume that g
satisfies:

1. For any α ∈ Nn0 , Dα
xg(s, x) is continuous on Rn × Γ.

2. For any s ∈ Rn, gs ∈ L(Mp)
a,h (Γ ).

3. For any s0 ∈ Rn, lims→s0 gs = gs0 in L
(Mp)
a,h (Γ ).

Let γ ∈ C0
0(Rn) and u ∈ L′(Mp)

a,h (Γ ). Then
�

Rn
γ(s)u[gs] ds = u

[ �

Rn
γ(s)gs ds

]
.(4)

Let γ ∈ C0(Rn) be such that |γ(s)|q(Mp)
a,h,Γ (gs)(1+ |s1|)2 . . . (1+ |sn|)2 < C.

Choose a sequence of functions γν ∈ C0
0(Rn) such that γν → γ in C0(Rn),

|γν | ≤ |γ| and pass to the limit in the already proved formula for γν ∈
C0

0(Rn). Then we have

Lemma 2. Under the conditions of Lemma 1, (4) holds for functions
γ ∈ C0(Rn) such that |γ(s)|q(Mp)

a,h,Γ (gs)(1+ |s1|)2 . . . (1+ |sn|)2 < C for s ∈ Rn
with some C <∞.

Proof of Theorem 1. We first observe that the transformation IMp is well

defined. Indeed, let Ã ∈ L′(Mp)
(ω1,ω2)(Γ1 × Γ2). Then for any aj < ωj (j = 1, 2)

there exist h > 0 and c <∞ such that

(5) |IMp(Ã)[ϕ][ψ]| = |Ã[ϕ⊗ ψ]|

≤ c sup
x1∈Γ1

sup
α1∈Nn1

0

|e−a1x1Dα1
x1
ϕ(x1)|

h|α1|M|α1|
sup
x2∈Γ2

sup
α2∈Nn2

0

|e−a2x2Dα2
x2
ψ(x2)|

h|α2|M|α2|

for ϕ ∈ L(Mp)
a1 (Γ1) and ψ ∈ L(Mp)

a2 (Γ2). Thus IMp(Ã)∈L′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2)).

If we have a sequence (Ãν)ν∈N convergent to zero in L
′(Mp)
(ω1,ω2)(Γ1 × Γ2) then

the sequence of the corresponding numbers cν in (5) is also convergent to
zero and consequently the sequence (IMp(Ãν))ν∈N is convergent to zero in

L
′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2)). Thus the operator IMp is continuous.
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Now we construct a continuous inverse transformation

I−1
Mp

: L′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2))→ L

′(Mp)
(ω1,ω2)(Γ1 × Γ2)

such that IMpI−1
Mp

= Id and I−1
Mp
IMp = Id.

Fix A ∈ L
′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2)) and take any a1, a2, d1, d2 such that

aj < dj < ωj (j = 1, 2). By Theorem 2 there exist cA <∞, h > 0 such that

(6) |A[ϕ][ψ]| ≤ cAq(Mp)
d1,h,Γ1

(ϕ)q(Mp)
d2,h,Γ2

(ψ)

for ϕ ∈ L(Mp)
d1

(Γ1), ψ ∈ L(Mp)
d2

(Γ2).

By the Hahn–Banach theorem, (6) holds for ϕ ∈ L(Mp)
d1,h

(Γ1), ψ ∈ L(Mp)
d2,h

(Γ2).
Put ζj := bj + iηj where bj ∈ Rnj with aj < bj < dj and ηj ∈ Rnj (j = 1, 2).
Since there exist cj , kj (kj := (1 + |bj|)/h) such that

q
(Mp)
dj ,h,Γj

(exjζj ) ≤ cj expM(kj(1 + |ηj |)),

where expM(kj(1 + |ηj |)) :=
∏nj
i=1 expM(kj(1 + |ηij |)), the function Γj 3

xj 7→ exjζj belongs to L(Mp)
dj ,h

(Γj) (j = 1, 2). So we conclude from (6) that

|A[ex1ζ1 ][ex2ζ2 ]| ≤ cAc1c2 expM(k1(1 + |η1|)) expM(k2(1 + |η2|)).(7)

Let Φ ∈ L(Mp)
a1,a2(Γ1 × Γ2). Then the Laplace transform LΦ given by

LΦ(ζ) :=
�

Γ

Φ(x)e−ζx dx for Re ζ > a

satisfies
|LΦ(ζ1, ζ2)| ≤ cq(Mp)

(a1,a2),1,Γ1×Γ2
(Φ) =: cΦ <∞.(8)

Put Q(ζ1, ζ2) := Q1(ζ1)Q2(ζ2) with

Qj(ζj) := (ζj − dj − 1)p0+1
∞∏

p=p0

(
1− kjζj

mp

)

:=
nj∏

i=1

(ζij − dij − 1)p0+1
∞∏

p=p0

(
1−

kjζ
i
j

mp

)
,

where mp := Mp/Mp−1, p0 is such that mp > 2kj |bj |+ kj and |mp− kjζj| ≥
kj |ζj| for p ≥ p0, j = 1, 2. By the Hadamard factorization theorem (Propo-
sitions 4.5 and 4.6 in [2]), Q is a symbol of class (Mp) and it satisfies the
inequality (see [3], Lemma 3)

expM(k1|ζ1|) expM(k2|ζ2|)
|Q(ζ1, ζ2)| ≤ K ′

(1 + |η1|)2(1 + |η2|)2(9)

with some K ′ <∞, where (1 + |ηj |)2 :=
∏nj
i=1(1 + |ηij|)2 (j = 1, 2).
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Now we can write the mapping I−1
Mp

:

(10) I−1
Mp

(A)[Φ] :=
(

1
2πi

)n1+n2

Q(Dx1 ,Dx2)
�

b1+iRn1

�

b2+iRn2

A[ex1ζ1 ][ex2ζ2 ]

× LΦ(ζ1, ζ2)
Q(ζ1, ζ2)

dζ1 dζ2.

From (7)–(9) we obtain
∣∣∣∣A[ex1ζ1 ][ex2ζ2 ]

LΦ(ζ1, ζ2)
Q(ζ1, ζ2)

∣∣∣∣

≤ cAc1c2cΦ
expM(k1(1 + |η1|)) expM(k2(1 + |η2|))

|Q(ζ1, ζ2)|

≤ K

(1 + |η1|)2(1 + |η2|)2

with some K < ∞. Therefore the integral in (10) is convergent (vector
notation!).

Since the ultradifferential operator

Q(Dx1 ,Dx2) : L(Mp)
a (Γ )→ L

(Mp)
a (Γ )

is continuous (cf. Th. 2.12 in [2]), for h > 0 sufficiently small we have

|I−1
Mp

(A)[Φ]| ≤ CcAq(Mp)
(a1,a2),h,Γ1×Γ2

(Φ)

with some C <∞. Thus I−1
Mp

(A) ∈ L′(Mp)
(ω1,ω2)(Γ1 × Γ2).

If a sequence (Aν)ν∈N is convergent to zero in L′(Mp)
(ω1) (Γ1, L

′(Mp)
(ω2) (Γ2)) then

by Theorem 3 the sequence of the corresponding numbers cAν in (6) con-
verges to zero. Thus the sequence (I−1

Mp
(Aν))ν∈N is convergent to zero in

L
′(Mp)
(ω1,ω2)(Γ1 × Γ2) and we conclude that the operator I−1

Mp
is continuous.

Next we show that I−1
Mp

is the inverse mapping to IMp . To this end we
apply the operator Q(Dx) to the inversion formula for the Laplace transfor-
mation (see [9]). For ϕ ∈ L(Mp)

a (Γ ) we have

ϕ(x) = Q(Dx)
(

1
2πi

)n �

b+iRn
exζ
Lϕ(ζ)
Q(ζ)

dζ, where x ∈ Γ.

From the above equality and Lemma 2 we derive that

IMp(I−1
Mp

(A))[ϕ][ψ] = I−1
Mp

(A)[ϕ⊗ ψ]

is equal to
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(
1

2πi

)n1+n2

Q1(Dx1)Q2(Dx2)
�

b1+iRn1

�

b2+iRn2

A[ex1ζ1 ][ex2ζ2 ]

× Lϕ(ζ1)
Q1(ζ1)

Lψ(ζ2)
Q2(ζ2)

dζ1 dζ2

=
(

1
2πi

)n1

Q1(Dx1)
�

b1+Rn1

Lϕ(ζ1)
Q1(ζ1)

× A[ex1ζ1 ]
[(

1
2πi

)n2

Q2(Dx2)
�

b2+iRn2

ex2ζ2Lψ(ζ2)
Q2(ζ2)

dζ2

]
dζ1

=
(

1
2πi

)n1

Q1(Dx1)
�

b1+iRn1

Lϕ(ζ1)
Q1(ζ1)

A[ex1ζ1 ][ψ] dζ1

= A

[(
1

2πi

)n1

Q1(Dx1)
�

b1+iRn1

ex1ζ1Lϕ(ζ1)
Q1(ζ1)

dζ1

]
[ψ]

= A[ϕ][ψ].

Similarly we obtain

I−1
Mp

(IMp(Ã))[Φ]

=
(

1
2πi

)n1+n2

Q(Dx1 ,Dx2)

×
�

b1+iRn1

�

b2+iRn2

LΦ(ζ1, ζ2)
Q(ζ1, ζ2)

IMp(Ã)[ex1ζ1 ][ex2ζ2 ] dζ1dζ2

= Ã

[(
1

2πi

)n1+n2

Q(Dx1 ,Dx2)
�

b1+iRn1

�

b2+iRn2

ex1ζ1+x2ζ2LΦ(ζ1, ζ2)
Q(ζ1, ζ2)

dζ1dζ2

]

= Ã[Φ].

This completes the proof.
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