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Partial regularity of minimizers of quasiconvex integrals
with subquadratic growth: the general case

by Menita Carozza (Benevento) and Giuseppe Mingione (Parma)

Abstract. We prove partial regularity for minimizers of the functional
�
Ω
f(x, u(x),

Du(x)) dx where the integrand f(x, u, ξ) is quasiconvex with subquadratic growth:
|f(x, u, ξ)| ≤ L(1 + |ξ|p), p < 2. We also obtain the same results for ω-minimizers.

1. Introduction. In this paper we study the partial regularity of min-
imizers of the functional

(1.1) I(u) = �
Ω

f(x, u(x),Du(x)) dx

where Ω is a bounded open subset of Rn, u is a W 1,p(Ω,RN ) function with
p > 1 and f(x, u, ξ) : Ω×RN ×RnN → R is a uniformly strictly quasiconvex
function, i.e.

(1.2) �
Ω

f(x, u, ξ +Dφ(x)) dx

≥ �
Ω

[f(x, u, ξ) + ν(1 + |ξ|2 + |Dφ(x)|2)(p−2)/2|Dφ(x)|2] dx

for any (u, ξ) ∈ RN × RnN and φ ∈ C1
0 (Ω,RN ).

The condition (1.2), in a slightly different form, was introduced in [E]
in order to obtain partial regularity results for minimizers of the functional
(1.1) in the case p > 2. Evans assumed the integrand to depend on the
gradient of u only, and a control condition on the second derivatives of the
energy density f .

Next, in [FH], [GM] and [AF4], the same regularity results in the case of
f depending on x, u, Du and without any control condition on the second
derivatives were obtained.
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In 1991 Šverák gave examples of genuine quasiconvex and not polycon-
vex functions with subquadratic growth. Only then the problem of partial
regularity in the subquadratic case became to be seriously considered.

We notice that a first regularity result in this direction was obtained in
[CP] under the more restrictive assumption 2n/(n+ 2) < p < 2. The case
1 < p < 2 was treated in [CFM] with the function f only depending on the
gradient Du.

In this paper we consider the regularity problem in its full generality,
namely f is supposed also to depend on x and u, i.e. f = f(x, u, Du). To
face the problem we have to adapt a certain number of techniques used in the
superquadratic case, p > 2 (see [AF3], [FH]), and combine them a suitable
way with the new tools developed in [CFM]. The proof of the regularity
of u is based as usual on a blow-up argument aiming to establish a decay
estimate for the excess function

E(x0, R) = Rδ + �
BR(x0)

|V (Du(x))− V ((Du)x0,R)|2 dx

where δ > 0 and

V (ξ) = (1 + |ξ|2)(p−2)/4ξ

where the structure of E reflects the quasiconvexity condition (1.2) and
the term Rδ is due to a technical complication arising in the use of a
sort of “freezing argument” based on Ekeland’s variational principle (see
Lemma 3.7). We mention that in order to get a crucial higher integrability
result we use a new Poincaré type inequality on increasing spheres:

(1.3)
(

�
BR

∣∣∣∣V
(
u− uR
R

)∣∣∣∣
2(1+σ)

dx

)1/(2(1+σ))

≤ c
( �
B3R

|V (Du)|α dx
)1/α

provided u ∈W 1,p(Ω,RN ), 2/p < α < 2 and σ > 0 where the function V is
used as a quasinorm (see Lemma 2.1 for the basic properties of V ).

Finally, the same regularity results are given for an ω-minimizer of the
functional, i.e. a function u ∈W 1,p(Ω,RN ) such that

I(u,Br) ≤ [1 + ω(r)]I(u+ φ,Br)

for any function φ ∈ W 1,p
0 (Br,RN ), Br ⊂⊂ Ω, with ω : R+ → R+ a con-

tinuous nondecreasing concave function such that ω(0) = 0 and ω(r)≤crσ,
σ > 0, completing the regularity result for ω-minimizers given in [Gi], Ch. 9.

2. Preliminary results. In the followingΩ will denote a bounded open
set in Rn, BR(x0) the ball {x ∈ Rn : |x−x0| < R}, and if h is an integrable
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function we define

(h)x0,R := �
BR(x0)

h(x) dx =
1

ωnRn
�

BR(x0)

h(x) dx ,

where ωn is the Lebesgue measure of the n-dimensional unit ball. When no
confusion may arise we write simply (h)R in place of (h)x0,R and BR in place
of BR(x0). Throughout the paper p will be a number between 1 and 2 and
for ξ ∈ Rk we define

(2.1) V (ξ) = (1 + |ξ|2)(p−2)/4ξ.

The following statement contains some useful properties of the function V .

Lemma 2.1. Let 1 < p < 2, and let V : Rk → Rk be defined by (2.1).
Then for any ξ, η ∈ Rk, t > 0,

(i) 2(p−2)/4 min{|ξ|, |ξ|p/2} ≤ |V (ξ)| ≤ min{|ξ|, |ξ|p/2},
(ii) |V (tξ)| ≤ max{t, tp/2}|V (ξ)|,
(iii) |V (ξ + η)| ≤ c(p)[|V (ξ)|+ |V (η)|],

(iv)
p

2
|ξ − η| ≤ |V (ξ)− V (η)|

(1 + |ξ|2 + |η|2)(p−2)/4
≤ c(k, p)|ξ − η|,

(v) |V (ξ)− V (η)| ≤ c(k, p)|V (ξ − η)|,
(vi) |V (ξ − η)| ≤ c(p,M)|V (ξ)− V (η)| if |η| ≤M and ξ ∈ Rk,
(vii) ∀ε > 0 ∃cε > 0 |ξ| ≤ ε|V (ξ)|2 + cε.

Proof. See Lemma 2.1 of [CFM] for (i)–(vi) while (vii) trivially follows
from the definition of V .

Theorem 2.2. If 1 < p < 2, there exist 2/p < α < 2 and σ > 0 such
that if u ∈W 1,p(B3R(x0),RN ), then

(2.2)
(

�
BR(x0)

∣∣∣∣V
(
u− (u)x0,R

R

)∣∣∣∣
2(1+σ)

dx

)1/(2(1+σ))

≤ c
( �
B3R(x0)

|V (Du)|α dx
)1/α

,

where c ≡ c(n, p,N) is independent of R and u.

Proof. See [CFM].

Remark 2.3. The Sobolev–Poincaré type inequality stated above has
been proven in [CFM] and it is essential in order to get our regularity result
(see Theorem 3.2, Step 3). The proof is essentially based on some estimates
for the maximal function combined with the properties of V (t) stated in
Lemma 2.1.
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The following is a technical result used in the proof of Lemma 2.5 and
a straightforward generalization of a classical interpolation lemma (see [Gi],
Lemma 6.1).

Lemma 2.4. Let f : [r/2, r] → [0,∞[ be a bounded function such that
for all r/2 < t < s < r,

f(t) ≤ θf(s) + A �
Br

∣∣∣∣V
(
h(x)
s− t

)∣∣∣∣
2

dx,

where h ∈ Lp(Br), A > 0, and 0 < θ < 1. Then there exists c ≡ c(θ) such
that

f

(
r

2

)
≤ c(θ)A �

Br

∣∣∣∣V
(
h(x)
r

)∣∣∣∣
2

dx.

Proof. See [CFM].

We are now in a position to prove the following higher integrability result
(see [AF3] for the case p ≥ 2).

Lemma 2.5. Let g : RnN → R be a function of class C1 such that

|g(ξ)| ≤ c(1 + λ2|ξ|2)(p−2)/2|ξ|2,

�
Ω

g(Dφ(x)) dx ≥ ν �
Ω

1
λ2 |V (λDφ(x))|2 dx

for any φ ∈ C1
0 (Rn,RN ), for suitable positive constants c, ν, 0 < λ < 1. Fix

0 ≤ µ < 1 and let u ∈W 1,p(Ω,RN ) satisfy

�
Ω

g(Du(x)) dx ≤ �
Ω

[g(Du(x) +Dφ(x)) + µ|Dφ(x)|] dx

for all φ ∈W 1,p
0 (Ω,RN ). Then there exist c0, δ, depending only on p, n, N ,

L, ν but independent of λ, u and µ, such that for any Br(x0) ⊂ Ω,

(2.3) �
Br/2

|V (λDu)|2(1+δ) dx ≤ c0
( �
B3r

(λ2µ+ |V (λDu)|2) dx
)1+δ

.

Proof. Fix Br ⊂ Ω, let 1
2r < t < s < r and take a cut-off function

ζ ∈ C1
0 (Bs) such that 0 ≤ ζ ≤ 1, ζ = 1 on Bt and |Dζ| ≤ 2/(s− t). Set

φ1 = [u− (u)r]ζ, φ2 = [u− (u)r](1− ζ).

Then Du = Dφ1 + Dφ2. Using the growth conditions, the minimality of u
and Lemma 2.1(vii) we easily get
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ν

λ2 �
Bs

|V (λDφ1)|2 dx ≤ �
Bs

g(Dφ1) dx = �
Bs

g(Du−Dφ2) dx

= �
Bs

g(Du) dx+ �
Bs

[g(Du−Dφ2)− g(Du)] dx

≤ �
Bs\Bt

g(Dφ2) dx+ �
Bs\Bt

[g(Du−Dφ2)− g(Du)] dx+ �
Bs

µ|Dφ1| dx

≤ c �
Bs\Bt

1
λ2 (|V (λDφ2)|2 + |V (λ(Du−Dφ2))|2 + |V (λDu)|2) dx

+
µν

2
�
Bs

|V (Dφ1)|2 dx+ c(ν)µrn

≤ c �
Bs\Bt

1
λ2 (|V (λDφ2)|2 + |V (λ(Du−Dφ2))|2 + |V (λDu)|2) dx

+
µν

2λ2 �
Bs

|V (λDφ1)|2 dx+ c(ν)µrn.

By absorbing the last integral above in the left hand side and using
Lemma 2.1, we have

1
λ2 �

Bt

|V (λDu)|2 dx ≤ 1
λ2 �

Bs

|V (λDφ1)|2 dx

≤ c̃(ν)
[
µrn + �

Bs\Bt

1
λ2

(
|V (λDu)|2 +

∣∣∣∣V
(
λ
u− (u)r
s− t

)∣∣∣∣
2)

dx

]
.

We “fill the hole” by adding to both sides the term

c̃
1
λ2 �

Bt

|V (λDu)|2 dx,

then we divide by c̃+ 1, thus obtaining

1
λ2 �

Bt

|V (λDu)|2 dx

≤ c̃

c̃+ 1

[
1
λ2 �

Bs

|V (λDu)|2 dx+ c �
Br

(
µ+

1
λ2

∣∣∣∣V
(
λ
u− (u)r
s− t

)∣∣∣∣
2)

dx

]
.

Now, by Lemma 2.4 above, we get

�
Br/2

|V (λDu)|2 dx ≤ c �
Br

∣∣∣∣V
(
λ
u− (u)r

r

)∣∣∣∣
2

dx+ c(ν) �
Br

λ2µdx
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and so, by (2.2), we get

�
Br/2

|V (λDu)|2 dx ≤ c
(

�
Br

∣∣∣∣V
(
λ
u− (u)r

r

)∣∣∣∣
2(1+σ)

dx

)1/(1+σ)

+ c �
Br

λ2µdx

≤ c
( �
B3r

|V (λDu)|α dx
)2/α

+ c �
Br

λ2µdx

with 2/p < α < 2. From this inequality the result follows immediately just
by applying the version of the Gehring Lemma due to Giaquinta and Modica
(see [G], Theorem 1.1, Chapter 5).

Now we give a list of useful lemmas. The following lemma is a slightly
modified version of the approximation result proved in [AF2].

Lemma 2.6. Let u ∈W 1,q(Rn,RN ) with q ≥ 1. For every K > 0, set

HK = {x ∈ Rn : M(Du) ≤ K}.
Then there exists a Lipschitz function w : Rn → RN such that ‖Dw‖∞ ≤
cK, w = u on HK and

meas(Rn \HK) ≤ c‖Du‖qq/Kq,

where c depends only on n,N, q.

The next result is a simple consequence of a priori estimates for solutions
of linear elliptic systems with constant coefficients.

Proposition 2.7. Let u ∈W 1,1(Ω,RN ) be such that

(2.4) �
Ω

AijαβDαu
iDβφ

j dx = 0

for any φ ∈ C1
0 (Ω,RN ), where (Aijαβ) is a constant matrix satisfying the

strong Legendre–Hadamard condition:

Aijαβλ
iλjµαµβ ≥ ν|λ|2|µ|2 for any λ ∈ RN , µ ∈ Rn.

Then u is C∞ and for any BR(x0) ⊂ Ω,

(2.5) sup
BR/2

|Du| ≤ c

Rn
�
BR

|Du| dx,

where c depends only on n, N , p, ν and maxAijαβ.

Proof. See [CFM], Prop. 2.10.

The following selection theorem due to Eisen [Ei] is also useful.

Lemma 2.8. Let G be a measurable subset of Rk with meas(G) < ∞.
Assume (Mh) is a sequence of measurable subsets of G such that , for some
ε > 0,

meas(Mh) ≥ ε for all h ∈ N.
Then a subsequence (Mhk) can be selected such that

⋂
kMhk 6= ∅.
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We conclude this section by recalling a well known variational lemma due
to Ekeland. It will be one of the main technical tools in the next section.

Theorem 2.9 (Ekeland). Let (X, d) a complete metric space and F :
X → (−∞,∞) a lower semicontinuous functional such that

−∞ < inf
X
F <∞.

Let ε > 0 and x ∈ X be such that

F (x) ≤ inf
X
F + ε.

Then there exists y ∈ X such that

d(x, y) < 1, F (y) ≤ F (x), F (x) ≤ F (z) + εd(y, z) ∀z ∈ X.
Proof. See [Ek] and [Gi], Chap. 5.

3. Proof of the main result. In this section we will prove the partial
regularity of minimizers of the functional

I(v) := �
Ω

f(x, v(x),Dv(x)) dx,

where v ∈W 1,p(Ω,RN ), 1 < p < 2, and f : Ω×RN×RnN → R is a function
satisfying the following assumptions:

(H1) |f(x, v, ξ)| ≤ L(1 + |ξ|p);

(H2) �
Ω

f(x0, v0, ξ +Dφ(x)) dx

≥ �
Ω

[f(x0, v0, ξ) + ν(1 + |ξ|2 + |Dφ(x)|2)(p−2)/2|Dφ(x)|2] dx

∀(x0, v0, ξ) ∈ Ω × RN × RnN , ∀φ ∈ C1
0 (Ω,RN );

(H3) |f(x, u, ξ)− f(y, v, ξ)| ≤ C(1 + |ξ|p)γ(|x− y|p + |u− v|p)
where γ(t) ≤ tσ, 0 < σ < 1/p and γ is bounded, concave, nonnegative and
increasing;

(H4) fξξ(x, u, ξ) is continuous;

there is a continuous function ψ : RnN → R satisfying

(H5) f(x, u, ξ) ≥ ψ(ξ)

and
�
Ω

ψ(Dφ(x)) dx ≥ �
Ω

[ψ(0) + ν|Dφ(x)|p] dx

for every φ ∈ C1
0 (Ω,RN ) with C, ν > 0.
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Remark 3.1. Condition (H2), introduced in [E] in the case p ≥ 2, is
called uniform strict quasiconvexity and implies that for any (x, v, ξ) ∈ Ω ×
RN × RnN , λ ∈ RN , µ ∈ Rn,

∂2f

∂ξiα∂ξ
j
β

(x, v, ξ)λiλjµαµβ ≥ cν(1 + |ξ|2)(p−2)/2|λ|2|µ|2,

with c independent of ξ, λ, µ.

Notice that we do not assume any control on second derivatives. However,
if a function f is quasiconvex, i.e. satisfies (H2) with ν = 0, and has the
growth control (H1), then it is well known (see [AF1], [M]) that

(3.1) |Df(x, v, ξ)| ≤ c(n,N, p)L(1 + |ξ|p−1).

We also recall that a function u ∈W 1,p(Ω,RN ) is a minimizer of I(v) if for
any function φ ∈W 1,p

0 (Ω,RN ),

I(u,Ω) ≤ I(u+ φ,Ω);

while an ω-minimizer is a function u ∈W 1,p(Ω,RN ) such that

I(u,Br) ≤ [1 + ω(r)]I(u+ φ,Br)

for any function φ ∈ W 1,p
0 (Br,RN ), Br ⊂⊂ Ω, where ω : R+ → R+ is a

continuous nondecreasing concave function such that ω(0) = 0. It is easy to
check that a minimizer is also an ω-minimizer if we take ω = 0.

We can now state the main result of this section.

Theorem 3.2. Let f be a C2 function satisfying (Hi) for i = 1, . . . , 5
and let u ∈ W 1,p(Ω,RN ) be an ω-minimizer of a functional I(v) with
ω(r) ≤ crδ, δ > 0. Then there exists an open subset Ω0 of Ω such that
meas(Ω \Ω0) = 0 and u is in C1,α(Ω0,RN ) for some α < 1.

A standard technique in order to prove such results is to look at the
decay in small balls around a point x0 of the so-called excess of the gradient
of the solution u. Roughly speaking the excess E(x0, R) measures how far
the gradient is from being constant in the ball BR(x0). In our case, following
the techniques introduced in [FH], in view of some estimates provided by
applications of Ekeland’s variational pinciple, it will be convenient to define

E(x0, R) = �
BR(x0)

|V (Du(x))− V ((Du)x0,R)|2 dx+Rδ,

where δ > 0 is a suitable positive constant and V is given by (2.1).
We recall here a semicontinuity result:

Lemma 3.3. Let p ≥ 1 and let f : RnN → R be a quasiconvex function
of class C1 satisfying

|f(ξ)| ≤ L(1 + |ξ|p).
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Then for every u ∈W 1,p(Ω,RN ) the functional
�
Ω
f(Dw) dx is sequentially

lower semicontinuous on the Dirichlet class u+W 1,p
0 (Ω,RN ) endowed with

the weak topology of W 1,p.

Proof. The proof is a simple consequence of the semicontinuity theorem
of [AF1] (see also [AF3]).

The following higher integrability result can be found for example in [Gi];
see also [AF3] and [M].

Theorem 3.4. Let f satisfy (H1)–(H5) and

|f(x, u, ξ + η)− f(x, u, ξ)| ≤ c(1 + |ξ|p−1 + |η|p−1)|η|,
and let u ∈ W 1,p(Ω,RN ) be a minimizer of I. Then there are q0 > p
and C0 > 0, independent of u, such that u ∈ W 1,q0

loc (Ω,RN ) and for every
Br ⊂ Ω,

( �
Br/2

|Du|q0 dx
)1/q0

≤ C0

( �
Br

(1 + |Du|)p dx
)1/p

.

Proof. See Lemma IV.3 of [AF3].

Remark 3.5. We remark that it is possible to get higher integrability
up to the boundary. In fact for Ω = Br, following [Gi], page 112 (see also
[AF3], Remark (IV.4)), if there is a function u0 ∈W 1,q(Rn,RN ) such that

u− u0 ∈W 1,p
0 (B,RN ), q ≥ p,

then there exist q0, C0, p < q0 < q, such that u ∈W 1,q0(B,RN ) and
( �
B

|Du|q0 dx
)1/q0

≤ c0
( �
B

(1 + |Du|p) dx
)1/p

+
( �
B

|Du0|q0 dx
)1/q0

.

Lemma 3.6. Let f satisfy (H1), (H2) and fix x0 ∈ Ω and u0 ∈ RN .
If Br is any ball in Rn and u ∈ W 1,p(Br,RN ), then the functional�
Br
f(x0, u0,Dw(x)) dx is sequentially weakly lower semicontinuous on

u+W 1,p
0 (Br,RN ) and satisfies

�
Br

f(x0, u0,Dw(x)) dx ≥ ν �
Br

|Dw|p dx− c �
Br

(1 + |Du|p) dx.

Proof. The semicontinuity follows from Lemma 3.3, since (H2) implies
quasiconvexity.

Now, let ũ ∈ (u)r + W 1,p
0 (B2r,RN ) be an extension of u such that�

B2r
|Dũ|p dx ≤ c

�
Br
|Du|p dx; if we set, for every w ∈ u+W 1,p

0 (Br,RN ),

w̃ =
{
w in Br,
ũ in B2r \Br,
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then by (H2) and Lemma 2.1(vii),

�
Br

f(x0, u0,Dw) dx+ �
B2r\Br

f(x0, u0,Dũ) dx

= �
B2r

f(x0, u0,Dw̃) dx ≥ �
Br

ν|V (Dw)|2 dx+ �
B2r

f(x0, u0, 0) dx

= �
Br∩{|Dw|>1}

ν|V (Dw)|2 dx+ �
Br∩{|Dw|≤1}

ν|V (Dw)|2 dx

+ �
B2r

f(x0, u0, 0) dx

≥ �
Br∩{|Dw|>1}

ν|Dw|p dx+ �
Br∩{|Dw|≤1}

ν|Dw| dx− c+ �
B2r

f(x0, u0, 0) dx

≥ �
Br

ν|Dw|p dx− c+ �
B2r

f(x0, u0, 0) dx.

The assertion follows easily by (H1).

Lemma 3.7. There exist constants 0 < β1 < β2 < 1 and ck > 0, for
every k > 0, such that if u is a minimizer of I, r < 1, B2r(x0) ⊂ Ω and
(|Du|p)x0,2r ≤ K, then there is a v ∈ u+W 1,p

0 (Br(x0),RN ) such that

(k)
( �
Br/2

|Dv −Du|p dx
)1/p

≤ cKrβ1

and

(kk) �
Br

f(x0, (u)x0,r,Dv(x)) dx

≤ �
Br

f(x0, (u)x0,r,Dv(x) +Dφ(x)) dx+ rβ2 �
Br

|Dφ| dx

for every φ ∈ C1
0 (Br(x0),RN ).

Proof. By Theorem 3.4, there exist q0 > p and c0 such that u ∈W 1,q0
loc (Ω)

and

(3.2)
( �
Br/2

|Du|q0 dx
)1/q0

≤ c0
( �
Br

(1 + |Du|p) dx
)1/p

for any Br ⊂⊂ Ω. By Lemma 3.6 there exists u ∈ u+W 1,p
0 (Br,RN ), solution

of the problem
min{I0

r (w) : w ∈W 1,p
0 (Br,RN )}
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where
I0
r (w) = �

Br

f(x0, (u)r,Dw) dx.

By Remark 3.5 we can pick q1 > 0 such that p < q1 ≤ q0 with

(3.3)
( �
Br

|Du|q1 dx
)1/q1

≤ c0
[( �

Br

(1 + |Du|p) dx
)1/p

+
( �
Br

(1 + |Du|q1) dx
)1/q1]

.

From Lemma 3.6, the minimality of u and the growth assumption we have

�
Br

|Du|p dx ≤ �
Br

f(x0, (u)r,Du) dx+ c �
Br

(1 + |Du|p) dx(3.4)

≤ c �
Br

(1 + |Du|p) dx.

Finally, by (3.2)–(3.4) and Hölder’s inequality we have
( �
Br

|Du|q1 dx
)1/q1

≤ c
( �
Br

(1 + |Du|p) dx
)1/p

(3.5)

≤ c
( �
Br

(1 + |Du|q1) dx
)1/q1

.

Now we estimate the difference I0
r (u,Br)− I0

r (u,Br). We have

I0
r (u,Br)− I0

r (u,Br) = �
Br

[f(x0, (u)r,Du)− f(x0, (u)r,Du)] dx

= �
Br

[f(x0, (u)r,Du)− f(x, u,Du)] dx

+ �
Br

[f(x, u,Du)− f(x0, (u)r,Du)] dx

+ �
Br

[f(x, u,Du)− f(x, u,Du)] dx = I + II + III.

By ω-minimality we get

III ≤ cω(r) �
Br

f(x, u,Du) dx.

Moreover, by the growth condition, (3.4) and (3.2) we obtain

III ≤ cω(r) �
Br

(1 + |Du|p) ≤ c ω(r) �
Br

(1 + |Du|p) dx

≤ c(k)ω(r) ≤ c(k)rσ.
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Now let us estimate I using the hypotheses on γ and the Hölder and Sobolev–
Poincaré inequalities:

I ≤ �
Br

(1 + |Du|p)γ(|x− x0|p + |u− (u)r|p) dx

≤ c
( �
Br

(1 + |Du|q0) dx
)p/q0

×
( �
Br

γ(|x− x0|p + |u− (u)r|p)q0/(q0−p) dx
)1−p/q0

≤ c(k)γ
(
rp
(

1 + �
Br

|Du|p dx
))1−p/q0

≤ c(k)rpσ(1−p/q0) = c(k)rδ1 .

As for I and III, we obtain

II≤c
( �
Br

(1+ |Du|q1) dx
)p/q1( �

Br

γ(|x−x0|p + |u−ur|p)q1/(q1−p) dx
)1−p/q1

≤c(k)γ
(
rp
(

1 + �
Br

|Du|p dx
))1−p/q1

≤ c(k)rpσ(1−p/q1) = c(k)rδ2 .

Then we get
I0
r (u)− I0

r (u) ≤ c(k)rδ3

where δ3 = min{δ1, δ2, σ}.
Now we consider the complete metric space u+W 1,1

0 (Br) endowed with
the metric

d(v, w) = (c(k)rδ3/2)−1 �
Br

|Dv −Dw| dx

and we set

J(w) =
{
I0
r (w) if w ∈ u+W 1,p

0 (Br),
∞ otherwise.

This functional is lower semicontinuous in u+W 1,1
0 (Br) by Lemma 3.6 and

by definition of u it turns out that

inf J = I0
r (u).

Now we apply Ekeland’s theorem to find a function v ∈ u+W 1,1
0 (Br) with

�
Br

|Dv −Dw| dx < c(k)rδ3/2

which minimizes the functional

J̃(w) = J(w) + rδ3/2 �
Br

|Dv −Dw| dx,

that is, satisfies (kk) with β2 = δ3/2 if we pick w = u and we put φ = v−u.
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Applying Theorem 3.4 to the functional J̃(w) we see that there are con-
stants q and c independent of k, r and satisfying p < q < q0 such that
v ∈W 1,q

loc (Br) and
( �
Br/2

|Dv|q dx
)1/q

≤ c
( �
Br

(1 + |Dv|p) dx
)1/p

.

Now, if τ = (q − p)/((q − 1)p) so that 1/p = τ + (1− τ)/q, interpolating we
have
( �
Br/2

|Dv−Du|p dx
)1/p
≤ c
( �
Br/2

|Dv−Du| dx
)τ( �

Br/2

|Dv−Du|q dx
)(1−τ)/q

.

Using the previous inequalities and the assumptions on (Du)r, we get
( �
Br/2

|Dv −Du|p dx
)1/p

≤ c(k)rδ3τ/2

and the assertion follows with β1 = δ3τ/2 < β2.

To complete the proof of Theorem 3.2, we need the following technical
lemma (see [AF4] for the proof):

Lemma 3.8. Let f : Rk → R be a function of class C2 satisfying , for
any ξ ∈ Rk,

|Df(ξ)| ≤ L(1 + |ξ|2)(p−1)/2

with 1 < p < 2. Then for any M > 0 there exists a constant c, depending
only on M , p, L, such that if we set , for any λ > 0 and A ∈ Rk with
|A| ≤M ,

fA,λ(ξ) = λ−2[f(A+ λξ)− f(A)− λDf(A)ξ],

then
|fA,λ(ξ)| ≤ c(p, L,M)(1 + |λξ|2)(p−2)/2|ξ|2.

Due to the fact that we will use comparison functions provided by The-
orem 2.9, we have to modify our excess function for the gradient of the
minimizer u. Namely we define

E(x0, R) = Rδ + �
BR(x0)

|V (Du)− V ((Du)x0,R)|2 dx

with 0 < δ < β1, β1 given by Lemma 3.7.
We can now establish the decay estimate of E(x0, R). The proof we give

is based on an idea contained in [EG], later modified in [AF4] in order to deal
with functionals with no control on the second derivatives (see also [CP]).
We will follow closely the various steps of the proof as presented in [CFM].

Proposition 3.9 (Decay estimate). Fix M > 0. There exists a constant
CM such that for every 0 < τ < 1/8 there is an ε ≡ ε(τ,M) such that if
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|(u)x0,R| ≤M , |(Du)x0,R| ≤M and E(x0, R) < ε then

E(x0, τR) ≤ CMτ δE(x0, R).

Proof. Fix M and τ . We shall determine CM at the end of the proof.

Step 1: blow-up. We argue by contradiction, assuming that there is a
sequence B4Rh(xh) of balls contained in Ω such that |(u)xh,4Rh | ≤ M
|(Du)xh,4Rh | ≤M , limhE(xh, 4Rh) = 0 and

(3.6) E(xh, 4τRh) > CMτ
δE(xh, 4Rh).

Set
λ2
h = E(xh, 4Rh).

Using Lemma 2.1(i)&(iv) and the previous assumptions, we have

λ2
h ≥ c �

B4Rh (xh)

|V (Du)− V ((Du)xh,4Rh)|2 dx

≥ c �
B4Rh (xh)

|Du− (Du)xh,4Rh |2(1 +M2 + |Du|2)(p−2)/2 dx

≥ c �
B4Rh (xh)

|Du−(Du)xh,4Rh |2(1+2M2+|Du−(Du)xh,4Rh |2)(p−2)/2 dx

≥ c �
B4Rh (xh)

(1 + 2M2 + |Du− (Du)xh,4Rh |2)p/2 dx−KM .

Hence �
B4Rh (xh)

|Du− (Du)xh,4Rh |p ≤ c

for a suitable constant c > 0. From the assumptions at the beginning, we
get

�
B4Rh (xh)

|Du|p dx ≤ c′ <∞.

Now, by Lemma 3.7, we choose uh ∈ u+W 1,p
0 (B2Rh(xh),RN ) such that

( �
B2Rh (xh)

|Du−Duh|p dx
)1/p

≤ cRβ1
h

and, for every φ ∈ C1
0 (B2Rh ,RN ),

(3.7) �
B2Rh (xh)

f(xh, (u)2Rh ,Duh(x)) dx

≤ �
B2Rh (xh)

f(xh, (u)2Rh ,Duh(x) +Dφ(x)) dx+ (2Rh)β2 �
B2Rh

|Dφ| dx.
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Hence

|(Duh)xh,Rh | ≤ �
BRh (xh)

|Du−Duh| dx+ |(Du)xh,Rh |

≤
( �
BRh (xh)

|Du−Duh|p dx
)1/p

+ |(Du)xh,Rh | ≤ c(M).

Now we put

Ah = (Duh)xh,Rh , ah = (uh)xh,Rh ,

µ2
h = (4Rh)δ + �

B4Rh (xh)

|V (Duh)− V (Ah)|2 dx;

and rescale the functions uh in each ball BRh(xh) to obtain a sequence of
functions on B1(0):

vh(y) =
1

µhRh
[uh(xh +Rhy)− (uh)xh,Rh −RhAhy].

Clearly, we have

Dvh(y) =
1
µh

[Duh(xh +Rhy)− Ah], (vh)0,1 = 0, (Dvh)0,1 = 0.

Now, let us prove that

λ2
h ≥ cµ2

h, c > 0,

a relation useful later on. To this end observe that by Lemma 2.1(vi),

�
B4Rh (xh)

|V (Du)− V ((Du)xh,4Rh)|2 dx

≥ c �
B4Rh (xh)

|V (Du− (Du)xh,4Rh)|2 dx

= c �
B4Rh (xh)

|V [(Duh −Ah)− (Duh −Du)− ((Du)xh,4Rh − Ah)]|2 dx

≥ c �
B4Rh (xh)

|V (Duh − Ah)|2 dx− c �
B4Rh (xh)

|V (Duh −Du)|2 dx

− c �
B4Rh (xh)

|V ((Du)xh,4Rh − Ah)|2 dx

≥ c
[ �
B4Rh (xh)

|V (Duh)− V (Ah)|2 dx− I1,h − I2,h
]
.
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From this estimate we deduce

µ2
h ≤ c[λ2

h + I1,h + I2,h].

We observe that

I1,h + I2,h ≤ c �
B4Rh (xh)

|Duh −Du|p dx ≤ cRβ1p
h ≤ cRδh ≤ cλ2

h

and so λ2
h ≥ cµ2

h, c > 0.
Now, we prove that

�
B1(0)

|Dvh|p dx ≤ c <∞.

In fact, by Lemma 2.1 we have

�
B1(0)

∣∣∣∣
V (Duh(xh +Rhy))− V (Ah)

µh

∣∣∣∣
2

dy

≥ c 1
µ2
h

�
B1(0)

|Duh(xh+Rhy)−Ah|2(1+ |Duh(xh+Rhy)|2+ |Ah|2)(p−2)/2 dy

= c �
B1(0)

|Dvh|2
(

1 +
∣∣∣∣
Duh(xh +Rhy)− Ah +Ah

µh

∣∣∣∣
2

µ2
h + |Ah|2

)(p−2)/2

dy

≥ c �
B1(0)

|Dvh|2(1 + µ2
h|Dvh|2 + |Ah|2)(p−2)/2 dy

≥ c �
B1(0)

|Dvh|2(kM + |Dvh|2)(p−2)/2 dy ≥ c �
B1(0)

(kM + |Dvh|2)p/2 dy−k′M

and we note that the first integral in the above estimate is dominated by 1.
Passing possibly to a subsequence we may conclude that (Dvh) is bounded
in Lp(B1,RnN ):

(3.8) ‖Dvh‖p ≤ c for any h,

and assume, without loss of generality, that vh → v weakly in W 1,p(B1,RN ),
and, since |Ah| ≤M for all h, that Ah → A.

Step 2: v solves a linear system. From the Euler–Lagrange system for u,
rescaled in each BRh(xh), we deduce that for every φ ∈ C1

0 (B1,RN ) and
x ∈ Ω, a ∈ RN and A ∈ RnN ,

(3.9) �
B1

∂2f

∂ξiα∂ξ
j
β

(x, a,A)Dαv
iDβφ

j dy = 0.
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Consider the functional

G(φ) = �
BRh

f(xh, ah,Duh +Dφ) dx+ cRβ2
h �

BRh

|Dφ| dx.

From Step 1 writing the Euler–Lagrange equation of G and rescaling we get

1
µh

�
B1

〈
∂f

∂ξiα
(xh, ah, Ah + µhDvh)− ∂f

∂ξiα
(xh, ah, Ah),Dαφ

i

〉
dy

+ c
Rβ2
h

µh
�
B1

|Dφ| dy = 0.

By compactness we may suppose that xh → x ∈ Ω and ah → a ∈ RN . Now
we observe that

(3.10) Rβ2
h /µh → 0.

In fact δ < β1 < β2 and

µ2
h ≥ (4Rh)δ, Rh → 0

and so we get (3.10).
Performing the same computations of Step 2 of Proposition 3.4 in [CFM],

we see that

lim
h

1
µh

�
B1

[
∂f

∂ξiα
(Ah + µhDvh)− ∂f

∂ξiα
(Ah)

]
Dαφ

i dy

= �
B1

∂2f

∂ξiα∂ξ
j
β

(A)Dαv
iDβφ

j dy = 0

by (3.4). By Remark 3.1 the coefficients of this linear system satisfy the
inequality

c(ν,M)|λ|2|µ|2 ≤ ∂2f

∂ξiα∂ξ
j
β

(x, a,A)λiλjµαµβ ≤ c(M)|λ|2|µ|2,

hence from Proposition 2.7 we deduce that v is C∞ in B1. Moreover from
the theory of linear systems (see [G], Th. 2.1, Ch. 3) and by (2.5) and (3.3)
we see that if 0 < τ < 1/2 then

�
Bτ

|Dv− (Dv)τ |2 dy ≤ c(M)τ 2 �
B1/2

|Dv− (Dv)1/2|2 dy≤ c(M)τ 2 sup
B1/2

|Dv|2

≤ c(M)τ2
( �
B1

|Dv|p dx
)2/p

≤ C∗(M)τ δ.

Step 3: higher integrability of vh. Set

fh(ξ) := µ−2
h [f(xh, ah, Ah + µhξ)− f(xh, ah, Ah)− µhDf(xh, ah, Ah)ξ].
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Then thanks to Lemma 3.8 and applying Lemma 2.5 to the functions fh(ξ),
we get, by (2.3) and Lemma 2.1(vi),

(3.11) �
B1/2

|V (µhDvh)|2(1+δ) dy

≤ c
( �
B4Rh (xh)

|V (Duh(x)− Ah)|2 dx+ µ2
hR

β2
h

)1+δ

≤ c(M)
( �
B4Rh (xh)

|V (Duh(x))− V (Ah)|2 dx+ µ2
hR

β2
h

)1+δ

≤ c[µ2(1+δ)
h + (µ2

hR
β2
h )(1+δ)].

Arguing as in Step 1 we conclude that the sequence (Dvh) is bounded in
Lp(1+δ)(B1/2,RnN ).

Step 4: upper bound. Fix r < 1/3 and set

Ihr (w) = �
Br

fh(Dw(y)) dy.

Passing to a (not relabelled) subsequence, we may always assume that
limh[Ihr (vh)− Ihr (v)] exists. We claim that

lim
h

[Ihr (vh)− Ihr (v)] ≤ 0.

Choose s < r and take ζ ∈ C∞0 (Br) such that 0 ≤ ζ ≤ 1, ζ = 1 on Bs and
|Dζ| ≤ 2/(r − s). If we set φh = (v − vh)ζ we can go on as in Step 4 of
Proposition 3.4 in [CFM]. Namely we have, rescaling inequality (3.7) above,

Ihr (vh)− Ihr (v)

≤ Ihr (vh + φh)− Ihr (v) + c
Rβ2
h

µ2
h

�
Br

|Dφh| dy

≤ �
Br\Bs

(
1 +

1
µ2
h

|V (µh(v − vh)Dξ + µhζDv + µh(1− ζ)Dvh)|2
)
dy

+ c
Rβ2
h

µ2
h

�
Br

|Dφh| dy

≤ c

µ2
h

�
Br\Bs

(µ2
h + |V (µhDv)|2 + |V (µhDvh)|2

+ max{|Dζ|2, |Dζ|p}|V (µh(v − vh)|2) dy + c
Rβ2
h

µ2
h

�
Br

|Dφh| dy
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≤ c

µ2
h

�
Br\Bs

(
µ2
h + |V (µhDvh)|2 +

1
(r − s)2 |V (µh(v − vh))|2

)
dy

+ c
Rβ2
h

µ2
h

�
Br

|Dφh| dy.

By the Hölder inequality and (3.11) of Step 3, we get

�
E

1
µ2
h

|V (µhDvh)|2 dy ≤ c|E|δ/(1+δ).

From the above estimate we get

Ihr (vh)− Ihr (v) ≤ c(r − s)δ/(1+δ) +
c

µ2
h(r − s)2 �

Br\Bs
|V (µh(v − vh))|2 dy

+ c
Rβ2
h

µ2
h

�
Br

|Dφh| dy.

By (2.2) and taking θ such that 1/2 = θ + (1− θ)/(2(1 + σ)), we obtain,
using Lemma 2.1(ii)&(iii),

�
Br\Bs

|V (µh(v − vh))|2 dy

≤
( �
Br\Bs

|V (µh(v−vh))| dy
)2θ( �

Br\Bs
|V (µh(v−vh))|2(1+σ) dy

)(1−θ)/(1+σ)

≤ cµ2θ
h

( �
B1

|v−vh| dy
)2θ( �

B1/3

|V (µh(v−vh)−µh(v−vh)0,1/3)|2(1+σ)dy

+ |V (µh(v − vh)0,1/3)|2(1+σ)
)(1−θ)/(1+σ)

≤ cµ2θ
h

( �
B1

|v − vh| dy
)2θ[( �

B1

|V (µhDvh)|2 dy
)1−θ

+ µ
2(1−θ)
h

]

≤ cµ2
h

( �
B1

|v − vh| dy
)2θ

,

where we have used the estimate (see (3.11))

(3.12) �
B1

|V (µhDvh)|2 dy ≤ cµ2
h.

Therefore we obtain

�
Br\Bs

|V (µh(v − vh))|2 dy ≤ cµ2
h

( �
B1

|v − vh| dy
)2θ

.
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Moreover

Ihr (vh)− Ihr (v) ≤ c
[
(sup
Br

|Dv|2)(r − s) + (r − s)δ/(1+δ)

+
1

(r − s)2

( �
B1

|v − vh| dy
)2θ

+ c
Rβ2
h

µ2
h

�
Br

|Dφh| dy
]
.

Since vh → v in Lp(B1,RN ), letting first h → ∞ and then s → r we prove
the claim.

Step 5: lower bound. We claim that for t < r < 1/6,

lim sup
h

�
Bt

|V (µh(Dv −Dvh))|2 dy ≤ c lim
h

[Ihr (vh)− Ihr (v)].

Let φ ∈ C1
0 (B1/6) be such that 0 ≤ φ ≤ 1, φ = 1 on B1/8 and |Dφ| ≤ c. Set

ṽh = vhφ, ṽ = vφ.

We may always assume that the exponent δ given by the higher integrability
estimate (3.11) is less than or equal to the exponent σ provided by the
Sobolev–Poincaré inequality (2.2). Therefore by (3.11) and (3.12) we get

�
Rn
|V (µhDṽh)|2(1+δ) dy

≤ c �
B1/6

|V (µhDvh)|2(1+δ) dy + c �
B1/6

|V (µhvh)|2(1+δ) dy

≤ c �
B1/6

|V (µhDvh)|2(1+δ) dy + c �
B1/6

|V (µhvh − µh(vh)0,1/6)|2(1+δ) dy

+ c|V (µh(vh)0,1/6)|2(1+δ)

≤ cµ2(1+δ)
h + c

( �
B1

|V (µhDvh)|2 dy
)1+δ

≤ cµ2(1+δ)
h .

From this estimate and Proposition 2.3 of [CFM], it then follows that

(3.13) µ−1
h [‖V (µhDṽh)‖L2(1+δ)(Rn) + ‖V (µhM(Dṽh))‖L2(1+δ)(Rn)] ≤ c

for all h. Fix ε > 0. From the estimate above it is clear that there exists
η > 0 such that if G ⊂ Rn is a measurable set with meas(G) < η, then

(3.14)
1
µ2
h

[ �
G

|V (µhDṽh)|2 dy + �
G

|V (µhM(Dṽh))|2 dy
]
< ε.

Notice that (3.13) also implies that (ṽh) is bounded in W 1,p(1+δ)(Rn,RN ),
therefore by the continuity of the maximal function in Lq spaces we deduce
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that there exists K > 1 such that, setting Sh = {y ∈ Rn : M(Dṽh)(y) > K},
(3.15) meas(Sh) < η for all h.

Having chosen K, we now apply Lemma 2.9 to find a sequence of func-
tions wh ∈W 1,∞(Rn,RN ) such that

(3.16) wh = ṽh on Rn \ Sh, ‖Dwh‖∞ ≤ cK.
Therefore, passing to a (not relabelled) subsequence we may also suppose
that

wh ⇀ w weak∗ in W 1,∞(Rn,RN ).

Notice that by (3.14), (3.15) and the definition of Sh we have the estimate

meas(Sh)(1 + µ2
hK

2)(p−2)/2K2 ≤ 1
µ2
h

�
Sh

|V (µhM(Dṽh))|2 dy ≤ ε,

which gives

(3.17) meas(Sh) ≤ ε (1 + µ2
hK

2)(2−p)/2

K2 <
2ε
K2

for h large enough. We now turn to estimate the difference

Ihr (vh)− Ihr (v) = [Ihr (ṽh)− Ihr (wh)] + [Ihr (wh)− Ihr (w)](3.18)

+ [Ihr (w)− Ihr (v)] = Rh1 +Rh2 +Rh3 .

By Lemma 3.8 and (3.14)–(3.16) we get

|Rh1 | ≤ �
Sh∩Br

|fh(Dṽh)− fh(Dwh)| dy(3.19)

≤ c

µ2
h

�
Sh

[V (µhDṽh)|2 + V (µhM(Dṽh))|2] dy < cε.

Now choose t < s < r and take a cut-off function ζ as in Step 4. Setting
ψh = (wh − w)ζ we split Rh2 as follows:

Rh2 = [Ihr (wh)− Ihr (w + ψh)]r(3.20)

+ [Ihr (w + ψh)− Ihr (w)− Ihr (ψh)] + Ihr (ψh)

= Rh4 +Rh5 +Rh6 .

Again by Lemma 3.8, (3.16) and Lemma 2.1(i)&(ii) we have

|Rh4 | ≤ �
Br\Bs

|fh(Dwh)− fh(Dw +Dψh)| dy

≤ c

µ2
h

�
Br\Bs

[
|V (µhDwh)|2 + |V (µhDw)|2 +

1
(r−s)2 |V (µh(wh−w))|2

]
dy

≤ c(K)(r − s) +
c

(r − s)2 �
Br\Bs

|wh − w|2 dy.
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Since wh → w uniformly we conclude that

(3.21) lim sup
h
|Rh4 | ≤ c(K)(r − s).

To bound Rh5 we observe that for any A,B ∈ RnN ,

fh(A+B)− fh(A)− fh(B) =
1

�
0

1

�
0

D2fh(sA+ tB) ds dt

and therefore

Rh5 = �
Br

dx

1

�
0

1

�
0

D2f(Ah + sµhDwh + tµhDψh)DwDψh ds dt.

Since D2f(Ah + sµhDwh + tµhDψh) converges to D2f(A) uniformly, and
wh ⇀ w weak∗ in W 1,∞, we easily get

(3.22) lim
h
Rh5 = 0.

Moreover (H2) implies that

Rh6 = �
Br

fh(Dψh) dy ≥ ν

µ2
h

�
Br

|V (µhDψh)|2 dy

≥ ν

µ2
h

�
Bs

|V (µh(Dwh −Dw))|2 dy.

Passing possibly to a subsequence we may suppose that limhR
h
2 also

exists. Therefore by (3.20)–(3.22) we deduce

(3.23) lim
h
Rh2 ≥ lim sup

h

ν

µ2
h

�
Bs

|V (µh(Dwh −Dw))|2 dy − c(K)(r − s).

To deal with Rh3 we use a technique introduced in [AF1]. First we prove
that

(3.24) meas{y ∈ Br : v(y) 6= w(y)} ≤ 3ε/K2.

Set S = {y ∈ Br : v(y) 6= w(y)} and

S̃ = S ∩ {y ∈ Br : v(y) = lim
h
vh(y)}.

Then meas(S) = meas(S̃). We argue by contradiction. If meas(S) > 3ε/K2

then by (3.17), meas(S̃ \ Sh) > ε/K2 for h large enough and by Lemma 2.8
there exists y ∈ Br such that y ∈ S̃ \ Sh for infinitely many h. Passing to
this subsequence, we have

v(y) = lim
h
vh(y) = lim

h
wh(y) = w(y);
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hence y 6∈ S, which is a contradiction. This proves (3.24). Now, since Dv =
Dw a.e. in Br \ S, by (3.7) and (3.24) we get

|Rh3 | ≤ �
Br∩S

|fh(Dw)− fh(Dv)| dy(3.25)

≤ c

µ2
h

�
Br∩S

[|V (µhDv)|2 + |V (µhDw)|2] dy

≤ c(1 +K2)meas(S) ≤ c(1 +K2)ε
K2 ≤ cε,

since K > 1. By this inequality, (3.18), (3.19) and (3.23) we conclude that

lim
h

[Ihr (vh)− Ihr (v)] ≥ lim sup
h

ν

µ2
h

�
Bs

|V (µh(Dwh −Dw))|2 dy(3.26)

− c(K)(r − s)− cε.
By Lemma 2.1(iii) we then have

(3.27)
1
µ2
h

�
Bt

|V (µh(Dv −Dvh))|2 dy

≤ c

µ2
h

�
Bs

|V (µh(Dw −Dwh))|2 dy

+
c

µ2
h

�
Bs∩Sh

|V (µh(Dwh −Dvh))|2 dy

+
c

µ2
h

�
Bs∩Sh

|V (µh(Dv −Dw))|2 dy.

With the same argument used to prove (3.24) we also get

(3.28)
c

µ2
h

�
Bs∩S

|V (µh(Dv −Dw))|2 dy

≤ c

µ2
h

�
Br∩S

[|V (µhDv)|2 + |V (µhDw)|2] dy ≤ cε

and as in (3.19) we get

c

µ2
h

�
Bs∩Sh

|V (µh(Dvh −Dwh))|2 dy

≤ c

µ2
h

�
Sh

[|V (µhDṽh)|2 + |V (µhM(Dṽh))|2] dy ≤ cε.

From this estimate and (3.26)–(3.28) we finally conclude that
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lim sup
h

1
µ2
h

�
Bt

|V (µh(Dv −Dvh))|2 dy ≤ c lim
h

[Ihr (vh)− Ihr (v)]

+ cε+ c(K)(r − s).
The proof of the claim then follows by letting first s→ r and then ε→ 0+.

Step 6: conclusion of the proof. From the previous two steps we see that
for any 0 < τ < 1/8,

lim
h

1
µ2
h

�
Bτ

|V (µh(Dv −Dvh))|2 dy = 0.

Now,

lim
h

E(xh, 4τRh)
λ2
h

≤ c lim
h

E(xh, 4τRh)
µ2
h

= c lim
h

1
µ2
h

�
B4τRh (xh)

|V (Du)− V ((Du)xh,4τRh)|2 dx+ c lim
h

τ δRδh
µ2
h

≤ lim
h

c

µ2
h

�
B4τRh (xh)

(|V (Du−Duh)|2 + |V (Duh − (Duh)xh,4τRh)|2

+ |V ((Du)xh,4τRh − (Duh)xh,4τRh)|2) dx+ c lim
h

τ δRδh
µ2
h

≤ lim
h

c

µ2
h

( �
Bτ

|V (µh(Dvh − (Dvh)τ ))|2 dy

+ �
BτRh (xh)

|Du−Duh|p dx
)

+ c lim
h

τ δRδh
µ2
h

≤ lim
h

c

µ2
h

�
Bτ

(|V (µh(Dvh −Dv))|2 + |V (µh(Dv − (Dv)τ ))|2

+ |V (µh((Dv)τ − (Dvh)τ ))|2) dy + c lim
h

τ δRδh
µ2
h

≤ C∗(M)τ δ,

and since Dvh ⇀ Dv weakly in Lp(B1,RnN ) we deduce that

lim
h

E(xh, 4τRh)
λ2
h

≤ C∗(M)τ δ,

which contradicts (3.6) if we choose CM = 2C∗(M).

Proof of Theorem 3.2. With the same techniques used in [CFM] (see
also [FH]) we obtain the assertion.
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