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Inequalities for radial Blaschke–Minkowski homomorphisms

by Bo Wei (Yichang), Weidong Wang (Yichang) and
Fenghong Lu (Shanghai)

Abstract. We establish Lp Brunn–Minkowski type inequalities for radial Blaschke–
Minkowski homomorphisms, which in special cases yield some new results for intersection
bodies. Moreover, we obtain two monotonicity inequalities for radial Blaschke–Minkowski
homomorphisms.

1. Introduction. The setting for this paper is n-dimensional Euclidean
space Rn (n ≥ 3). Let Sn denote the set of star bodies (i.e., compact sets,
star shaped with respect to the origin) in Rn. We reserve the letter u for
unit vectors, and B for the unit ball centered at the origin. The surface of
B is Sn−1. We shall use V (K) for the n-dimensional volume of the body K.

In 1988, the notion of intersection body was explicitly defined by Lutwak
in the important paper [Lu2]. It is a central notion in dual Brunn–Minkowski
theory. During the past 30 years, significant progress has been made in the
understanding of the intersection body operator and the class of intersection
bodies by Gardner, Grinberg, Goodey, Koldobsky, Ludwig, Lutwak, Zhang
and others (see e.g. [G1, G2, GKS, GLW, H, K1, K2, LZ, L3, Lu1, Zh]).

In recent years real valued valuations have received much attention in a
series of articles by Ludwig [L1, L2, L3]. She proved that the intersection
operator is the only nontrivial GL(n) (the group of general linear trans-
formations) contravariant radial valuation. Radial Blaschke–Minkowski ho-
momorphisms were introduced by Schuster [S1], and further investigated in
[ABS, Liu, S2, W, WLH, Z1, Z2, Z3, ZC]. The intersection operator is an
example of a radial Blaschke–Minkowski homomorphism.

A map Ψ : Sn → Sn is called a radial Blaschke–Minkowski homomor-
phism if it satisfies the following conditions:

(1) Ψ is continuous.
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(2) Ψ(K) is radial Blaschke–Minkowski additive, i.e., Ψ(K +̌L) = ΨK +̃
ΨL for all K,L ∈ Sn.

(3) Ψ intertwines rotations, i.e., Ψ(ϑK) = ϑΨK for all K ∈ Sn and all
ϑ ∈ SO(n).

Here, +̌ denotes the radial Blaschke sum, and +̃ denotes the radial
Minkowski sum. SO(n) is the group of rotations in n-dimensional space.

In [S1], Schuster established the following Brunn–Minkowski inequality
for radial Blaschke–Minkowski homomorphisms of star bodies.

Theorem 1.A. If K,L ∈ Sn, then

V (Ψ(K +̃ L))
1

n(n−1) ≤ V (ΨK)
1

n(n−1) + V (ΨL)
1

n(n−1) ,(1.1)

with equality if and only if K and L are dilates of each other.

In fact, associated with the dual quermassintegrals W̃i(K) of K ∈ Sn,
Schuster established a more general version of the Brunn–Minkowski in-
equality for radial Blaschke–Minkowski homomorphisms: If K,L ∈ Sn and
integers i, j satisfy 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 2, then

(1.2) W̃i(Ψj(K +̃ L))
1

(n−i)(n−j−1)

≤ W̃i(ΨjK)
1

(n−i)(n−j−1) + W̃i(ΨjL)
1

(n−i)(n−j−1) ,

with equality if and only if K and L are dilates of each other. Here Ψj are
the mixed radial Blaschke–Minkowski homomorphisms which are defined as
follows [S1]:

Theorem 1.B. There is a continuous operator

Ψ : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn

symmetric in its arguments such that, for K1, . . . ,Km ∈ Sn and λ1, . . . , λm
≥ 0,

(1.3) Ψ(λ1K1 +̃ · · · +̃ λmKm) =
∑∼

i1,...,in−1

λi1 · · ·λin−1Ψ(Ki1 , . . . ,Kin−1),

where the sum is with respect to radial Minkowski addition.

Clearly, Theorem 1.B generalizes the notion of radial Blaschke–Minkow-
ski homomorphisms and we will call the map Ψ : Sn × · · · × Sn → Sn
the mixed radial Blaschke–Minkowski homomorphism induced by Ψ . For
K,L ∈ Sn, let Ψi(K,L) denote the mixed radial Blaschke–Minkowski ho-
momorphism Ψi(K, . . . ,K, L, . . . , L), with i copies of L and n− i− 1 copies
of K. We write Ψi(K) for Ψi(K, . . . ,K,B, . . . , B) and call Ψi(K) the radial
Blaschke–Minkowski homomorphism of order i.
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The main goal of this paper is to prove Lp Brunn–Minkowski type in-
equalities for radial Blaschke–Minkowski homomorphisms. Associated with
Lp harmonic radial linear combination, we obtain

Theorem 1.1. If K,L ∈ Sn, and p ≥ 1, then

V (Ψ(K +̂p L))
− p

n(n−1) ≥ V (ΨK)
− p

n(n−1) + V (ΨL)
− p

n(n−1) .(1.4)

with equality if and only if K and L are dilates of each other, where +̂p is
the Lp harmonic radial sum.

The next theorem shows that radial Blaschke–Minkowski homomorphisms
satisfy the Lp Brunn–Minkowski inequality for the Lp radial Blaschke linear
combination.

Theorem 1.2. If K,L ∈ Sn and 1 ≤ p < n, then

V (Ψ(K +̌p L))
n−p

n(n−1) ≤ V (ΨK)
n−p

n(n−1) + V (ΨL)
n−p

n(n−1) .(1.5)

with equality if and only if K and L are dilates of each other, where +̌p is
the Lp radial Blaschke sum.

Since the intersection operator I is an example of a radial Blaschke–
Minkowski homomorphism, Theorems 1.1 and 1.2 provide the following new
dual Lp Brunn–Minkowski inequalities for the volume of intersection bodies:

Corollary 1.3. If K,L ∈ Sn and p ≥ 1, then

V (I(K +̂p L))
− p

n(n−1) ≥ V (IK)
− p

n(n−1) + V (IL)
− p

n(n−1) ,(1.6)

with equality if and only if K and L are dilates of each other.

Corollary 1.4. If K,L ∈ Sn and 1 ≤ p < n, then

V (I(K +̌p L))
n−p

n(n−1) ≤ V (IK)
n−p

n(n−1) + V (IL)
n−p

n(n−1) ,(1.7)

with equality if and only if K and L are dilates of each other.

In fact, more general Lp Brunn–Minkowski type inequalities than Theo-
rems 1.1 and 1.2 are established in Section 3. In Section 4, we establish two
monotonicity inequalities for mixed radial Blaschke–Minkowski homomor-
phisms.

2. Notation and background material

2.1. Basic notions. We recall some preliminary properties of star bod-
ies and convex bodies; for general references consult the books of Gardner
[G3] and Schneider [Sc].

For a compact subset K in Rn which is star shaped with respect to the
origin, its radial function ρ(K, ·) : Sn−1 → R is defined by

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}.(2.1)
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If ρ(K, ·) is positive and continuous, then K will be called a star body. Let
δ denote the radial Hausdorff metric, i.e., if K,L ∈ Sn, then δ(K,L) =
|ρ(K, ·)− ρ(L, ·)|∞.

For K,L ∈ Sn and λ1, λ2 ≥ 0 (not both 0), the radial Minkowski linear
combination λ1K +̃ λ2L is the star body defined by

ρ(λ1K +̃ λ2L, u) = λ1ρ(K,u) + λ2ρ(L, u).(2.2)

For real p ≥ 1, K,L ∈ Sn and λ1, λ2 ≥ 0 (not both 0), Firey [F] defined the
Lp harmonic radial linear combination, λ1 ·K +̂p λ2 · L, of K and L by

ρ(λ1 ·K +̂p λ2 · L, u)−p = λ1ρ(K,u)−p + λ2ρ(L, u)−p.(2.3)

Note that the restriction to p ≥ 1 is necessary.

For K,L ∈ Sn and λ1, λ2 ≥ 0 (not both 0), Lutwak [Lu2] defined the
radial Blaschke linear combination, λ1 ∗K +̌ λ2 ∗ L, of K and L by

ρ(λ1 ∗K +̌ λ2 ∗ L, u)n−1 = λ1ρ(K,u)n−1 + λ2ρ(L, u)n−1.(2.4)

Here, we extend the radial Blaschke linear combination to the Lp case:
If K,L ∈ Sn, λ1, λ2 ≥ 0 (not both 0) and p ≥ 1, we introduce the Lp radial
Blaschke linear combination, λ1 ◦K +̌p λ2 ◦L, as the star body whose radial
function is given by

ρ(λ1 ◦K +̌p λ2 ◦ L, u)n−p = λ1ρ(K,u)n−p + λ2ρ(L, u)n−p.(2.5)

In the special case p = 1, (2.5) is just the classical radial Blaschke linear
combination.

2.2. Dual mixed volumes. If K1, . . . ,Km ∈ Sn and λ1, . . . , λm ≥ 0
(not all 0), the volume of λ1K1 +̃ · · · +̃λmKm is a homogeneous polynomial
of degree n:

V (λ1K1 +̃ · · · +̃ λmKm) =
∑
i1,...,in

Ṽ (Ki1 , . . . ,Kin)λi1 · · ·λin .(2.6)

The coefficients Ṽ (Ki1 , . . . ,Kin) are called the dual mixed volumes of Ki1 ,
. . . ,Kin . They are continuous, non-negative, symmetric and monotone (with
respect to set inclusion). For simplicity, let dS(u) = dSn−1 be the spherical
Lebesgue measure of Sn−1. We have the following integral representation of
the dual mixed volumes:

Ṽ (K1, . . . ,Kn) =
1

n

�

Sn−1

ρ(K1, u) · · · ρ(Kn, u) dS(u).(2.7)

For K,L ∈ Sn and i = 0, 1, . . . , n − 1, we write W̃i(K,L) for Ṽ (K, . . . ,K,
B, . . . , B, L), where K appears n − i − 1 times, B appears i times and L

appears once. The dual mixed volume W̃i(K,K) will be written as W̃i(K)
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and it is called the dual quermassintegral of K. From (2.6), it follows that

W̃i(K,L) =
1

n

�

Sn−1

ρ(K,u)n−i−1ρ(L, u) dS(u).(2.8)

We will use the following dual Minkowski inequality [Lu1]: If integers i satisfy
0 ≤ i ≤ n− 2, then

W̃i(K,L)n−i ≤ W̃i(K)n−i−1W̃i(L),(2.9)

with equality if and only if K and L are dilates of each other.

2.3. Intersection body. For K ∈ Sn, there is a unique star body IK
whose radial function satisfies, for u ∈ Sn−1,

ρ(IK,u) = v(K ∩ u⊥),(2.10)

where v is the (n−1)-dimensional volume and u⊥ is the (n−1)-dimensional
subspace of Rn orthogonal to u. It is called the intersection body of K (see
[Lu2]).

By using the polar coordinate formula for volume, it is trivial to verify
that

ρ(IK,u) =
1

n− 1

�

Sn−1∩u⊥
ρ(K,u)n−1 dS(u).(2.11)

An important generalization of this notion is the mixed intersection body
(see [LZ]). The mixed intersection body of the bodies K1, . . . ,Kn−1 ∈ Sn,
I(K1, . . . ,Kn−1), is defined by

ρ(I(K1, . . . ,Kn−1), u) = ṽ(K1 ∩ u⊥, . . . ,Kn−1 ∩ u⊥),(2.12)

where ṽ denotes the (n− 1)-dimensional dual mixed volume. If K1 = · · · =
Kn−i−1 = K,Kn−i = · · · = Kn−1 = L, i = 0, 1, . . . , n− 1, then

I(K, . . . ,K︸ ︷︷ ︸
n−i−1

, L, . . . , L︸ ︷︷ ︸
i

)

is usually written as Ii(K,L).

3. Lp Brunn–Minkowski type inequalities for radial Blaschke–
Minkowski homomorphisms. In this section we will prove Theorems 1.1
and 1.2. The following lemmas are needed.

Lemma 3.1 ([S1]). Let Ψ : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn be a mixed radial Bla-

schke–Minkowski homomorphism. If K,L ∈ Sn integers i, j satisfy 0 ≤ i ≤
n− 2 and 0 ≤ j ≤ n− 2, then

W̃i(K,ΨjL) = W̃j(L, ΨiK).(3.1)
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Note that the image of the unit ball under a radial Blaschke–Minkowski
homomorphism Ψ is again a ball. Let rΨ denote the radius of this ball,
j = n− 2 and L = B. From (3.1), we get

W̃n−1(Ψi(K)) = rΨW̃i+1(K).(3.2)

Lemma 3.2. Let K,L,Q ∈ Sn and i is an integer with 0 ≤ i ≤ n− 2. If
p ≥ 1, then

W̃i(K +̂p L,Q)−
p

n−i−1 ≥ W̃i(K,Q)−
p

n−i−1 + W̃i(L,Q)−
p

n−i−1 ,(3.3)

with equality if and only if K and L are dilates of each other.

Proof. From (2.8), (2.3) and the Minkowski integral inequality with the
condition − p

n−i−1 < 0, it follows that

W̃i(K +̂p L,Q)−
p

n−i−1 =

[
1

n

�

Sn−1

ρ(K +̂p L, u)n−i−1ρ(Q, u)du

]− p
n−i−1

=

{
1

n

�

Sn−1

[ρ(K,u)−p + ρ(L, u)−p]
−n−i−1

p ρ(Q, u)du

}− p
n−i−1

≥
[

1

n

�

Sn−1

ρ(K,u)n−i−1ρ(Q, u)du

]− p
n−i−1

+

[
1

n

�

Sn−1

ρ(L, u)n−i−1ρ(Q, u)du

]− p
n−i−1

= W̃i(K,Q)−
p

n−i−1 + W̃i(L,Q)−
p

n−i−1 .

Equality holds in (3.3) if and only if the functions ρ(K, ·) and ρ(L, ·) are
positively proportional, ρ(K, ·) = λρ(L, ·). Hence, equality holds if and only
if K and L are dilates of each other.

A generalization of Theorem 1.1 is

Theorem 3.3. Let Ψ : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn be a mixed radial Blaschke–

Minkowski homomorphism. If K,L ∈ Sn and integers i, j satisfy 0 ≤ i, j ≤
n− 2 and p ≥ 1, then

(3.4) W̃i(Ψj(K +̂p L))
− p

(n−i)(n−j−1)

≥ W̃i(ΨjK)
− p

(n−i)(n−j−1) + W̃i(ΨjL)
− p

(n−i)(n−j−1) ,

with equality if and only if K and L are dilates of each other.

Proof. Suppose N,K,L are star bodies. Let p ≥ 1. By (3.1), (3.3) and
(3.1) again and (2.9), we have
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W̃i(N,Ψj(K +̂p L))
− p

n−j−1 = W̃j(K +̂p L, ΨiN)
− p

n−j−1

≥ W̃j(K,ΨiN)
− p

n−j−1 + W̃j(L, ΨiN)
− p

n−j−1(3.5)

= W̃i(N,ΨjK)
− p

n−j−1 + W̃i(N,ΨjL)
− p

n−j−1

≥ W̃i(N)
− (n−i−1)p

(n−i)(n−j−1) [W̃i(ΨjK)
− p

(n−i)(n−j−1)(3.6)

+ W̃i(ΨjL)
− p

(n−i)(n−j−1) ].

Set N = Ψj(K +̂pL), note that W̃i(N,N) = W̃i(N) and rearrange the above
inequality to obtain (3.4).

By the equality conditions of (3.5) and (3.6), equality in (3.4) holds if
and only if K and L are dilates of each other.

Obviously, taking i, j = 0 in Theorem 3.3, we obtain Theorem 1.1.

Lemma 3.4. Let K,L,Q ∈ Sn and 0 ≤ i ≤ n− 2. If i+ 1 ≤ p < n, then

W̃i(K +̌p L,Q)
n−p

n−i−1 ≤ W̃i(K,Q)
n−p

n−i−1 + W̃i(L,Q)
n−p

n−i−1 ,(3.7)

with equality if and only if K and L are dilates of each other.

Proof. From (2.8), (2.5) and the Minkowski integral inequality with
n−i−1
n−p ≥ 1 (i.e., i+ 1 ≤ p < n), it follows that

W̃i(K +̌p L,Q)
n−p

n−i−1 =

[
1

n

�

Sn−1

ρ(K +̌n−p L, u)n−i−1ρ(Q, u)du

] n−p
n−i−1

=

{
1

n

�

Sn−1

[ρ(K,u)n−p + ρ(L, u)n−p]
n−i−1
n−p ρ(Q, u)du

} n−p
n−i−1

≤
[

1

n

�

Sn−1

ρ(K,u)n−i−1ρ(Q, u)du

] n−p
n−i−1

+

[
1

n

�

Sn−1

ρ(L, u)n−i−1ρ(Q, u)du

] n−p
n−i−1

= W̃i(K,Q)
n−p

n−i−1 + W̃i(L,Q)
n−p

n−i−1 ,

with equality if and only if K and L are dilates of each other. The above
inequality gives (3.7).

A generalization of Theorem 1.2 is

Theorem 3.5. Let Ψ : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn be a mixed radial Blaschke–

Minkowski homomorphism. If K,L ∈ Sn and integers i, j satisfy 0 ≤ i, j ≤
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n− 2 and j + 1 ≤ p < n, then

(3.8) W̃i(Ψj(K +̌p L))
n−p

(n−i)(n−j−1)

≤ W̃i(ΨjK)
n−p

(n−i)(n−j−1) + W̃i(ΨjL)
n−p

(n−i)(n−j−1) ,

with equality if and only if K and L are dilates of each other.

Proof. Suppose N,K,L are star bodies. Let j + 1 ≤ p < n. Using (3.1),
(3.7), (3.1) again and (2.9), we have

W̃i(N,Ψj(K +̌n−p L))
n−p

n−j−1 = W̃j(K +̌p L, ΨiN)
n−p

n−j−1

≤ W̃j(K,ΨiN)
n−p

n−j−1 + W̃j(L, ΨiN)
n−p

n−j−1

= W̃i(N,ΨjK)
n−p

n−j−1 + W̃i(N,ΨjL)
n−p

n−j−1

≤ W̃i(N)
(n−i−1)(n−p)
(n−i)(n−j−1) [W̃i(ΨjK)

n−p
(n−i)(n−j−1)

+ W̃i(ΨjL)
n−p

(n−i)(n−j−1) ].

Set N = Ψj(K +̌p L), note that W̃i(N,N) = W̃i(N) and rearrange to
obtain

W̃i(Ψj(K +̌p L))
n−p

(n−i)(n−j−1) ≤ W̃i(ΨjK)
n−p

(n−i)(n−j−1) + W̃i(ΨjL)
n−p

(n−i)(n−j−1) ,

with equality if and only if K and L are dilates of each other.

Obviously, taking i, j = 0 in Theorem 3.3, we obtain Theorem 1.2.

The following lemma is the representation for radial Blaschke–Minkowski
homomorphisms:

Lemma 3.6 ([S1]). A map Ψ : Sn → Sn is a radial Blaschke–Minkowski
homomorphism if and only if there is a measure µ ∈ M+(Sn−1, ê) such
that

ρ(ΨK, ·) = ρn−1(K, ·) ∗ µ,(3.9)

where M+(Sn−1, ê) denotes the set of nonnegative zonal measures on Sn−1.

From Lemma 3.6 and (2.11), we can see that the intersection body opera-
tor is a radial Blaschke–Minkowski homomorphism. The generating measure
of the intersection body operator I is the invariant measure µSn−2

o
which is

concentrated on Sn−2o := Sn−1 ∩ ê⊥, i.e.,

ρ(IK, ·) = ρn−1(K, ·) ∗ µSn−2
o

.(3.10)

Thus, taking i, j = 0 and changing Ψ to the intersection body operator I in
Theorems 3.3 and 3.5 we obtain the dual Lp Brunn–Minkowski inequalities
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for the volume of intersection bodies, presented as Corollaries 1.3 and 1.4 in
the introduction.

4. Monotonicity inequalities. In the following we establish the mono-
tonicity inequalities for mixed radial Blaschke–Minkowski homomorphisms
of star bodies.

Theorem 4.1. If K,L ∈ Sn are such that W̃i(K,Q) ≤ W̃i(L,Q) for
i = 0, 1, . . . , n− 2, then

W̃i(ΨiK) ≤ W̃i(ΨiL),(4.1)

with equality if and only if ΨiK = ΨiL.

Proof. Since K,L ∈ Sn and W̃i(K,Q) ≤ W̃i(L,Q), taking Q = Ψi(ΨiK),
and using (3.1), we get

W̃i(K,Ψi(ΨiK)) = W̃i(ΨiK) ≤ W̃i(ΨiK,ΨiL).(4.2)

Now by using the dual Minkowski inequality (2.9) with the equality condi-
tion, we immediately get the desired result.

Theorem 4.2. If K ∈ Sn and i = 0, 1, . . . , n− 2, then

W̃n−i−1(ΨiK)

W̃n−i−1(K)i
≤ W̃n−i−1(Ψ

2
i K)

W̃n−i−1(ΨiK)i
,(4.3)

with equality if and only if K and Ψ2
i K are dilates of each other.

Proof. Let Q,K ∈ Sn. By (3.1) and the dual Minkowski inequality (2.9),
it follows that

W̃n−i−1(Q,ΨiK)i+1 = W̃n−i−1(K,ΨiQ)i+1(4.4)

≤ W̃n−i−1(K)iW̃n−i−1(ΨiQ),

with equality if and only if K and ΨiQ are dilates of each other. Taking
Q = ΨiK, we obtain

W̃n−i−1(ΨiK)i+1 ≤ W̃n−i−1(K)iW̃n−i−1(Ψ
2
i K),(4.5)

i.e.,

W̃n−i−1(ΨiK)

W̃n−i−1(K)i
≤ W̃n−i−1(Ψ

2
i K)

W̃n−i−1(ΨiK)i
,

with equality if and only if K and Ψ2
i K are dilates of each other.
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