A remark on semi- ∇ -flat functions

by WOJCIECH KOZŁOWSKI (Łódź)

Abstract. We give a pointwise characterization of semi- ∇ -flat functions on an affine manifold (M, ∇) .

1. Introduction. Let (M, ∇) be an affine manifold with M connected. In [1] we introduced the concept of ∇ -flat and pointwise- ∇ -flat functions on (M, ∇) as follows: Let f be a smooth function on M. Then f is called ∇ -flat if $\nabla^k f = 0$ for some $k \ge 0$, and pointwise- ∇ -flat if for each $x \in M$ there exists $k = k(x) \ge 0$ such that $(\nabla^k f)(x) = 0$. Clearly, $\nabla^k = \nabla \circ \cdots \circ \nabla$ (k times).

Obviously, each ∇ -flat function is pointwise- ∇ -flat. Conversely (Thm. 2.1 in [1]) we have

THEOREM 1. If (M, ∇) is real-analytic then any smooth pointwise- ∇ -flat function on (M, ∇) is real-analytic and ∇ -flat.

In this short note, we introduce a concept of semi- ∇ -flat functions and pointwise-semi- ∇ -flat functions, which slightly generalizes the concept of ∇ flat and pointwise- ∇ -flat functions. The main result (Thm. 2 in the next section), whose idea was suggested by Professor Michael Eastwood, asserts that a smooth function f is semi- ∇ -flat iff f is pointwise-semi- ∇ -flat. Now we define the objects we are interested in.

Let f be a smooth function on M. For any integer $k \ge 0$ and $p \in M$ let $b_p^k = b_p^{k,f}$ be defined by $b_p^k(v) = \nabla^k f(v, \ldots, v), v \in T_p M$. Define the map $b^k \in C^{\infty}(TM)$ by putting $b^k(v) = b_p^k(v)$ if $v \in T_p$. The function f is called semi- ∇ -flat if there exists k > 0 such that $b^k = 0$, and pointwise-semi- ∇ -flat if for each $p \in M$ there exists k = k(p) > 0 such that $b_p^k = 0$. Clearly, each semi- ∇ -flat function is pointwise-semi- ∇ -flat.

²⁰⁰⁰ Mathematics Subject Classification: 53A15, 53C05.

Key words and phrases: affine manifold, ∇ -flat function.

W. Kozłowski

2. The main result. Before we formulate and prove the main result, we introduce some tools. Let (M, ∇) be a smooth affine manifold with Mconnected. Take $p \in M$, and let G be an open and star-shaped neighbourhood of zero in T_pM such that the exponential mapping exp at p is defined on G. For any $v \in G$ let $\varphi_v : I \to M$ denote the geodesic curve such that $\varphi_v(I) \subset \exp(G), \ \varphi_v(0) = p$ and $\dot{\varphi}_v(0) = v$. In the proof of Theorem 2 we will need the following

PROPOSITION 1. Let $k \ge 0$. Suppose that f is a smooth function on M. If $\varphi_v^* \nabla^k f = 0$ for each $v \in G$, then $f \circ \exp$ is a polynomial function on G of degree < k.

LEMMA 1. Suppose that f is a pointwise-semi- ∇ -flat function on M. If $\varphi : I \to M$ is a geodesic then there exists $k \ge 0$ such that $\varphi^* \nabla^k f = 0$. Moreover, if $t \in I$ and $b^l = 0$ in some neighbourhood of $\varphi(t)$ then $k \le l$.

Proposition 1 is proved in [1]. To prove Lemma 1 observe the following: Let D be the canonical connection on I. Since $\varphi : (I, D) \to (M, \nabla)$ is an affine map,

(*)
$$\frac{d^m(f \circ \varphi)}{dt^m} = \varphi^* \nabla^m f$$

for any $m \ge 0$. Lemma 1 is now a direct consequence of (\star) and the following very well known fact: Suppose $h: I \to \mathbb{R}$ is smooth. If for each $s \in I$ there exists $k = k(s) \ge 0$ such that $(d^k h/dt^k)(s) = 0$ then h is a polynomial function.

THEOREM 2. If (M, ∇) is an affine manifold with M connected then any smooth pointwise-semi- ∇ -flat function on (M, ∇) is semi- ∇ -flat.

REMARK. In contrast to Theorem 1 we do not require analyticity of (M, ∇) .

Proof of Theorem 2. Let f be pointwise-semi- ∇ -flat. For any $k \geq 0$ define the open subset V_k as follows; $p \in V_k$ if $b^k = 0$ on some open neighbourhood of p. Put $V = \bigcup_{k=0}^{\infty} V_k$. Clearly, $V_l \subset V_{l+1}$, V is open, and using the Baire property one easily checks that V is dense in M.

Let $r = \min\{k : V_k \neq \emptyset\}$. We will show that $b^r = 0$ on M. Since M is connected it suffices to show that V_r is closed.

Take any $q \in \overline{V}_r$. Let W be a small neighbourhood of q such that any $p \in W$ has a normal neighbourhood which contains W. Take $l \geq 0$ such that $V_l \cap W \neq \emptyset$. Let $p \in V_l \cap W$. Let G be as in Proposition 1, $\Omega = \exp(G)$ and $W \subset \Omega$. By Lemma 1 and Proposition 1, $P = f \circ \exp : G \to \mathbb{R}$ is a polynomial function of degree < l. Clearly, $\Omega \cap V_r \neq \emptyset$ and also by Lemma 1, for each geodesic $\varphi: I \to \Omega$ such that $\varphi(I) \cap V_r \neq \emptyset$, we have $\varphi^* \nabla^r f = 0$.

Let $U = \exp^{-1}(\Omega \cap V_r)$. By (\star) , for any $v \in U$ the map $t \mapsto P(tv)$ is a polynomial function (in one variable) of degree < r. Since U is non-empty and open, deg P < r.

For any $v \in G$ let φ_v be the geodesic defined by $\varphi_v(t) = \exp(tv)$. Using (\star) again we see that $\varphi_v^{\star} \nabla^r f = 0$, so $b_p^r = 0$. Since $p \in W \cap V_l$ was taken arbitrary, $W \cap V_l \subset W \cap V_r$. Since $V \cap \Omega$ is dense in Ω , $b^r = 0$ on Ω . Thus $\Omega \subset V_r$, so V_r is closed.

Acknowledgements. The author would like to thank Professor Paweł Walczak for a helpful discussion.

References

[1] W. Kozłowski, ∇ -flat functions on manifolds, Ann. Polon. Math. 84 (2004), 177–180.

Institute of Mathematics Polish Academy of Sciences Łódź Branch Banacha 22 90-238 Łódź, Poland E-mail: wojciech@math.uni.lodz.pl

Received 12.12.2005

(1649)