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Normality and value sharingwith a linear di�erential polynomialby Indrajit Lahiri (Kalyani) and Shyamali Dewan (Kolkata)
Abstrat. We prove some normality riteria for a family of meromorphi funtionsand as an appliation we prove a value distribution theorem for a di�erential polynomial.1. Introdution, de�nitions and results. Let C be the open omplexplane and D ⊂ C be a domain. A family F of meromorphi funtions de-�ned in D is said to be normal, in the sense of Montel, if for every sequene

{fn} ⊂ F there exists a subsequene {fnj
} suh that {fnj

} onverges spher-ially and uniformly on ompat subsets of D to a meromorphi funtionor ∞.
F is said to be normal at a point z0 ∈ D if there exists a neighbourhoodof z0 in whih F is normal. It is well known that F is normal in D if and onlyif it is normal at every point of D.Let f and g be two meromorphi funtions de�ned in D. For a ∈ C∪{∞}we say that f and g share the value a IM (ignoring multipliity) if the a-points of f and g oinide in loations only, not neessarily in multipliities.For a meromorphi funtion f we denote by f# the spherial derivativeof f , given by

f#(z) =
|f ′(z)|

1 + |f(z)|2
.Also, by ∆ we denote the unit dis |z| < 1.In 1992 W. Shwik [15℄ �rst established a onnetion between the nor-mality and value sharing. He proved the following theorem.Theorem A ([15℄). Let F be a family of meromorphi funtions in adomain D ⊂ C and a1, a2, a3 be distint omplex numbers. If for every f ∈ F,

f and f ′ share a1, a2, a3 IM in D then F is normal in D.2000 Mathematis Subjet Classi�ation: 30D45, 30D35.Key words and phrases: meromorphi funtion, di�erential polynomial, normality.[151℄



152 I. Lahiri and S. DewanAfter the work of Shwik [15℄ it has beome a popular problem to in-vestigate the relation between normality and sharing values.In 1999 Y. Xu [16℄ proved the following result.Theorem B ([16℄). Let F be a family of holomorphi funtions in adomain D ⊂ C and b be a nonzero omplex number. If f and f ′ share 0, bIM in D for every f ∈ F then F is normal in D.In 2000 X. Pang and L. Zalman [12℄ proved the following result, whihimproves Theorems A and B.Theorem C ([12℄). Let F be a family of meromorphi funtions in adomain D ⊂ C and a1, a2 be distint omplex numbers. If for every f ∈ F,
f and f ′ share a1, a2 IM in D then F is normal in D.At this stage two natural questions may be asked:1. What would be if f and f ′ share a single value?2. What would be if f ′ is replaed by f (k)?For Question 1 the following result of W. C. Lin and H. X. Yi [11℄ maybe noted.Theorem D ([11℄). Let F be a family of meromorphi funtions in ∆.If there exist omplex numbers a and b (b 6= 0 and a/b not a positive integer)suh that for every f ∈ F, f and f ′ share a IM in ∆ and |f(z) − a| ≥ εwhenever f ′(z) = b, where ε is a positive number , then F is normal in ∆.For Question 2, H. Chen and M. Fang [3℄ proved the following result.Theorem E ([3℄). Let F be a family of meromorphi funtions in adomain D ⊂ C, k ≥ 2 be an integer and a, b, c be omplex numbers suh that
b 6= a. If for eah f ∈ F, f and f (k) share a, b IM in D and zeros of f − chave multipliity at least 1 + k then F is normal in D.The following result of M. Fang and L. Zalman [5℄ improved Theorem E.Theorem F ([5℄). Let F be a family of meromorphi funtions in adomain D ⊂ C, k ≥ 2 be an integer and a, b, c be omplex numbers suh that
b 6= a. If for eah f ∈ F, f and f (k) share a, b IM in D and zeros of f − chave multipliity at least k then F is normal in D.Theorem F is a onsequene of the following theorem, also due to Fangand Zalman [5℄.Theorem G ([5℄). Let F be a family of meromorphi funtions in adomain D ⊂ C, k be a positive integer and a, b, c, d be omplex numbers suhthat b 6= a, 0 and c 6= 0. If , for eah f ∈ F, all zeros of f−d have multipliityat least k, f and f (k) − a share 0 IM and f(z) = c whenever f (k)(z) = b,then F is normal in D for k ≥ 2, and for k = 1 so long as a 6= (1 + m)b,
m = 1, 2, . . . .



Normality and value sharing 153In this paper we investigate the situation when the derivative is replaedby a linear di�erential polynomial with onstant oe�ients generated by f .Throughout the paper we denote by Hk(f) = Hk(f ; a1, . . . , ak) a linear dif-ferential polynomial generated by a meromorphi funtion f of the followingform:
Hk(f) = Hk(f ; a1, . . . , ak) = akf

(k) + ak−1f
(k−1) + · · · + a1f

(1)where k is a positive integer and a1, . . . , ak 6= 0 are onstants.We now state the main result of the paper.Theorem 1.1. Let F be a family of meromorphi funtions in a domain
D ⊂ C and a, b, c, d be �nite omplex numbers suh that c 6= 0. If there existsa di�erential polynomial Hk(f) = Hk(f ; a1, . . . , ak) suh that for eah f ∈ F,(i) f − d does not have any zero with multipliity less than k,(ii) f − a and Hk(f) − b share the value 0 IM ,(iii) |f(z) − a| ≥ ε whenever Hk(f) = c, where ε is a positive number ,then F is normal in D for k ≥ 2, and for k = 1 so long as b/c 6= 1 + m forany positive integer m.The following example shows that ondition (i) of Theorem 1.1 is essen-tial.Example 1.1. Let fn(z) = nez − ne−z + 1 for n = 1, 2, . . . and D = C.We hoose k = 2, a = 1, b = 0, c = 1 and ε = 1. Then for any given �niteomplex number d,

fn(z) − d =
ne2z + (1 − d)ez − n

ezhas only simple zeros in D (exept possibly for only one value of n for whih
d = 1±2ni). Also fn(z)−a and f

(2)
n (z)−b share 0 IM and |fn(z)−a| = 2 > εwhenever f

(2)
n (z) = c. Sine f#

n (0) = n → ∞ as n → ∞, by Marty's riterionthe family {fn} is not normal in D.The following example shows that ondition (ii) of Theorem 1.1 is essen-tial.Example 1.2. Let fn(z) = nz2 for n = 1, 2, . . . and D = ∆. We hoose
k = 2, a = 0, b = 0, d = 0 and c = 1. Then fn(z) − d has no zero ofmultipliity less than k, f

(2)
n (z) = 2n does not assume the value c, so thatondition (iii) of Theorem 1.1 is satis�ed but fn(z) and f

(2)
n (z) do not sharethe value a = b = 0. Sine fn(0) = 0 for n = 1, 2, . . . and for z 6= 0,

fn(z) → ∞ as n → ∞, it follows that the family {fn} is not normal in D.The following example shows that ondition (iii) of Theorem 1.1 is es-sential.



154 I. Lahiri and S. DewanExample 1.3. Let f(z) = enz for n = 1, 2, . . . and D = ∆. We hoose
k = 2, a = 0, b = 0, c = 1 and d = 0. Then onditions (i) and (ii) ofTheorem 1.1 are satis�ed. Also we see that f

(2)
n (z) = c implies |fn(z)− a| =

1/n2 → 0 as n → ∞ so that we annot �nd any ε > 0 for whih ondition(iii) is satis�ed. Sine f#
n (0) = n/2 → ∞ as n → ∞, by Marty's riterionthe family {fn} is not normal in D.The following example shows that the ondition c 6= 0 annot be removedfrom Theorem 1.1.Example 1.4. Let fn(z) = enz − a/n + a for n = 1, 2, . . . and D = ∆.Then fn and f

(1)
n share the value a IM. Also f

(1)
n (z) 6= 0 in D so thatondition (iii) of Theorem 1.1 is satis�ed for c = 0. Sine

f#
n (0) =

n

1 + |a/n + a|
→ ∞ as n → ∞,by Marty's riterion the family {fn} is not normal in D.The following example shows that for k = 1 the ondition �b/c 6= 1 + mfor any positive integer m� of Theorem 1.1 is essential.Example 1.5. Let b and c be two nonzero numbers suh that b =

(1 + m)c, where m is a positive integer. Also let {αn} be a sequene ofnumbers onverging to 0 and |αn| < 1 for n = 1, 2, . . . . We suppose that
D = ∆ and, for n = 1, 2, . . . ,

fn(z) = c(z − αn) +
A(αn)m

m(z − αn)m
,where A is a nonzero onstant. Then

f (1)
n (z) = c −

A(αn)m

(z − αn)m+1so that f
(1)
n (z) does not assume the value c and so ondition (iii) of Theo-rem 1.1 is satis�ed. Also

fn(z) =
mc(z − αn)m+1 + A(αn)m

m(z − αn)m
,

f (1)
n (z) − b = −

mc(z − αn)m+1 + A(αn)m

m(z − αn)m+1so that fn and f
(1)
n share 0 IM. Again

f#
n (0) =

|c + (−1)m+2/αn|

1 + |−cαn + (−1)mA/m|2

≥
1/|αn| − |c|

1 + {|c| |αn| + |A|/m}2
→ ∞ as n → ∞.Hene by Marty's riterion the family {fn} is not normal in D.



Normality and value sharing 155The following orollary not only extends Theorem G to a linear di�eren-tial polynomial but also removes the hypothesis a 6= b.Corollary 1.1. Let F be a family of meromorphi funtions in a do-main D ⊂ C and a, b, c, d, α be �nite omplex numbers suh that b 6= 0 and
c 6= α. If there exists a di�erential polynomial Hk(f) = Hk(f ; a1, . . . , ak)suh that for eah f ∈ F,(i) f − d does not have any zero of multipliity less than k,(ii) f − α and Hk(f) − a share the value 0 IM ,(iii) f(z) = c whenever Hk(f) = b,then F is normal in D for k ≥ 2, and for k = 1 so long as a/b 6= 1 + m forany positive integer m.Remark 1.1. If we hoose a = b then from onditions (ii) and (iii) ofCorollary 1.1 it is obvious that α and a are launary values of f ∈ F and
Hk(f) respetively.The following example shows that in Corollary 1.1 the ondition b 6= 0 isessential.Example 1.6. Let fn(z) = enz for n = 1, 2, . . . and D = ∆. We hoose
α = a = b = d = 0. Then fn(z) − d does not have any zero and forany positive integer k, fn(z) and f

(k)
n (z) − a share the value 0 IM. Sine

f
(k)
n (z) 6= b, it follows that ondition (iii) of Corollary 1.1 is satis�ed for anyomplex number c. Sine f#

n (0) = n/2 → ∞ as n → ∞, by Marty's riterionthe family {fn} is not normal in D.The following orollary improves Theorems C and F.Corollary 1.2. Let F be a family of meromorphi funtions in a do-main D ⊂ C and a, b, c be �nite numbers suh that a 6= b. If there exists adi�erential polynomial Hk(f) = Hk(f ; a1, . . . , ak) suh that for eah f ∈ F,(i) f − c does not have any zero of multipliity less than k,(ii) f and Hk(f) share the values a and b IM ,then F is normal in D.For standard de�nitions and notations we refer to [7℄ and [14℄.2. Lemmas. In this setion we present some neessary lemmas.Lemma 2.1 ([13℄). Let F be a family of meromorphi funtions in ∆having no zero of multipliity less than k. Suppose there exists a number
A ≥ 1 suh that |f (k)(z)| ≤ A whenever f(z) = 0. If F is not normal in ∆then there exist , for eah α (0 ≤ α ≤ k),(i) a number r, 0 < r < 1,



156 I. Lahiri and S. Dewan(ii) points zn, |zn| < r,(iii) funtions fn ∈ F and(iv) positive numbers ̺n, ̺n → 0,suh that gn(ξ) = ̺−α
n fn(zn + ̺nξ) → g(ξ) spherially and loally uniformlyto a nononstant meromorphi funtion g in C, all of whose zeros have mul-tipliity at least k and g#(ξ) ≤ g#(0) = kA + 1. Moreover the order of g isat most 2.Lemma 2.2 ([5℄). Let f be a meromorphi funtion of �nite order and

a, b 6= 0 be distint omplex numbers and k ≥ 2 be an integer. If f has nozero of multipliity less than k, f and f (k) − a share the value 0 IM and f (k)does not assume the value b, then f is a onstant.Lemma 2.3 ([5, 8, 11℄). Let f be a nononstant meromorphi funtionof �nite order and let a, b 6= 0 be distint omplex numbers. If f and f (1) −ashare the value 0 IM and f (1) does not assume the value b in C then
f(z) = b(z − d) +

A

m(z − d)m
and a = (1 + m)bfor some d ∈ C and some positive integer m.Lemma 2.4 ([9℄). Let f be a nononstant rational funtion, and k and

λ ≥ 2 be positive integers suh that(i) f has no zero of multipliity less than λ and the number of zeros of f(ounted with multipliities), if there are any , is not less than 1 + k,(ii) if f has any pole then the number of poles of f (ounted with multi-pliities) is greater than k/(λ − 1).Then for every omplex number a 6= 0,∞, the funtion f (k) + a has at leastone zero.Lemma 2.5. Let f be a nononstant rational funtion having no zeroand k be a positive integer. Then for every omplex number a 6= 0,∞, thefuntion f (k) + a has at least one zero.Proof. Sine f has no zero, hoosing λ = k + 2 in Lemma 2.4 we obtainthe result.Lemma 2.6 ([7, p. 60℄). Suppose that f is meromorphi and transen-dental in C. Then for any positive integer k,
T (r, f) ≤ (2 + 1/k)N(r, 0; f) + (2 + 2/k)N(r, a; f (k)) + S(r, f),where a 6= 0,∞ is a omplex number.Lemma 2.7 ([2℄). Let f be a meromorphi funtion of �nite order. If fhas only �nitely many ritial values then it has only �nitely many asymptotivalues.



Normality and value sharing 157Lemma 2.8 ([1℄). Let f be a transendental meromorphi funtion suhthat f(0) 6= ∞ and let the set of �nite ritial and asymptoti values of f bebounded. Then there exists R > 0 suh that
|f ′(z)| ≥

|f(z)|

2π|z|
log

|f(z)|

Rfor all z ∈ C \ {0} whih are not poles of f .Lemma 2.9 ([6, 10℄). Let f be a nononstant meromorphi funtion in
C and k ≥ 2 be an integer. If f and f (k) do not assume the value 0 in Cthen either f(z) = eAz+B or f(z) = (Az + B)−m, where A 6= 0 and B areonstants and m is a positive integer.Lemma 2.10 ([4℄). Let f be a meromorphi funtion in C. If there existsa onstant M > 0 suh that f#(z) ≤ M in C then the order of f is atmost 2.Lemma 2.11 ([7, p. 57℄). Let f be a nononstant meromorphi funtionin C and Hk(f) be nononstant. Then for any omplex number a 6= 0,∞,

T (r, f) ≤ N(r,∞; f) + N(r, 0; f) + N(r, a; Hk(f)) + S(r, f).3. Proof of the theorem and orollariesProof of Theorem 1.1. Sine normality is a loal property, without lossof generality we may assume that D = ∆. Also sine Hk(f − a) = Hk(f),we may additionally suppose that a = 0. First we suppose that ak = 1. Wenow onsider the following ases.
Case I. Let k ≥ 2 and d = 0. Suppose that F is not normal in ∆. Thenby Lemma 2.1 for α = k we an �nd a sequene {zn} of points with |zn| < r

(0 < r < 1), a sequene of positive numbers ̺n → 0 and a sequene {fn} ⊂ Fof funtions suh that
gn(ξ) = ̺−k

n fn(zn + ̺nξ) → g(ξ)spherially and loally uniformly, where g is a nononstant meromorphifuntion in C and g has no zero of multipliity less than k. Also g#(ξ) ≤
g#(0) = k(A + 1) + 1 and g is of order at most 2, where A = max{|b|, |c|}.We now verify that (I) g and g(k) − b share the value 0 IM, and that(II) g(k) does not assume the value c in C.Let g(ξ0) = 0. Then by Hurwitz's theorem there exists a sequene ξn → ξ0suh that gn(ξn) = 0 for all su�iently large values of n. So for all su�ientlylarge values of n we get fn(zn + ̺nξn) = 0, and so for all su�iently largevalues of n, Hk(fn(zn + ̺nξn)) = b. Hene

g(k)
n (ξn) + ak−1̺ng(k−1)

n (ξn) + · · · + a1̺
k−1
n g(1)

n (ξn) = b.Letting n → ∞ we obtain g(k)(ξ0) = b.



158 I. Lahiri and S. DewanNext let g(k)(η0) = b. First we verify that g(k)(ξ) 6≡ b. If g(k)(ξ) ≡ b then gbeomes a polynomial of degree at most k. Sine g has no zero of multipliityless than k and g is nononstant, it follows that g is a polynomial of degree
k and so it has a single zero of multipliity k. Hene we an write(3.1) g(ξ) =

b(ξ − ξ1)
k

k!
.By a simple alulation we dedue from (3.1) that g#(0) ≤ k/2 if |ξ1| ≥ 1and g#(0) ≤ |b| if |ξ1| < 1. Therefore g#(0) < k(|b| + 1) + 1, whih is aontradition.Sine g(k)(η0) = b and g

(k)
n (η) + ak−1̺ng

(k−1)
n (η) + · · · + a1̺

k−1
n g

(1)
n (η)onverges uniformly to g(k)(η) in some neighbourhood of η0, by Hurwitz'stheorem there exists a sequene ηn → η0 suh that for all large values of n,

g(k)
n (ηn) + ak−1̺ng(k−1)

n (ηn) + · · · + a1̺
k−1
n g(1)

n (ηn) = band so Hk(fn(zn + ̺nηn)) = b. Therefore for all su�iently large values of nwe get fn(zn + ̺nηn) = 0 and so gn(ηn) = 0. Letting n → ∞ we obtain
g(η0) = 0. Therefore (I) is veri�ed.Let g(k)(ζ0) = c. Then as above we an show that g(k)(ζ) 6≡ c. Sine
g
(k)
n (ζ)+ak−1̺ng

(k−1)
n (ζ) + · · ·+a1̺

k−1
n g

(1)
n (ζ) onverges uniformly to g(k)(ζ)in some neighbourhood of ζ0, by Hurwitz's theorem there exists a sequene

ζn → ζ0 suh that for all large values of n,
g(k)
n (ζn) + ak−1̺ng(k−1)

n (ζn) + · · · + a1̺
k−1
n g(1)

n (ζn) = cand so Hk(fn(zn+̺nζn)) = c. Therefore |fn(zn+̺nζn)| ≥ ε and so |gn(ζn)| ≥
ε/̺k

n for all large values of n. This shows that g(ζ0) = ∞, whih is a ontra-dition. So (II) is veri�ed.If b 6= c, by Lemma 2.2, g beomes a onstant, whih is impossible. Let
b = c. Then from (I) and (II) we see that g does not assume the value 0and g(k) does not assume the value c 6= 0. If g is transendental, by Lemma2.6 we get T (r, g) = S(r, g), whih is a ontradition. If g is rational, byLemma 2.5, g beomes a onstant, whih is impossible. Therefore the family
F is normal.
Case II. Let k ≥ 2 and d 6= 0. Suppose that F1 = {f − d : f ∈ F}. If

F1 is not normal in ∆, by Lemma 2.1 for α = 0 we an �nd a sequene {zn}of points with |zn| < r (0 < r < 1), a sequene of positive numbers ̺n → 0and a sequene {fn − d} ⊂ F1 of funtions suh that
gn(ξ) = fn(zn + ̺nξ) − d → g(ξ)spherially and loally uniformly, where g is a nononstant meromorphifuntion in C and g has no zero of multipliity less then k. Further g is oforder at most 2.



Normality and value sharing 159We now verify that (III) g(k) does not assume the value 0 in C, and that(IV) g + d does not assume the value 0 in C.Let g(k)(ξ0) = 0 for some ξ0 ∈ C. Also we see that g(k)(ξ) 6≡ 0, forotherwise g beomes a polynomial of degree less than k, whih is impossiblebeause g is nononstant and does not have any zero of multipliity lessthan k.Sine in a neighbourhood of ξ0,
g(k)
n (ξ) + ak−1̺ng(k−1)

n (ξ) + · · · + a1̺
k−1
n g(1)

n (ξ) − ̺k
nbonverges uniformly to g(k)(ξ), by Hurwitz's theorem there exists a sequene

ξn → ξ0 suh that for all large values of n,
g(k)
n (ξn) + ak−1̺ng(k−1)

n (ξn) + · · · + a1̺
k−1
n g(1)

n (ξn) − ̺k
nb = 0,and so for all large values of n we get Hk(fn(zn + ̺nξn)) = b. Therefore forall large values of n we obtain fn(zn + ̺nξn) = 0 and so gn(ξn) + d = 0.Letting n → ∞ we get(3.2) g(ξ0) + d = 0.Again sine in a neighbourhood of ξ0,

g(k)
n (ξ) + ak−1̺ng(k−1)

n (ξ) + · · · + a1̺
k−1
n g(1)

n (ξ) − ̺k
nconverges uniformly to g(k)(ξ), by Hurwitz's theorem there exists a sequene

χn → ξ0 suh that
g(k)
n (χn) + ak−1̺ng(k−1)

n (χn) + · · · + a1̺
k−1
n g(1)

n (χn) − ̺k
nc = 0for all large values of n. Hene for all large values of n we dedue that

Hk(fn(zn + ̺nχn)) = c. So for all large values of n,
|fn(zn + ̺nχn)| ≥ ε, i.e., |gn(χn) + d| ≥ ε.Letting n → ∞ we obtain |g(ξ0) + d| ≥ ε, whih ontradits (3.2). Therefore(III) is veri�ed.Next let g(β0)+d = 0. Then by Hurwitz's theorem there exists a sequene

βn → β0 suh that for all large values of n, fn(zn +̺nβn)−d = gn(βn) = −dand so fn(zn + ̺nβn) = 0. Hene for all large values of n we dedue that
Hk(fn(zn + ̺nβn)) = b and so

g(k)
n (βn) + ak−1̺ng(k−1)

n (βn) + · · · + a1̺
k−1
n g(1)

n (βn) = b̺k
n.Letting n → ∞ we get g(k)(β0) = 0, whih ontradits (III). Therefore (IV)is veri�ed.Now by Lemma 2.9 we see that either g(ξ) = −d + eAz+B or g(ξ) =

−d + 1/(Az + B)m. Sine d 6= 0, it follows that g has only simple zeros,whih is impossible. Therefore F1 and so F is normal.
Case III. Let k = 1. In this ase ondition (i) of the theorem is im-material and so the proof does not depend on d. If F is not normal in ∆,



160 I. Lahiri and S. Dewanproeeding as Case I we an show that there exists a nononstant meromor-phi funtion g of �nite order suh that g and g(1) − b share the value 0 IMand g(1) does not assume the value c in C.If b 6= c then by Lemma 2.3 we get b = (1 + m)c for some positive inte-ger m, whih is impossible. Let b = c. Then g does not assume the value 0and g(1) does not assume the value c. If g is rational, by Lemma 2.5, g be-omes a onstant, whih is impossible. If g is transendental, by Lemma 2.6we get T (r, g) = S(r, g), whih is a ontradition. Therefore the family F isnormal.Finally, suppose that ak 6= 1. We now put Gk(f) = (1/ak)Hk(f), b1 =
b/ak and c1 = c/ak. Then the leading oe�ient of Gk(f) is 1 and b1/c1

= b/c. Also the following hold:(i) f − d has no zero of multipliity less than k,(ii) f − a and Gk(f) − b1 share the value 0 IM,(iii) |f(z) − a| ≥ ε whenever Gk(f) = c1.Therefore the family F is normal in this ase as well by the result for ak = 1.This proves the theorem.Proof of Corollary 1.1. Sine c 6= α, we hoose an ε suh that 0 < ε <
|c−α|. Then from ondition (iii) we see that if Hk(f) = b then |f(z)−α| =
|c − α| > ε, whih is ondition (iii) of Theorem 1.1. Hene the orollaryfollows from Theorem 1.1.Proof of Corollary 1.2. Interhanging a and b if neessary, we may hoose
|a| ≤ |b|. Sine a 6= b, it follows that b 6= 0 and a/b is not a positive integer.We now hoose an ε suh that 0 < ε < |b − a|. So we see that if Hk(f) = bthen |f(z)−a| = |b−a| > ε. Hene the orollary follows from Theorem 1.1.4. Appliation. In this setion we prove a value distribution theoremfor a di�erential polynomial whih follows from Theorem 1.1.Theorem 4.1. Let f be a transendental meromorphi funtion and
a1, . . . , ak 6= 0 be onstants suh that Hk(f

p) = Hk(f
p; a1, . . . , ak) is alsotransendental , where p ≥ 2 is an integer. Let a be a �nite omplex numbersuh that(i) f has no zero of multipliity less than k/p,(ii) f and Hk(f

p) − a share the value 0 IM.Then for every omplex number b 6= 0,∞, the funtion Hk(f
p) − b has in-�nitely many zeros.Proof. We onsider the following ases.

Case I. Let f be of in�nite order. Then by Lemma 2.10 there exists asequene zn → ∞ suh that f#(zn) → ∞ as n → ∞. Let fn(z) = f(zn + z)
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n (0) = f#(zn) → ∞ as n → ∞. So by Marty'sriterion no subfamily of {fn} is normal in ∆. Suppose that Hk(f

p) − bhas a �nite number of zeros. Sine zn → ∞ as n → ∞, there exists apositive integer N suh that for n ≥ N , Hk(f
p
n) − b has no zero in ∆.So by Theorem 1.1 the family {fn : n ≥ N} is normal in ∆, whih is aontradition. Therefore Hk(f

p) − b has in�nitely many zeros.
Case II. Let f be of �nite order. If f has only �nitely many zeros, byLemma 2.11 we get

T (r, fp) ≤ N(r,∞; fp) + N(r, b; Hk(f
p)) + S(r, fp)and so

(p − 1)T (r, f) ≤ N(r, b; Hk(f
p)) + S(r, f),whih shows that Hk(f

p) − b has in�nitely many zeros.Let f have in�nitely many zeros, say w1, w2, . . . . We put g(z) =
akh

(k−1)(z) + ak−1h
(k−2)(z) + · · · + a1h(z) − bz, where h(z) = {f(z)}p. Let

g′(z) = Hk(f
p) − b have only �nitely many zeros. So g has only �nitelymany ritial values and so, by Lemma 2.7, g has only �nitely many asymp-toti values. We assume, without loss of generality, that g(0) 6= ∞. Then byLemma 2.8 there exists R > 0 suh that for n = 1, 2, . . . ,
∣

∣

∣

∣

wng′(wn)

g(wn)

∣

∣

∣

∣

≥
1

2π
log

|g(wn)|

R
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1

2π
log

|bwn|

R
,so that

∣

∣

∣

∣

wng′(wn)

g(wn)

∣

∣

∣

∣

→ ∞ as n → ∞.On the other hand, for n = 1, 2, . . . we get
∣

∣

∣

∣

wng′(wn)

g(wn)

∣

∣

∣

∣

=
|a − b|

|b|
,whih is a ontradition. Therefore Hk(f

p) − b has in�nitely many zeros.This proves the theorem.Aknowledgements. The authors are thankful to the referee for her/hisvaluable suggestions.
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