Normality and value sharing with a linear differential polynomial

by INDRAJIT LAHIRI (Kalyani) and SHYAMALI DEWAN (Kolkata)

Abstract. We prove some normality criteria for a family of meromorphic functions and as an application we prove a value distribution theorem for a differential polynomial.

1. Introduction, definitions and results. Let \mathbb{C} be the open complex plane and $\mathfrak{D} \subset \mathbb{C}$ be a domain. A family \mathfrak{F} of meromorphic functions defined in \mathfrak{D} is said to be *normal*, in the sense of Montel, if for every sequence $\{f_n\} \subset \mathfrak{F}$ there exists a subsequence $\{f_{n_j}\}$ such that $\{f_{n_j}\}$ converges spherically and uniformly on compact subsets of \mathfrak{D} to a meromorphic function or ∞ .

 \mathfrak{F} is said to be *normal at a point* $z_0 \in \mathfrak{D}$ if there exists a neighbourhood of z_0 in which \mathfrak{F} is normal. It is well known that \mathfrak{F} is normal in \mathfrak{D} if and only if it is normal at every point of \mathfrak{D} .

Let f and g be two meromorphic functions defined in \mathfrak{D} . For $a \in \mathbb{C} \cup \{\infty\}$ we say that f and g share the value a IM (ignoring multiplicity) if the apoints of f and g coincide in locations only, not necessarily in multiplicities.

For a meromorphic function f we denote by $f^{\#}$ the *spherical derivative* of f, given by

$$f^{\#}(z) = \frac{|f'(z)|}{1 + |f(z)|^2}.$$

Also, by Δ we denote the unit disc |z| < 1.

In 1992 W. Schwick [15] first established a connection between the normality and value sharing. He proved the following theorem.

THEOREM A ([15]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a_1, a_2, a_3 be distinct complex numbers. If for every $f \in \mathfrak{F}$, f and f' share a_1, a_2, a_3 IM in \mathfrak{D} then \mathfrak{F} is normal in \mathfrak{D} .

²⁰⁰⁰ Mathematics Subject Classification: 30D45, 30D35.

Key words and phrases: meromorphic function, differential polynomial, normality.

After the work of Schwick [15] it has become a popular problem to investigate the relation between normality and sharing values.

In 1999 Y. Xu [16] proved the following result.

THEOREM B ([16]). Let \mathfrak{F} be a family of holomorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and b be a nonzero complex number. If f and f' share 0, b IM in \mathfrak{D} for every $f \in \mathfrak{F}$ then \mathfrak{F} is normal in \mathfrak{D} .

In 2000 X. Pang and L. Zalcman [12] proved the following result, which improves Theorems A and B.

THEOREM C ([12]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a_1, a_2 be distinct complex numbers. If for every $f \in \mathfrak{F}$, f and f' share a_1, a_2 IM in \mathfrak{D} then \mathfrak{F} is normal in \mathfrak{D} .

At this stage two natural questions may be asked:

1. What would be if f and f' share a single value?

2. What would be if f' is replaced by $f^{(k)}$?

For Question 1 the following result of W. C. Lin and H. X. Yi [11] may be noted.

THEOREM D ([11]). Let \mathfrak{F} be a family of meromorphic functions in Δ . If there exist complex numbers a and b ($b \neq 0$ and a/b not a positive integer) such that for every $f \in \mathfrak{F}$, f and f' share a IM in Δ and $|f(z) - a| \geq \varepsilon$ whenever f'(z) = b, where ε is a positive number, then \mathfrak{F} is normal in Δ .

For Question 2, H. Chen and M. Fang [3] proved the following result.

THEOREM E ([3]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}, k \geq 2$ be an integer and a, b, c be complex numbers such that $b \neq a$. If for each $f \in \mathfrak{F}, f$ and $f^{(k)}$ share a, b IM in \mathfrak{D} and zeros of f - c have multiplicity at least 1 + k then \mathfrak{F} is normal in \mathfrak{D} .

The following result of M. Fang and L. Zalcman [5] improved Theorem E.

THEOREM F ([5]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}, k \geq 2$ be an integer and a, b, c be complex numbers such that $b \neq a$. If for each $f \in \mathfrak{F}, f$ and $f^{(k)}$ share a, b IM in \mathfrak{D} and zeros of f - c have multiplicity at least k then \mathfrak{F} is normal in \mathfrak{D} .

Theorem F is a consequence of the following theorem, also due to Fang and Zalcman [5].

THEOREM G ([5]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$, k be a positive integer and a, b, c, d be complex numbers such that $b \neq a, 0$ and $c \neq 0$. If, for each $f \in \mathfrak{F}$, all zeros of f - d have multiplicity at least k, f and $f^{(k)} - a$ share 0 IM and f(z) = c whenever $f^{(k)}(z) = b$, then \mathfrak{F} is normal in \mathfrak{D} for $k \geq 2$, and for k = 1 so long as $a \neq (1 + m)b$, $m = 1, 2, \ldots$ In this paper we investigate the situation when the derivative is replaced by a linear differential polynomial with constant coefficients generated by f. Throughout the paper we denote by $H_k(f) = H_k(f; a_1, \ldots, a_k)$ a linear differential polynomial generated by a meromorphic function f of the following form:

$$H_k(f) = H_k(f; a_1, \dots, a_k) = a_k f^{(k)} + a_{k-1} f^{(k-1)} + \dots + a_1 f^{(1)}$$

where k is a positive integer and $a_1, \ldots, a_k \neq 0$ are constants.

We now state the main result of the paper.

THEOREM 1.1. Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a, b, c, d be finite complex numbers such that $c \neq 0$. If there exists a differential polynomial $H_k(f) = H_k(f; a_1, \ldots, a_k)$ such that for each $f \in \mathfrak{F}$,

- (i) f d does not have any zero with multiplicity less than k,
- (ii) f a and $H_k(f) b$ share the value 0 IM,
- (iii) $|f(z) a| \ge \varepsilon$ whenever $H_k(f) = c$, where ε is a positive number,

then \mathfrak{F} is normal in \mathfrak{D} for $k \geq 2$, and for k = 1 so long as $b/c \neq 1 + m$ for any positive integer m.

The following example shows that condition (i) of Theorem 1.1 is essential.

EXAMPLE 1.1. Let $f_n(z) = ne^z - ne^{-z} + 1$ for n = 1, 2, ... and $\mathfrak{D} = \mathbb{C}$. We choose k = 2, a = 1, b = 0, c = 1 and $\varepsilon = 1$. Then for any given finite complex number d,

$$f_n(z) - d = \frac{ne^{2z} + (1-d)e^z - n}{e^z}$$

has only simple zeros in \mathfrak{D} (except possibly for only one value of n for which $d = 1 \pm 2ni$). Also $f_n(z) - a$ and $f_n^{(2)}(z) - b$ share 0 IM and $|f_n(z) - a| = 2 > \varepsilon$ whenever $f_n^{(2)}(z) = c$. Since $f_n^{\#}(0) = n \to \infty$ as $n \to \infty$, by Marty's criterion the family $\{f_n\}$ is not normal in \mathfrak{D} .

The following example shows that condition (ii) of Theorem 1.1 is essential.

EXAMPLE 1.2. Let $f_n(z) = nz^2$ for n = 1, 2, ... and $\mathfrak{D} = \Delta$. We choose k = 2, a = 0, b = 0, d = 0 and c = 1. Then $f_n(z) - d$ has no zero of multiplicity less than $k, f_n^{(2)}(z) = 2n$ does not assume the value c, so that condition (iii) of Theorem 1.1 is satisfied but $f_n(z)$ and $f_n^{(2)}(z)$ do not share the value a = b = 0. Since $f_n(0) = 0$ for n = 1, 2, ... and for $z \neq 0$, $f_n(z) \to \infty$ as $n \to \infty$, it follows that the family $\{f_n\}$ is not normal in \mathfrak{D} .

The following example shows that condition (iii) of Theorem 1.1 is essential.

EXAMPLE 1.3. Let $f(z) = e^{nz}$ for n = 1, 2, ... and $\mathfrak{D} = \Delta$. We choose k = 2, a = 0, b = 0, c = 1 and d = 0. Then conditions (i) and (ii) of Theorem 1.1 are satisfied. Also we see that $f_n^{(2)}(z) = c$ implies $|f_n(z) - a| = 1/n^2 \to 0$ as $n \to \infty$ so that we cannot find any $\varepsilon > 0$ for which condition (iii) is satisfied. Since $f_n^{\#}(0) = n/2 \to \infty$ as $n \to \infty$, by Marty's criterion the family $\{f_n\}$ is not normal in \mathfrak{D} .

The following example shows that the condition $c \neq 0$ cannot be removed from Theorem 1.1.

EXAMPLE 1.4. Let $f_n(z) = e^{nz} - a/n + a$ for n = 1, 2, ... and $\mathfrak{D} = \Delta$. Then f_n and $f_n^{(1)}$ share the value *a* IM. Also $f_n^{(1)}(z) \neq 0$ in \mathfrak{D} so that condition (iii) of Theorem 1.1 is satisfied for c = 0. Since

$$f_n^{\#}(0) = \frac{n}{1 + |a/n + a|} \to \infty \quad \text{as } n \to \infty,$$

by Marty's criterion the family $\{f_n\}$ is not normal in \mathfrak{D} .

The following example shows that for k = 1 the condition " $b/c \neq 1 + m$ for any positive integer m" of Theorem 1.1 is essential.

EXAMPLE 1.5. Let *b* and *c* be two nonzero numbers such that b = (1 + m)c, where *m* is a positive integer. Also let $\{\alpha_n\}$ be a sequence of numbers converging to 0 and $|\alpha_n| < 1$ for $n = 1, 2, \ldots$. We suppose that $\mathfrak{D} = \Delta$ and, for $n = 1, 2, \ldots$,

$$f_n(z) = c(z - \alpha_n) + \frac{A(\alpha_n)^m}{m(z - \alpha_n)^m},$$

where A is a nonzero constant. Then

$$f_n^{(1)}(z) = c - \frac{A(\alpha_n)^m}{(z - \alpha_n)^{m+1}}$$

so that $f_n^{(1)}(z)$ does not assume the value c and so condition (iii) of Theorem 1.1 is satisfied. Also

$$f_n(z) = \frac{mc(z - \alpha_n)^{m+1} + A(\alpha_n)^m}{m(z - \alpha_n)^m},$$

$$f_n^{(1)}(z) - b = -\frac{mc(z - \alpha_n)^{m+1} + A(\alpha_n)^m}{m(z - \alpha_n)^{m+1}}$$

so that f_n and $f_n^{(1)}$ share 0 IM. Again

$$f_n^{\#}(0) = \frac{|c + (-1)^{m+2}/\alpha_n|}{1 + |-c\alpha_n + (-1)^m A/m|^2} \\ \ge \frac{1/|\alpha_n| - |c|}{1 + \{|c| |\alpha_n| + |A|/m\}^2} \to \infty \quad \text{as } n \to \infty.$$

Hence by Marty's criterion the family $\{f_n\}$ is not normal in \mathfrak{D} .

The following corollary not only extends Theorem G to a linear differential polynomial but also removes the hypothesis $a \neq b$.

COROLLARY 1.1. Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a, b, c, d, α be finite complex numbers such that $b \neq 0$ and $c \neq \alpha$. If there exists a differential polynomial $H_k(f) = H_k(f; a_1, \ldots, a_k)$ such that for each $f \in \mathfrak{F}$,

- (i) f d does not have any zero of multiplicity less than k,
- (ii) $f \alpha$ and $H_k(f) a$ share the value 0 IM,
- (iii) f(z) = c whenever $H_k(f) = b$,

then \mathfrak{F} is normal in \mathfrak{D} for $k \geq 2$, and for k = 1 so long as $a/b \neq 1 + m$ for any positive integer m.

REMARK 1.1. If we choose a = b then from conditions (ii) and (iii) of Corollary 1.1 it is obvious that α and a are lacunary values of $f \in \mathfrak{F}$ and $H_k(f)$ respectively.

The following example shows that in Corollary 1.1 the condition $b \neq 0$ is essential.

EXAMPLE 1.6. Let $f_n(z) = e^{nz}$ for n = 1, 2, ... and $\mathfrak{D} = \Delta$. We choose $\alpha = a = b = d = 0$. Then $f_n(z) - d$ does not have any zero and for any positive integer k, $f_n(z)$ and $f_n^{(k)}(z) - a$ share the value 0 IM. Since $f_n^{(k)}(z) \neq b$, it follows that condition (iii) of Corollary 1.1 is satisfied for any complex number c. Since $f_n^{\#}(0) = n/2 \to \infty$ as $n \to \infty$, by Marty's criterion the family $\{f_n\}$ is not normal in \mathfrak{D} .

The following corollary improves Theorems C and F.

COROLLARY 1.2. Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a, b, c be finite numbers such that $a \neq b$. If there exists a differential polynomial $H_k(f) = H_k(f; a_1, \ldots, a_k)$ such that for each $f \in \mathfrak{F}$,

(i) f - c does not have any zero of multiplicity less than k,

(ii) f and $H_k(f)$ share the values a and b IM,

then \mathfrak{F} is normal in \mathfrak{D} .

For standard definitions and notations we refer to [7] and [14].

2. Lemmas. In this section we present some necessary lemmas.

LEMMA 2.1 ([13]). Let \mathfrak{F} be a family of meromorphic functions in Δ having no zero of multiplicity less than k. Suppose there exists a number $A \geq 1$ such that $|f^{(k)}(z)| \leq A$ whenever f(z) = 0. If \mathfrak{F} is not normal in Δ then there exist, for each α $(0 \leq \alpha \leq k)$,

(i) a number r, 0 < r < 1,

- (ii) points z_n , $|z_n| < r$,
- (iii) functions $f_n \in \mathfrak{F}$ and
- (iv) positive numbers $\rho_n, \rho_n \to 0$,

such that $g_n(\xi) = \varrho_n^{-\alpha} f_n(z_n + \varrho_n \xi) \to g(\xi)$ spherically and locally uniformly to a nonconstant meromorphic function g in \mathbb{C} , all of whose zeros have multiplicity at least k and $g^{\#}(\xi) \leq g^{\#}(0) = kA + 1$. Moreover the order of g is at most 2.

LEMMA 2.2 ([5]). Let f be a meromorphic function of finite order and $a, b \neq 0$ be distinct complex numbers and $k \geq 2$ be an integer. If f has no zero of multiplicity less than k, f and $f^{(k)} - a$ share the value 0 IM and $f^{(k)}$ does not assume the value b, then f is a constant.

LEMMA 2.3 ([5, 8, 11]). Let f be a nonconstant meromorphic function of finite order and let $a, b \neq 0$ be distinct complex numbers. If f and $f^{(1)} - a$ share the value 0 IM and $f^{(1)}$ does not assume the value b in \mathbb{C} then

$$f(z) = b(z - d) + \frac{A}{m(z - d)^m}$$
 and $a = (1 + m)b$

for some $d \in \mathbb{C}$ and some positive integer m.

LEMMA 2.4 ([9]). Let f be a nonconstant rational function, and k and $\lambda \geq 2$ be positive integers such that

- (i) f has no zero of multiplicity less than λ and the number of zeros of f (counted with multiplicities), if there are any, is not less than 1 + k,
- (ii) if f has any pole then the number of poles of f (counted with multiplicities) is greater than $k/(\lambda - 1)$.

Then for every complex number $a \neq 0, \infty$, the function $f^{(k)} + a$ has at least one zero.

LEMMA 2.5. Let f be a nonconstant rational function having no zero and k be a positive integer. Then for every complex number $a \neq 0, \infty$, the function $f^{(k)} + a$ has at least one zero.

Proof. Since f has no zero, choosing $\lambda = k + 2$ in Lemma 2.4 we obtain the result. \blacksquare

LEMMA 2.6 ([7, p. 60]). Suppose that f is meromorphic and transcendental in \mathbb{C} . Then for any positive integer k,

$$T(r,f) \le (2+1/k)N(r,0;f) + (2+2/k)\overline{N}(r,a;f^{(k)}) + S(r,f),$$

where $a \neq 0, \infty$ is a complex number.

LEMMA 2.7 ([2]). Let f be a meromorphic function of finite order. If f has only finitely many critical values then it has only finitely many asymptotic values.

156

LEMMA 2.8 ([1]). Let f be a transcendental meromorphic function such that $f(0) \neq \infty$ and let the set of finite critical and asymptotic values of f be bounded. Then there exists R > 0 such that

$$|f'(z)| \ge \frac{|f(z)|}{2\pi|z|} \log \frac{|f(z)|}{R}$$

for all $z \in \mathbb{C} \setminus \{0\}$ which are not poles of f.

LEMMA 2.9 ([6, 10]). Let f be a nonconstant meromorphic function in \mathbb{C} and $k \geq 2$ be an integer. If f and $f^{(k)}$ do not assume the value 0 in \mathbb{C} then either $f(z) = e^{Az+B}$ or $f(z) = (Az+B)^{-m}$, where $A \neq 0$ and B are constants and m is a positive integer.

LEMMA 2.10 ([4]). Let f be a meromorphic function in \mathbb{C} . If there exists a constant M > 0 such that $f^{\#}(z) \leq M$ in \mathbb{C} then the order of f is at most 2.

LEMMA 2.11 ([7, p. 57]). Let f be a nonconstant meromorphic function in \mathbb{C} and $H_k(f)$ be nonconstant. Then for any complex number $a \neq 0, \infty$,

$$T(r,f) \le \overline{N}(r,\infty;f) + N(r,0;f) + \overline{N}(r,a;H_k(f)) + S(r,f).$$

3. Proof of the theorem and corollaries

Proof of Theorem 1.1. Since normality is a local property, without loss of generality we may assume that $\mathfrak{D} = \Delta$. Also since $H_k(f - a) = H_k(f)$, we may additionally suppose that a = 0. First we suppose that $a_k = 1$. We now consider the following cases.

CASE I. Let $k \geq 2$ and d = 0. Suppose that \mathfrak{F} is not normal in Δ . Then by Lemma 2.1 for $\alpha = k$ we can find a sequence $\{z_n\}$ of points with $|z_n| < r$ (0 < r < 1), a sequence of positive numbers $\rho_n \to 0$ and a sequence $\{f_n\} \subset \mathfrak{F}$ of functions such that

$$g_n(\xi) = \varrho_n^{-k} f_n(z_n + \varrho_n \xi) \to g(\xi)$$

spherically and locally uniformly, where g is a nonconstant meromorphic function in \mathbb{C} and g has no zero of multiplicity less than k. Also $g^{\#}(\xi) \leq g^{\#}(0) = k(A+1) + 1$ and g is of order at most 2, where $A = \max\{|b|, |c|\}$.

We now verify that (I) g and $g^{(k)} - b$ share the value 0 IM, and that (II) $g^{(k)}$ does not assume the value c in \mathbb{C} .

Let $g(\xi_0) = 0$. Then by Hurwitz's theorem there exists a sequence $\xi_n \to \xi_0$ such that $g_n(\xi_n) = 0$ for all sufficiently large values of n. So for all sufficiently large values of n we get $f_n(z_n + \rho_n \xi_n) = 0$, and so for all sufficiently large values of n, $H_k(f_n(z_n + \rho_n \xi_n)) = b$. Hence

$$g_n^{(k)}(\xi_n) + a_{k-1}\varrho_n g_n^{(k-1)}(\xi_n) + \dots + a_1 \varrho_n^{k-1} g_n^{(1)}(\xi_n) = b.$$

Letting $n \to \infty$ we obtain $g^{(k)}(\xi_0) = b$.

Next let $g^{(k)}(\eta_0) = b$. First we verify that $g^{(k)}(\xi) \neq b$. If $g^{(k)}(\xi) \equiv b$ then g becomes a polynomial of degree at most k. Since g has no zero of multiplicity less than k and g is nonconstant, it follows that g is a polynomial of degree k and so it has a single zero of multiplicity k. Hence we can write

(3.1)
$$g(\xi) = \frac{b(\xi - \xi_1)^k}{k!}.$$

By a simple calculation we deduce from (3.1) that $g^{\#}(0) \leq k/2$ if $|\xi_1| \geq 1$ and $g^{\#}(0) \leq |b|$ if $|\xi_1| < 1$. Therefore $g^{\#}(0) < k(|b|+1) + 1$, which is a contradiction.

Since $g^{(k)}(\eta_0) = b$ and $g^{(k)}_n(\eta) + a_{k-1}\varrho_n g^{(k-1)}_n(\eta) + \dots + a_1 \varrho^{k-1}_n g^{(1)}_n(\eta)$ converges uniformly to $g^{(k)}(\eta)$ in some neighbourhood of η_0 , by Hurwitz's theorem there exists a sequence $\eta_n \to \eta_0$ such that for all large values of n,

$$g_n^{(k)}(\eta_n) + a_{k-1}\varrho_n g_n^{(k-1)}(\eta_n) + \dots + a_1\varrho_n^{k-1} g_n^{(1)}(\eta_n) = b$$

and so $H_k(f_n(z_n + \rho_n\eta_n)) = b$. Therefore for all sufficiently large values of n we get $f_n(z_n + \rho_n\eta_n) = 0$ and so $g_n(\eta_n) = 0$. Letting $n \to \infty$ we obtain $g(\eta_0) = 0$. Therefore (I) is verified.

Let $g^{(k)}(\zeta_0) = c$. Then as above we can show that $g^{(k)}(\zeta) \neq c$. Since $g_n^{(k)}(\zeta) + a_{k-1}\varrho_n g_n^{(k-1)}(\zeta) + \dots + a_1\varrho_n^{k-1}g_n^{(1)}(\zeta)$ converges uniformly to $g^{(k)}(\zeta)$ in some neighbourhood of ζ_0 , by Hurwitz's theorem there exists a sequence $\zeta_n \to \zeta_0$ such that for all large values of n,

$$g_n^{(k)}(\zeta_n) + a_{k-1}\varrho_n g_n^{(k-1)}(\zeta_n) + \dots + a_1 \varrho_n^{k-1} g_n^{(1)}(\zeta_n) = c$$

and so $H_k(f_n(z_n + \varrho_n \zeta_n)) = c$. Therefore $|f_n(z_n + \varrho_n \zeta_n)| \ge \varepsilon$ and so $|g_n(\zeta_n)| \ge \varepsilon/\varrho_n^k$ for all large values of n. This shows that $g(\zeta_0) = \infty$, which is a contradiction. So (II) is verified.

If $b \neq c$, by Lemma 2.2, g becomes a constant, which is impossible. Let b = c. Then from (I) and (II) we see that g does not assume the value 0 and $g^{(k)}$ does not assume the value $c \neq 0$. If g is transcendental, by Lemma 2.6 we get T(r,g) = S(r,g), which is a contradiction. If g is rational, by Lemma 2.5, g becomes a constant, which is impossible. Therefore the family \mathfrak{F} is normal.

CASE II. Let $k \geq 2$ and $d \neq 0$. Suppose that $\mathfrak{F}_1 = \{f - d : f \in \mathfrak{F}\}$. If \mathfrak{F}_1 is not normal in Δ , by Lemma 2.1 for $\alpha = 0$ we can find a sequence $\{z_n\}$ of points with $|z_n| < r \ (0 < r < 1)$, a sequence of positive numbers $\varrho_n \to 0$ and a sequence $\{f_n - d\} \subset \mathfrak{F}_1$ of functions such that

$$g_n(\xi) = f_n(z_n + \varrho_n\xi) - d \to g(\xi)$$

spherically and locally uniformly, where g is a nonconstant meromorphic function in \mathbb{C} and g has no zero of multiplicity less than k. Further g is of order at most 2.

We now verify that (III) $g^{(k)}$ does not assume the value 0 in \mathbb{C} , and that (IV) g + d does not assume the value 0 in \mathbb{C} .

Let $g^{(k)}(\xi_0) = 0$ for some $\xi_0 \in \mathbb{C}$. Also we see that $g^{(k)}(\xi) \not\equiv 0$, for otherwise g becomes a polynomial of degree less than k, which is impossible because g is nonconstant and does not have any zero of multiplicity less than k.

Since in a neighbourhood of ξ_0 ,

$$g_n^{(k)}(\xi) + a_{k-1}\varrho_n g_n^{(k-1)}(\xi) + \dots + a_1\varrho_n^{k-1} g_n^{(1)}(\xi) - \varrho_n^k b$$

converges uniformly to $g^{(k)}(\xi)$, by Hurwitz's theorem there exists a sequence $\xi_n \to \xi_0$ such that for all large values of n,

$$g_n^{(k)}(\xi_n) + a_{k-1}\varrho_n g_n^{(k-1)}(\xi_n) + \dots + a_1 \varrho_n^{k-1} g_n^{(1)}(\xi_n) - \varrho_n^k b = 0,$$

and so for all large values of n we get $H_k(f_n(z_n + \rho_n \xi_n)) = b$. Therefore for all large values of n we obtain $f_n(z_n + \rho_n \xi_n) = 0$ and so $g_n(\xi_n) + d = 0$. Letting $n \to \infty$ we get

(3.2)
$$g(\xi_0) + d = 0.$$

Again since in a neighbourhood of ξ_0 ,

$$g_n^{(k)}(\xi) + a_{k-1}\varrho_n g_n^{(k-1)}(\xi) + \dots + a_1 \varrho_n^{k-1} g_n^{(1)}(\xi) - \varrho_n^k c$$

converges uniformly to $g^{(k)}(\xi)$, by Hurwitz's theorem there exists a sequence $\chi_n \to \xi_0$ such that

$$g_n^{(k)}(\chi_n) + a_{k-1}\varrho_n g_n^{(k-1)}(\chi_n) + \dots + a_1\varrho_n^{k-1} g_n^{(1)}(\chi_n) - \varrho_n^k c = 0$$

for all large values of n. Hence for all large values of n we deduce that $H_k(f_n(z_n + \rho_n \chi_n)) = c$. So for all large values of n,

$$|f_n(z_n + \varrho_n \chi_n)| \ge \varepsilon$$
, i.e., $|g_n(\chi_n) + d| \ge \varepsilon$.

Letting $n \to \infty$ we obtain $|g(\xi_0) + d| \ge \varepsilon$, which contradicts (3.2). Therefore (III) is verified.

Next let $g(\beta_0)+d=0$. Then by Hurwitz's theorem there exists a sequence $\beta_n \to \beta_0$ such that for all large values of n, $f_n(z_n + \rho_n\beta_n) - d = g_n(\beta_n) = -d$ and so $f_n(z_n + \rho_n\beta_n) = 0$. Hence for all large values of n we deduce that $H_k(f_n(z_n + \rho_n\beta_n)) = b$ and so

$$g_n^{(k)}(\beta_n) + a_{k-1}\varrho_n g_n^{(k-1)}(\beta_n) + \dots + a_1 \varrho_n^{k-1} g_n^{(1)}(\beta_n) = b \varrho_n^k.$$

Letting $n \to \infty$ we get $g^{(k)}(\beta_0) = 0$, which contradicts (III). Therefore (IV) is verified.

Now by Lemma 2.9 we see that either $g(\xi) = -d + e^{Az+B}$ or $g(\xi) = -d + 1/(Az+B)^m$. Since $d \neq 0$, it follows that g has only simple zeros, which is impossible. Therefore \mathfrak{F}_1 and so \mathfrak{F} is normal.

CASE III. Let k = 1. In this case condition (i) of the theorem is immaterial and so the proof does not depend on d. If \mathfrak{F} is not normal in Δ ,

proceeding as Case I we can show that there exists a nonconstant meromorphic function g of finite order such that g and $g^{(1)} - b$ share the value 0 IM and $g^{(1)}$ does not assume the value c in \mathbb{C} .

If $b \neq c$ then by Lemma 2.3 we get b = (1 + m)c for some positive integer m, which is impossible. Let b = c. Then g does not assume the value 0 and $g^{(1)}$ does not assume the value c. If g is rational, by Lemma 2.5, g becomes a constant, which is impossible. If g is transcendental, by Lemma 2.6 we get T(r,g) = S(r,g), which is a contradiction. Therefore the family \mathfrak{F} is normal.

Finally, suppose that $a_k \neq 1$. We now put $G_k(f) = (1/a_k)H_k(f)$, $b_1 = b/a_k$ and $c_1 = c/a_k$. Then the leading coefficient of $G_k(f)$ is 1 and $b_1/c_1 = b/c$. Also the following hold:

- (i) f d has no zero of multiplicity less than k,
- (ii) f a and $G_k(f) b_1$ share the value 0 IM,
- (iii) $|f(z) a| \ge \varepsilon$ whenever $G_k(f) = c_1$.

Therefore the family \mathfrak{F} is normal in this case as well by the result for $a_k = 1$. This proves the theorem.

Proof of Corollary 1.1. Since $c \neq \alpha$, we choose an ε such that $0 < \varepsilon < |c - \alpha|$. Then from condition (iii) we see that if $H_k(f) = b$ then $|f(z) - \alpha| = |c - \alpha| > \varepsilon$, which is condition (iii) of Theorem 1.1. Hence the corollary follows from Theorem 1.1.

Proof of Corollary 1.2. Interchanging a and b if necessary, we may choose $|a| \leq |b|$. Since $a \neq b$, it follows that $b \neq 0$ and a/b is not a positive integer. We now choose an ε such that $0 < \varepsilon < |b-a|$. So we see that if $H_k(f) = b$ then $|f(z)-a| = |b-a| > \varepsilon$. Hence the corollary follows from Theorem 1.1.

4. Application. In this section we prove a value distribution theorem for a differential polynomial which follows from Theorem 1.1.

THEOREM 4.1. Let f be a transcendental meromorphic function and $a_1, \ldots, a_k \neq 0$ be constants such that $H_k(f^p) = H_k(f^p; a_1, \ldots, a_k)$ is also transcendental, where $p \geq 2$ is an integer. Let a be a finite complex number such that

(i) f has no zero of multiplicity less than k/p,

(ii) f and $H_k(f^p) - a$ share the value 0 IM.

Then for every complex number $b \neq 0, \infty$, the function $H_k(f^p) - b$ has infinitely many zeros.

Proof. We consider the following cases.

CASE I. Let f be of infinite order. Then by Lemma 2.10 there exists a sequence $z_n \to \infty$ such that $f^{\#}(z_n) \to \infty$ as $n \to \infty$. Let $f_n(z) = f(z_n + z)$

for n = 1, 2, ... Then $f_n^{\#}(0) = f^{\#}(z_n) \to \infty$ as $n \to \infty$. So by Marty's criterion no subfamily of $\{f_n\}$ is normal in Δ . Suppose that $H_k(f^p) - b$ has a finite number of zeros. Since $z_n \to \infty$ as $n \to \infty$, there exists a positive integer N such that for $n \ge N$, $H_k(f_n^p) - b$ has no zero in Δ . So by Theorem 1.1 the family $\{f_n : n \ge N\}$ is normal in Δ , which is a contradiction. Therefore $H_k(f^p) - b$ has infinitely many zeros.

CASE II. Let f be of finite order. If f has only finitely many zeros, by Lemma 2.11 we get

$$T(r, f^p) \le \overline{N}(r, \infty; f^p) + \overline{N}(r, b; H_k(f^p)) + S(r, f^p)$$

and so

$$(p-1)T(r,f) \le \overline{N}(r,b;H_k(f^p)) + S(r,f),$$

which shows that $H_k(f^p) - b$ has infinitely many zeros.

Let f have infinitely many zeros, say w_1, w_2, \ldots . We put $g(z) = a_k h^{(k-1)}(z) + a_{k-1} h^{(k-2)}(z) + \cdots + a_1 h(z) - bz$, where $h(z) = \{f(z)\}^p$. Let $g'(z) = H_k(f^p) - b$ have only finitely many zeros. So g has only finitely many critical values and so, by Lemma 2.7, g has only finitely many asymptotic values. We assume, without loss of generality, that $g(0) \neq \infty$. Then by Lemma 2.8 there exists R > 0 such that for $n = 1, 2, \ldots$,

$$\frac{w_n g'(w_n)}{g(w_n)} \bigg| \ge \frac{1}{2\pi} \log \frac{|g(w_n)|}{R} = \frac{1}{2\pi} \log \frac{|bw_n|}{R},$$

so that

$$\left|\frac{w_n g'(w_n)}{g(w_n)}\right| \to \infty \quad \text{as } n \to \infty.$$

On the other hand, for $n = 1, 2, \ldots$ we get

$$\left|\frac{w_n g'(w_n)}{g(w_n)}\right| = \frac{|a-b|}{|b|},$$

which is a contradiction. Therefore $H_k(f^p) - b$ has infinitely many zeros. This proves the theorem.

Acknowledgements. The authors are thankful to the referee for her/his valuable suggestions.

References

- W. Bergweiler, On the zeros of certain homogeneous differential polynomials, Arch. Math. (Basel) 64 (1995), 199-202.
- [2] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355–373.
- [3] H. H. Chen and M. L. Fang, Shared values and normal families of meromorphic functions, J. Math. Anal. Appl. 260 (2001), 124–132.

- J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117-148.
- [5] M. L. Fang and L. Zalcman, Normal families and shared values of meromorphic functions, Ann. Polon. Math. 80 (2003), 133-141.
- G. Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Z. 149 (1976), 29-36.
- [7] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [8] X. J. Huang, Normality of meromorphic functions with multiple zeros and shared values, J. Math. Anal. Appl. 277 (2003), 190–198.
- I. Lahiri and S. Dewan, Differential polynomials and normality, Demonstratio Math. 38 (2005), 579–589.
- [10] J. K. Langley, Proof of a conjecture of Hayman concerning f and f", J. London Math. Soc. 48 (1993), 500-514.
- [11] W. C. Lin and H. X. Yi, Value distribution of meromorphic function concerning shared values, Indian J. Pure Appl. Math. 34 (2003), 535-541.
- [12] X. C. Pang and L. Zalcman, Normality and shared values, Ark. Mat. 38 (2000), 171–182.
- [13] —, —, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325-331.
- [14] J. L. Schiff, Normal Families, Springer, 1993.
- [15] W. Schwick, Sharing values and normality, Arch. Math. (Basel) 59 (1992), 50-54.
- [16] Y. Xu, Normality criteria concerning sharing values, Indian J. Pure Appl. Math. 30 (1999), 287-293.

Department of MathematicsDepartment of MathematicsUniversity of KalyaniBhairab Ganguly CollegeWest Bengal 741235, IndiaKolkata 700056, IndiaE-mail: indr9431@dataone.inE-mail: shyamalidewan@rediffmail.com

Received 23.2.2006 and in final form 31.5.2006

(1658)