Normality and value sharing with a linear differential polynomial

by Indrajit Lahiri (Kalyani) and Shyamali Dewan (Kolkata)

Abstract

We prove some normality criteria for a family of meromorphic functions and as an application we prove a value distribution theorem for a differential polynomial.

1. Introduction, definitions and results. Let \mathbb{C} be the open complex plane and $\mathfrak{D} \subset \mathbb{C}$ be a domain. A family \mathfrak{F} of meromorphic functions defined in \mathfrak{D} is said to be normal, in the sense of Montel, if for every sequence $\left\{f_{n}\right\} \subset \mathfrak{F}$ there exists a subsequence $\left\{f_{n_{j}}\right\}$ such that $\left\{f_{n_{j}}\right\}$ converges spherically and uniformly on compact subsets of \mathfrak{D} to a meromorphic function or ∞.
\mathfrak{F} is said to be normal at a point $z_{0} \in \mathfrak{D}$ if there exists a neighbourhood of z_{0} in which \mathfrak{F} is normal. It is well known that \mathfrak{F} is normal in \mathfrak{D} if and only if it is normal at every point of \mathfrak{D}.

Let f and g be two meromorphic functions defined in \mathfrak{D}. For $a \in \mathbb{C} \cup\{\infty\}$ we say that f and g share the value a IM (ignoring multiplicity) if the a points of f and g coincide in locations only, not necessarily in multiplicities.

For a meromorphic function f we denote by $f^{\#}$ the spherical derivative of f, given by

$$
f^{\#}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

Also, by Δ we denote the unit disc $|z|<1$.
In 1992 W. Schwick [15] first established a connection between the normality and value sharing. He proved the following theorem.

Theorem A ([15]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a_{1}, a_{2}, a_{3} be distinct complex numbers. If for every $f \in \mathfrak{F}$, f and f^{\prime} share a_{1}, a_{2}, a_{3} IM in \mathfrak{D} then \mathfrak{F} is normal in \mathfrak{D}.

[^0]After the work of Schwick [15] it has become a popular problem to investigate the relation between normality and sharing values.

In 1999 Y. Xu [16] proved the following result.
THEOREM B ([16]). Let \mathfrak{F} be a family of holomorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and b be a nonzero complex number. If f and f^{\prime} share $0, b$ IM in \mathfrak{D} for every $f \in \mathfrak{F}$ then \mathfrak{F} is normal in \mathfrak{D}.

In 2000 X. Pang and L. Zalcman [12] proved the following result, which improves Theorems A and B.

Theorem C ([12]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a_{1}, a_{2} be distinct complex numbers. If for every $f \in \mathfrak{F}$, f and f^{\prime} share a_{1}, a_{2} IM in \mathfrak{D} then \mathfrak{F} is normal in \mathfrak{D}.

At this stage two natural questions may be asked:

1. What would be if f and f^{\prime} share a single value?
2. What would be if f^{\prime} is replaced by $f^{(k)}$?

For Question 1 the following result of W. C. Lin and H. X. Yi [11] may be noted.

Theorem D ([11]). Let \mathfrak{F} be a family of meromorphic functions in Δ. If there exist complex numbers a and $b(b \neq 0$ and a / b not a positive integer $)$ such that for every $f \in \mathfrak{F}, f$ and f^{\prime} share a IM in Δ and $|f(z)-a| \geq \varepsilon$ whenever $f^{\prime}(z)=b$, where ε is a positive number, then \mathfrak{F} is normal in Δ.

For Question 2, H. Chen and M. Fang [3] proved the following result.
ThEOREM E ([3]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}, k \geq 2$ be an integer and a, b, c be complex numbers such that $b \neq a$. If for each $f \in \mathfrak{F}, f$ and $f^{(k)}$ share a, b IM in \mathfrak{D} and zeros of $f-c$ have multiplicity at least $1+k$ then \mathfrak{F} is normal in \mathfrak{D}.

The following result of M. Fang and L. Zalcman [5] improved Theorem E.
THEOREM F ([5]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}, k \geq 2$ be an integer and a, b, c be complex numbers such that $b \neq a$. If for each $f \in \mathfrak{F}, f$ and $f^{(k)}$ share a, b IM in \mathfrak{D} and zeros of $f-c$ have multiplicity at least k then \mathfrak{F} is normal in \mathfrak{D}.

Theorem F is a consequence of the following theorem, also due to Fang and Zalcman [5].

THEOREM G ([5]). Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}, k$ be a positive integer and a, b, c, d be complex numbers such that $b \neq a, 0$ and $c \neq 0$. If, for each $f \in \mathfrak{F}$, all zeros of $f-d$ have multiplicity at least k, f and $f^{(k)}-a$ share $0 I M$ and $f(z)=c$ whenever $f^{(k)}(z)=b$, then \mathfrak{F} is normal in \mathfrak{D} for $k \geq 2$, and for $k=1$ so long as $a \neq(1+m) b$, $m=1,2, \ldots$.

In this paper we investigate the situation when the derivative is replaced by a linear differential polynomial with constant coefficients generated by f. Throughout the paper we denote by $H_{k}(f)=H_{k}\left(f ; a_{1}, \ldots, a_{k}\right)$ a linear differential polynomial generated by a meromorphic function f of the following form:

$$
H_{k}(f)=H_{k}\left(f ; a_{1}, \ldots, a_{k}\right)=a_{k} f^{(k)}+a_{k-1} f^{(k-1)}+\cdots+a_{1} f^{(1)}
$$

where k is a positive integer and $a_{1}, \ldots, a_{k} \neq 0$ are constants.
We now state the main result of the paper.
THEOREM 1.1. Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a, b, c, d be finite complex numbers such that $c \neq 0$. If there exists a differential polynomial $H_{k}(f)=H_{k}\left(f ; a_{1}, \ldots, a_{k}\right)$ such that for each $f \in \mathfrak{F}$,
(i) $f-d$ does not have any zero with multiplicity less than k,
(ii) $f-a$ and $H_{k}(f)-b$ share the value $0 I M$,
(iii) $|f(z)-a| \geq \varepsilon$ whenever $H_{k}(f)=c$, where ε is a positive number,
then \mathfrak{F} is normal in \mathfrak{D} for $k \geq 2$, and for $k=1$ so long as $b / c \neq 1+m$ for any positive integer m.

The following example shows that condition (i) of Theorem 1.1 is essential.

EXAMPLE 1.1. Let $f_{n}(z)=n e^{z}-n e^{-z}+1$ for $n=1,2, \ldots$ and $\mathfrak{D}=\mathbb{C}$. We choose $k=2, a=1, b=0, c=1$ and $\varepsilon=1$. Then for any given finite complex number d,

$$
f_{n}(z)-d=\frac{n e^{2 z}+(1-d) e^{z}-n}{e^{z}}
$$

has only simple zeros in \mathfrak{D} (except possibly for only one value of n for which $d=1 \pm 2 n i$. Also $f_{n}(z)-a$ and $f_{n}^{(2)}(z)-b$ share 0 IM and $\left|f_{n}(z)-a\right|=2>\varepsilon$ whenever $f_{n}^{(2)}(z)=c$. Since $f_{n}^{\#}(0)=n \rightarrow \infty$ as $n \rightarrow \infty$, by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal in \mathfrak{D}.

The following example shows that condition (ii) of Theorem 1.1 is essential.

EXAMPLE 1.2. Let $f_{n}(z)=n z^{2}$ for $n=1,2, \ldots$ and $\mathfrak{D}=\Delta$. We choose $k=2, a=0, b=0, d=0$ and $c=1$. Then $f_{n}(z)-d$ has no zero of multiplicity less than $k, f_{n}^{(2)}(z)=2 n$ does not assume the value c, so that condition (iii) of Theorem 1.1 is satisfied but $f_{n}(z)$ and $f_{n}^{(2)}(z)$ do not share the value $a=b=0$. Since $f_{n}(0)=0$ for $n=1,2, \ldots$ and for $z \neq 0$, $f_{n}(z) \rightarrow \infty$ as $n \rightarrow \infty$, it follows that the family $\left\{f_{n}\right\}$ is not normal in \mathfrak{D}.

The following example shows that condition (iii) of Theorem 1.1 is essential.

Example 1.3. Let $f(z)=e^{n z}$ for $n=1,2, \ldots$ and $\mathfrak{D}=\Delta$. We choose $k=2, a=0, b=0, c=1$ and $d=0$. Then conditions (i) and (ii) of Theorem 1.1 are satisfied. Also we see that $f_{n}^{(2)}(z)=c$ implies $\left|f_{n}(z)-a\right|=$ $1 / n^{2} \rightarrow 0$ as $n \rightarrow \infty$ so that we cannot find any $\varepsilon>0$ for which condition (iii) is satisfied. Since $f_{n}^{\#}(0)=n / 2 \rightarrow \infty$ as $n \rightarrow \infty$, by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal in \mathfrak{D}.

The following example shows that the condition $c \neq 0$ cannot be removed from Theorem 1.1.

Example 1.4. Let $f_{n}(z)=e^{n z}-a / n+a$ for $n=1,2, \ldots$ and $\mathfrak{D}=\Delta$. Then f_{n} and $f_{n}^{(1)}$ share the value a IM. Also $f_{n}^{(1)}(z) \neq 0$ in \mathfrak{D} so that condition (iii) of Theorem 1.1 is satisfied for $c=0$. Since

$$
f_{n}^{\#}(0)=\frac{n}{1+|a / n+a|} \rightarrow \infty \quad \text { as } n \rightarrow \infty,
$$

by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal in \mathfrak{D}.
The following example shows that for $k=1$ the condition " $b / c \neq 1+m$ for any positive integer m " of Theorem 1.1 is essential.

Example 1.5. Let b and c be two nonzero numbers such that $b=$ $(1+m) c$, where m is a positive integer. Also let $\left\{\alpha_{n}\right\}$ be a sequence of numbers converging to 0 and $\left|\alpha_{n}\right|<1$ for $n=1,2, \ldots$. We suppose that $\mathfrak{D}=\Delta$ and, for $n=1,2, \ldots$,

$$
f_{n}(z)=c\left(z-\alpha_{n}\right)+\frac{A\left(\alpha_{n}\right)^{m}}{m\left(z-\alpha_{n}\right)^{m}},
$$

where A is a nonzero constant. Then

$$
f_{n}^{(1)}(z)=c-\frac{A\left(\alpha_{n}\right)^{m}}{\left(z-\alpha_{n}\right)^{m+1}}
$$

so that $f_{n}^{(1)}(z)$ does not assume the value c and so condition (iii) of Theorem 1.1 is satisfied. Also

$$
\begin{aligned}
f_{n}(z) & =\frac{m c\left(z-\alpha_{n}\right)^{m+1}+A\left(\alpha_{n}\right)^{m}}{m\left(z-\alpha_{n}\right)^{m}}, \\
f_{n}^{(1)}(z)-b & =-\frac{m c\left(z-\alpha_{n}\right)^{m+1}+A\left(\alpha_{n}\right)^{m}}{m\left(z-\alpha_{n}\right)^{m+1}}
\end{aligned}
$$

so that f_{n} and $f_{n}^{(1)}$ share 0 IM. Again

$$
\begin{aligned}
f_{n}^{\#}(0) & =\frac{\left|c+(-1)^{m+2} / \alpha_{n}\right|}{1+\left|-c \alpha_{n}+(-1)^{m} A / m\right|^{2}} \\
& \geq \frac{1 /\left|\alpha_{n}\right|-|c|}{1+\left\{|c|\left|\alpha_{n}\right|+|A| / m\right\}^{2}} \rightarrow \infty \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal in \mathfrak{D}.

The following corollary not only extends Theorem G to a linear differential polynomial but also removes the hypothesis $a \neq b$.

Corollary 1.1. Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a, b, c, d, α be finite complex numbers such that $b \neq 0$ and $c \neq \alpha$. If there exists a differential polynomial $H_{k}(f)=H_{k}\left(f ; a_{1}, \ldots, a_{k}\right)$ such that for each $f \in \mathfrak{F}$,
(i) $f-d$ does not have any zero of multiplicity less than k,
(ii) $f-\alpha$ and $H_{k}(f)-a$ share the value $0 I M$,
(iii) $f(z)=c$ whenever $H_{k}(f)=b$,
then \mathfrak{F} is normal in \mathfrak{D} for $k \geq 2$, and for $k=1$ so long as $a / b \neq 1+m$ for any positive integer m.

REMARK 1.1. If we choose $a=b$ then from conditions (ii) and (iii) of Corollary 1.1 it is obvious that α and a are lacunary values of $f \in \mathfrak{F}$ and $H_{k}(f)$ respectively.

The following example shows that in Corollary 1.1 the condition $b \neq 0$ is essential.

Example 1.6. Let $f_{n}(z)=e^{n z}$ for $n=1,2, \ldots$ and $\mathfrak{D}=\Delta$. We choose $\alpha=a=b=d=0$. Then $f_{n}(z)-d$ does not have any zero and for any positive integer $k, f_{n}(z)$ and $f_{n}^{(k)}(z)-a$ share the value 0 IM. Since $f_{n}^{(k)}(z) \neq b$, it follows that condition (iii) of Corollary 1.1 is satisfied for any complex number c. Since $f_{n}^{\#}(0)=n / 2 \rightarrow \infty$ as $n \rightarrow \infty$, by Marty's criterion the family $\left\{f_{n}\right\}$ is not normal in \mathfrak{D}.

The following corollary improves Theorems C and F.
Corollary 1.2. Let \mathfrak{F} be a family of meromorphic functions in a domain $\mathfrak{D} \subset \mathbb{C}$ and a, b, c be finite numbers such that $a \neq b$. If there exists a differential polynomial $H_{k}(f)=H_{k}\left(f ; a_{1}, \ldots, a_{k}\right)$ such that for each $f \in \mathfrak{F}$,
(i) $f-c$ does not have any zero of multiplicity less than k,
(ii) f and $H_{k}(f)$ share the values a and $b I M$,
then \mathfrak{F} is normal in \mathfrak{D}.
For standard definitions and notations we refer to [7] and [14].
2. Lemmas. In this section we present some necessary lemmas.

LEMMA 2.1 ([13]). Let \mathfrak{F} be a family of meromorphic functions in Δ having no zero of multiplicity less than k. Suppose there exists a number $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$. If \mathfrak{F} is not normal in Δ then there exist, for each $\alpha(0 \leq \alpha \leq k)$,
(i) a number $r, 0<r<1$,
(ii) points $z_{n},\left|z_{n}\right|<r$,
(iii) functions $f_{n} \in \mathfrak{F}$ and
(iv) positive numbers $\varrho_{n}, \varrho_{n} \rightarrow 0$,
such that $g_{n}(\xi)=\varrho_{n}^{-\alpha} f_{n}\left(z_{n}+\varrho_{n} \xi\right) \rightarrow g(\xi)$ spherically and locally uniformly to a nonconstant meromorphic function g in \mathbb{C}, all of whose zeros have multiplicity at least k and $g^{\#}(\xi) \leq g^{\#}(0)=k A+1$. Moreover the order of g is at most 2.

LEMMA 2.2 ([5]). Let f be a meromorphic function of finite order and $a, b \neq 0$ be distinct complex numbers and $k \geq 2$ be an integer. If f has no zero of multiplicity less than k, f and $f^{(k)}-a$ share the value 0 IM and $f^{(k)}$ does not assume the value b, then f is a constant.

Lemma 2.3 ([5, 8, 11]). Let f be a nonconstant meromorphic function of finite order and let $a, b \neq 0$ be distinct complex numbers. If f and $f^{(1)}-a$ share the value 0 IM and $f^{(1)}$ does not assume the value b in \mathbb{C} then

$$
f(z)=b(z-d)+\frac{A}{m(z-d)^{m}} \quad \text { and } \quad a=(1+m) b
$$

for some $d \in \mathbb{C}$ and some positive integer m.
LEMMA 2.4 ([9]). Let f be a nonconstant rational function, and k and $\lambda \geq 2$ be positive integers such that
(i) f has no zero of multiplicity less than λ and the number of zeros of f (counted with multiplicities), if there are any, is not less than $1+k$,
(ii) if f has any pole then the number of poles of f (counted with multiplicities) is greater than $k /(\lambda-1)$.
Then for every complex number $a \neq 0, \infty$, the function $f^{(k)}+a$ has at least one zero.

Lemma 2.5. Let f be a nonconstant rational function having no zero and k be a positive integer. Then for every complex number $a \neq 0, \infty$, the function $f^{(k)}+a$ has at least one zero.

Proof. Since f has no zero, choosing $\lambda=k+2$ in Lemma 2.4 we obtain the result.

Lemma 2.6 ([7, p. 60]). Suppose that f is meromorphic and transcendental in \mathbb{C}. Then for any positive integer k,

$$
T(r, f) \leq(2+1 / k) N(r, 0 ; f)+(2+2 / k) \bar{N}\left(r, a ; f^{(k)}\right)+S(r, f)
$$

where $a \neq 0, \infty$ is a complex number.
Lemma 2.7 ([2]). Let f be a meromorphic function of finite order. If f has only finitely many critical values then it has only finitely many asymptotic values.

Lemma 2.8 ([1]). Let f be a transcendental meromorphic function such that $f(0) \neq \infty$ and let the set of finite critical and asymptotic values of f be bounded. Then there exists $R>0$ such that

$$
\left|f^{\prime}(z)\right| \geq \frac{|f(z)|}{2 \pi|z|} \log \frac{|f(z)|}{R}
$$

for all $z \in \mathbb{C} \backslash\{0\}$ which are not poles of f.
Lemma 2.9 ($[6,10])$. Let f be a nonconstant meromorphic function in \mathbb{C} and $k \geq 2$ be an integer. If f and $f^{(k)}$ do not assume the value 0 in \mathbb{C} then either $f(z)=e^{A z+B}$ or $f(z)=(A z+B)^{-m}$, where $A \neq 0$ and B are constants and m is a positive integer.

Lemma 2.10 ([4]). Let f be a meromorphic function in \mathbb{C}. If there exists a constant $M>0$ such that $f^{\#}(z) \leq M$ in \mathbb{C} then the order of f is at most 2 .

Lemma 2.11 ([7, p. 57]). Let f be a nonconstant meromorphic function in \mathbb{C} and $H_{k}(f)$ be nonconstant. Then for any complex number $a \neq 0, \infty$,

$$
T(r, f) \leq \bar{N}(r, \infty ; f)+N(r, 0 ; f)+\bar{N}\left(r, a ; H_{k}(f)\right)+S(r, f)
$$

3. Proof of the theorem and corollaries

Proof of Theorem 1.1. Since normality is a local property, without loss of generality we may assume that $\mathfrak{D}=\Delta$. Also since $H_{k}(f-a)=H_{k}(f)$, we may additionally suppose that $a=0$. First we suppose that $a_{k}=1$. We now consider the following cases.

Case I. Let $k \geq 2$ and $d=0$. Suppose that \mathfrak{F} is not normal in Δ. Then by Lemma 2.1 for $\alpha=k$ we can find a sequence $\left\{z_{n}\right\}$ of points with $\left|z_{n}\right|<r$ $(0<r<1)$, a sequence of positive numbers $\varrho_{n} \rightarrow 0$ and a sequence $\left\{f_{n}\right\} \subset \mathfrak{F}$ of functions such that

$$
g_{n}(\xi)=\varrho_{n}^{-k} f_{n}\left(z_{n}+\varrho_{n} \xi\right) \rightarrow g(\xi)
$$

spherically and locally uniformly, where g is a nonconstant meromorphic function in \mathbb{C} and g has no zero of multiplicity less than k. Also $g^{\#}(\xi) \leq$ $g^{\#}(0)=k(A+1)+1$ and g is of order at most 2 , where $A=\max \{|b|,|c|\}$.

We now verify that (I) g and $g^{(k)}-b$ share the value 0 IM , and that (II) $g^{(k)}$ does not assume the value c in \mathbb{C}.

Let $g\left(\xi_{0}\right)=0$. Then by Hurwitz's theorem there exists a sequence $\xi_{n} \rightarrow \xi_{0}$ such that $g_{n}\left(\xi_{n}\right)=0$ for all sufficiently large values of n. So for all sufficiently large values of n we get $f_{n}\left(z_{n}+\varrho_{n} \xi_{n}\right)=0$, and so for all sufficiently large values of $n, H_{k}\left(f_{n}\left(z_{n}+\varrho_{n} \xi_{n}\right)\right)=b$. Hence

$$
g_{n}^{(k)}\left(\xi_{n}\right)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}\left(\xi_{n}\right)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}\left(\xi_{n}\right)=b
$$

Letting $n \rightarrow \infty$ we obtain $g^{(k)}\left(\xi_{0}\right)=b$.

Next let $g^{(k)}\left(\eta_{0}\right)=b$. First we verify that $g^{(k)}(\xi) \not \equiv b$. If $g^{(k)}(\xi) \equiv b$ then g becomes a polynomial of degree at most k. Since g has no zero of multiplicity less than k and g is nonconstant, it follows that g is a polynomial of degree k and so it has a single zero of multiplicity k. Hence we can write

$$
\begin{equation*}
g(\xi)=\frac{b\left(\xi-\xi_{1}\right)^{k}}{k!} \tag{3.1}
\end{equation*}
$$

By a simple calculation we deduce from (3.1) that $g^{\#}(0) \leq k / 2$ if $\left|\xi_{1}\right| \geq 1$ and $g^{\#}(0) \leq|b|$ if $\left|\xi_{1}\right|<1$. Therefore $g^{\#}(0)<k(|b|+1)+1$, which is a contradiction.

Since $g^{(k)}\left(\eta_{0}\right)=b$ and $g_{n}^{(k)}(\eta)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}(\eta)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}(\eta)$ converges uniformly to $g^{(k)}(\eta)$ in some neighbourhood of η_{0}, by Hurwitz's theorem there exists a sequence $\eta_{n} \rightarrow \eta_{0}$ such that for all large values of n,

$$
g_{n}^{(k)}\left(\eta_{n}\right)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}\left(\eta_{n}\right)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}\left(\eta_{n}\right)=b
$$

and so $H_{k}\left(f_{n}\left(z_{n}+\varrho_{n} \eta_{n}\right)\right)=b$. Therefore for all sufficiently large values of n we get $f_{n}\left(z_{n}+\varrho_{n} \eta_{n}\right)=0$ and so $g_{n}\left(\eta_{n}\right)=0$. Letting $n \rightarrow \infty$ we obtain $g\left(\eta_{0}\right)=0$. Therefore (I) is verified.

Let $g^{(k)}\left(\zeta_{0}\right)=c$. Then as above we can show that $g^{(k)}(\zeta) \not \equiv c$. Since $g_{n}^{(k)}(\zeta)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}(\zeta)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}(\zeta)$ converges uniformly to $g^{(k)}(\zeta)$ in some neighbourhood of ζ_{0}, by Hurwitz's theorem there exists a sequence $\zeta_{n} \rightarrow \zeta_{0}$ such that for all large values of n,

$$
g_{n}^{(k)}\left(\zeta_{n}\right)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}\left(\zeta_{n}\right)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}\left(\zeta_{n}\right)=c
$$

and so $H_{k}\left(f_{n}\left(z_{n}+\varrho_{n} \zeta_{n}\right)\right)=c$. Therefore $\left|f_{n}\left(z_{n}+\varrho_{n} \zeta_{n}\right)\right| \geq \varepsilon$ and so $\left|g_{n}\left(\zeta_{n}\right)\right| \geq$ $\varepsilon / \varrho_{n}^{k}$ for all large values of n. This shows that $g\left(\zeta_{0}\right)=\infty$, which is a contradiction. So (II) is verified.

If $b \neq c$, by Lemma $2.2, g$ becomes a constant, which is impossible. Let $b=c$. Then from (I) and (II) we see that g does not assume the value 0 and $g^{(k)}$ does not assume the value $c \neq 0$. If g is transcendental, by Lemma 2.6 we get $T(r, g)=S(r, g)$, which is a contradiction. If g is rational, by Lemma $2.5, g$ becomes a constant, which is impossible. Therefore the family \mathfrak{F} is normal.

Case II. Let $k \geq 2$ and $d \neq 0$. Suppose that $\mathfrak{F}_{1}=\{f-d: f \in \mathfrak{F}\}$. If \mathfrak{F}_{1} is not normal in Δ, by Lemma 2.1 for $\alpha=0$ we can find a sequence $\left\{z_{n}\right\}$ of points with $\left|z_{n}\right|<r(0<r<1)$, a sequence of positive numbers $\varrho_{n} \rightarrow 0$ and a sequence $\left\{f_{n}-d\right\} \subset \mathfrak{F}_{1}$ of functions such that

$$
g_{n}(\xi)=f_{n}\left(z_{n}+\varrho_{n} \xi\right)-d \rightarrow g(\xi)
$$

spherically and locally uniformly, where g is a nonconstant meromorphic function in \mathbb{C} and g has no zero of multiplicity less then k. Further g is of order at most 2.

We now verify that (III) $g^{(k)}$ does not assume the value 0 in \mathbb{C}, and that (IV) $g+d$ does not assume the value 0 in \mathbb{C}.

Let $g^{(k)}\left(\xi_{0}\right)=0$ for some $\xi_{0} \in \mathbb{C}$. Also we see that $g^{(k)}(\xi) \not \equiv 0$, for otherwise g becomes a polynomial of degree less than k, which is impossible because g is nonconstant and does not have any zero of multiplicity less than k.

Since in a neighbourhood of ξ_{0},

$$
g_{n}^{(k)}(\xi)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}(\xi)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}(\xi)-\varrho_{n}^{k} b
$$

converges uniformly to $g^{(k)}(\xi)$, by Hurwitz's theorem there exists a sequence $\xi_{n} \rightarrow \xi_{0}$ such that for all large values of n,

$$
g_{n}^{(k)}\left(\xi_{n}\right)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}\left(\xi_{n}\right)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}\left(\xi_{n}\right)-\varrho_{n}^{k} b=0
$$

and so for all large values of n we get $H_{k}\left(f_{n}\left(z_{n}+\varrho_{n} \xi_{n}\right)\right)=b$. Therefore for all large values of n we obtain $f_{n}\left(z_{n}+\varrho_{n} \xi_{n}\right)=0$ and so $g_{n}\left(\xi_{n}\right)+d=0$. Letting $n \rightarrow \infty$ we get

$$
\begin{equation*}
g\left(\xi_{0}\right)+d=0 \tag{3.2}
\end{equation*}
$$

Again since in a neighbourhood of ξ_{0},

$$
g_{n}^{(k)}(\xi)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}(\xi)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}(\xi)-\varrho_{n}^{k} c
$$

converges uniformly to $g^{(k)}(\xi)$, by Hurwitz's theorem there exists a sequence $\chi_{n} \rightarrow \xi_{0}$ such that

$$
g_{n}^{(k)}\left(\chi_{n}\right)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}\left(\chi_{n}\right)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}\left(\chi_{n}\right)-\varrho_{n}^{k} c=0
$$

for all large values of n. Hence for all large values of n we deduce that $H_{k}\left(f_{n}\left(z_{n}+\varrho_{n} \chi_{n}\right)\right)=c$. So for all large values of n,

$$
\left|f_{n}\left(z_{n}+\varrho_{n} \chi_{n}\right)\right| \geq \varepsilon, \quad \text { i.e., } \quad\left|g_{n}\left(\chi_{n}\right)+d\right| \geq \varepsilon
$$

Letting $n \rightarrow \infty$ we obtain $\left|g\left(\xi_{0}\right)+d\right| \geq \varepsilon$, which contradicts (3.2). Therefore (III) is verified.

Next let $g\left(\beta_{0}\right)+d=0$. Then by Hurwitz's theorem there exists a sequence $\beta_{n} \rightarrow \beta_{0}$ such that for all large values of $n, f_{n}\left(z_{n}+\varrho_{n} \beta_{n}\right)-d=g_{n}\left(\beta_{n}\right)=-d$ and so $f_{n}\left(z_{n}+\varrho_{n} \beta_{n}\right)=0$. Hence for all large values of n we deduce that $H_{k}\left(f_{n}\left(z_{n}+\varrho_{n} \beta_{n}\right)\right)=b$ and so

$$
g_{n}^{(k)}\left(\beta_{n}\right)+a_{k-1} \varrho_{n} g_{n}^{(k-1)}\left(\beta_{n}\right)+\cdots+a_{1} \varrho_{n}^{k-1} g_{n}^{(1)}\left(\beta_{n}\right)=b \varrho_{n}^{k}
$$

Letting $n \rightarrow \infty$ we get $g^{(k)}\left(\beta_{0}\right)=0$, which contradicts (III). Therefore (IV) is verified.

Now by Lemma 2.9 we see that either $g(\xi)=-d+e^{A z+B}$ or $g(\xi)=$ $-d+1 /(A z+B)^{m}$. Since $d \neq 0$, it follows that g has only simple zeros, which is impossible. Therefore \mathfrak{F}_{1} and so \mathfrak{F} is normal.

Case III. Let $k=1$. In this case condition (i) of the theorem is immaterial and so the proof does not depend on d. If \mathfrak{F} is not normal in Δ,
proceeding as Case I we can show that there exists a nonconstant meromorphic function g of finite order such that g and $g^{(1)}-b$ share the value 0 IM and $g^{(1)}$ does not assume the value c in \mathbb{C}.

If $b \neq c$ then by Lemma 2.3 we get $b=(1+m) c$ for some positive integer m, which is impossible. Let $b=c$. Then g does not assume the value 0 and $g^{(1)}$ does not assume the value c. If g is rational, by Lemma $2.5, g$ becomes a constant, which is impossible. If g is transcendental, by Lemma 2.6 we get $T(r, g)=S(r, g)$, which is a contradiction. Therefore the family \mathfrak{F} is normal.

Finally, suppose that $a_{k} \neq 1$. We now put $G_{k}(f)=\left(1 / a_{k}\right) H_{k}(f), b_{1}=$ b / a_{k} and $c_{1}=c / a_{k}$. Then the leading coefficient of $G_{k}(f)$ is 1 and b_{1} / c_{1} $=b / c$. Also the following hold:
(i) $f-d$ has no zero of multiplicity less than k,
(ii) $f-a$ and $G_{k}(f)-b_{1}$ share the value 0 IM ,
(iii) $|f(z)-a| \geq \varepsilon$ whenever $G_{k}(f)=c_{1}$.

Therefore the family \mathfrak{F} is normal in this case as well by the result for $a_{k}=1$. This proves the theorem.

Proof of Corollary 1.1. Since $c \neq \alpha$, we choose an ε such that $0<\varepsilon<$ $|c-\alpha|$. Then from condition (iii) we see that if $H_{k}(f)=b$ then $|f(z)-\alpha|=$ $|c-\alpha|>\varepsilon$, which is condition (iii) of Theorem 1.1. Hence the corollary follows from Theorem 1.1.

Proof of Corollary 1.2. Interchanging a and b if necessary, we may choose $|a| \leq|b|$. Since $a \neq b$, it follows that $b \neq 0$ and a / b is not a positive integer. We now choose an ε such that $0<\varepsilon<|b-a|$. So we see that if $H_{k}(f)=b$ then $|f(z)-a|=|b-a|>\varepsilon$. Hence the corollary follows from Theorem 1.1.
4. Application. In this section we prove a value distribution theorem for a differential polynomial which follows from Theorem 1.1.

THEOREM 4.1. Let f be a transcendental meromorphic function and $a_{1}, \ldots, a_{k} \neq 0$ be constants such that $H_{k}\left(f^{p}\right)=H_{k}\left(f^{p} ; a_{1}, \ldots, a_{k}\right)$ is also transcendental, where $p \geq 2$ is an integer. Let a be a finite complex number such that
(i) f has no zero of multiplicity less than k / p,
(ii) f and $H_{k}\left(f^{p}\right)-a$ share the value $0 I M$.

Then for every complex number $b \neq 0, \infty$, the function $H_{k}\left(f^{p}\right)-b$ has infinitely many zeros.

Proof. We consider the following cases.
Case I. Let f be of infinite order. Then by Lemma 2.10 there exists a sequence $z_{n} \rightarrow \infty$ such that $f^{\#}\left(z_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. Let $f_{n}(z)=f\left(z_{n}+z\right)$
for $n=1,2, \ldots$ Then $f_{n}^{\#}(0)=f^{\#}\left(z_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. So by Marty's criterion no subfamily of $\left\{f_{n}\right\}$ is normal in Δ. Suppose that $H_{k}\left(f^{p}\right)-b$ has a finite number of zeros. Since $z_{n} \rightarrow \infty$ as $n \rightarrow \infty$, there exists a positive integer N such that for $n \geq N, H_{k}\left(f_{n}^{p}\right)-b$ has no zero in Δ. So by Theorem 1.1 the family $\left\{f_{n}: n \geq N\right\}$ is normal in Δ, which is a contradiction. Therefore $H_{k}\left(f^{p}\right)-b$ has infinitely many zeros.

Case II. Let f be of finite order. If f has only finitely many zeros, by Lemma 2.11 we get

$$
T\left(r, f^{p}\right) \leq \bar{N}\left(r, \infty ; f^{p}\right)+\bar{N}\left(r, b ; H_{k}\left(f^{p}\right)\right)+S\left(r, f^{p}\right)
$$

and so

$$
(p-1) T(r, f) \leq \bar{N}\left(r, b ; H_{k}\left(f^{p}\right)\right)+S(r, f)
$$

which shows that $H_{k}\left(f^{p}\right)-b$ has infinitely many zeros.
Let f have infinitely many zeros, say w_{1}, w_{2}, \ldots. We put $g(z)=$ $a_{k} h^{(k-1)}(z)+a_{k-1} h^{(k-2)}(z)+\cdots+a_{1} h(z)-b z$, where $h(z)=\{f(z)\}^{p}$. Let $g^{\prime}(z)=H_{k}\left(f^{p}\right)-b$ have only finitely many zeros. So g has only finitely many critical values and so, by Lemma $2.7, g$ has only finitely many asymptotic values. We assume, without loss of generality, that $g(0) \neq \infty$. Then by Lemma 2.8 there exists $R>0$ such that for $n=1,2, \ldots$,

$$
\left|\frac{w_{n} g^{\prime}\left(w_{n}\right)}{g\left(w_{n}\right)}\right| \geq \frac{1}{2 \pi} \log \frac{\left|g\left(w_{n}\right)\right|}{R}=\frac{1}{2 \pi} \log \frac{\left|b w_{n}\right|}{R}
$$

so that

$$
\left|\frac{w_{n} g^{\prime}\left(w_{n}\right)}{g\left(w_{n}\right)}\right| \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

On the other hand, for $n=1,2, \ldots$ we get

$$
\left|\frac{w_{n} g^{\prime}\left(w_{n}\right)}{g\left(w_{n}\right)}\right|=\frac{|a-b|}{|b|},
$$

which is a contradiction. Therefore $H_{k}\left(f^{p}\right)-b$ has infinitely many zeros. This proves the theorem.

Acknowledgements. The authors are thankful to the referee for her/his valuable suggestions.

References

[1] W. Bergweiler, On the zeros of certain homogeneous differential polynomials, Arch. Math. (Basel) 64 (1995), 199-202.
[2] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355-373.
[3] H. H. Chen and M. L. Fang, Shared values and normal families of meromorphic functions, J. Math. Anal. Appl. 260 (2001), 124-132.
[4] J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966), 117-148.
[5] M. L. Fang and L. Zalcman, Normal families and shared values of meromorphic functions, Ann. Polon. Math. 80 (2003), 133-141.
[6] G. Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Z. 149 (1976), 29-36.
[7] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[8] X. J. Huang, Normality of meromorphic functions with multiple zeros and shared values, J. Math. Anal. Appl. 277 (2003), 190-198.
[9] I. Lahiri and S. Dewan, Differential polynomials and normality, Demonstratio Math. 38 (2005), 579-589.
[10] J. K. Langley, Proof of a conjecture of Hayman concerning f and $f^{\prime \prime}$, J. London Math. Soc. 48 (1993), 500-514.
[11] W. C. Lin and H. X. Yi, Value distribution of meromorphic function concerning shared values, Indian J. Pure Appl. Math. 34 (2003), 535-541.
[12] X. C. Pang and L. Zalcman, Normality and shared values, Ark. Mat. 38 (2000), 171-182.
[13] -, -, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325-331.
[14] J. L. Schiff, Normal Families, Springer, 1993.
[15] W. Schwick, Sharing values and normality, Arch. Math. (Basel) 59 (1992), 50-54.
[16] Y. Xu, Normality criteria concerning sharing values, Indian J. Pure Appl. Math. 30 (1999), 287-293.

Department of Mathematics
University of Kalyani
West Bengal 741235, India
E-mail: indr9431@dataone.in

Department of Mathematics
Bhairab Ganguly College
Kolkata 700056, India
E-mail: shyamalidewan@rediffmail.com

[^0]: 2000 Mathematics Subject Classification: 30D45, 30D35.
 Key words and phrases: meromorphic function, differential polynomial, normality.

