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Holder continuity of weak solutions to
nondiagonal singular parabolic systems of three equations

by DMITRY PORTNYAGIN (Lviv)

Abstract. Holder continuity of weak solutions is studied for a nondiagonal parabolic
system of singular quasilinear differential equations with matrix of coefficients satisfying
special structure conditions. A technique based on estimating linear combinations of the
unknowns is employed.

1. Introduction. In the present paper we study the Hélder continuity
of weak solutions to a quasilinear nondiagonal parabolic system of three
singular equations in divergence form under special assumptions upon its
structure.

It is well known that the De Giorgi—-Nash—Moser estimates are no longer
valid in general for elliptic systems; the latter can be regarded as a special
case of parabolic systems. An example of an unbounded solution to a linear
elliptic system with bounded coefficients was built up by De Giorgi in [11].
Another example is due to J. Necas and J. Soucek who constructed a non-
linear elliptic system with coefficients sufficiently smooth, but with a weak
solution not belonging to W22, These two and many other examples illus-
trate that the regularity problem for elliptic systems is far more complicated
than for second order elliptic equations and that the smoothness properties
of solutions are not only determined by the smoothness of data, but strongly
depend upon the structure of the system.

Until now a priori estimates of De Giorgi type have been extended only
to a special class of parabolic systems of equations, the so-called weakly
coupled systems.
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206 D. Portnyagin

There exists yet another approach to establishing a priori estimates for
a parabolic system of second order differential equations. This approach is
used in the book by Ladyzhenskaya, Solonnikov and Ural’tseva [13], in the
book by DiBenedetto [5] and in the papers [18] and [16]. It concerns not
each component separately, but the sum of the squares of the components
of a solution. This applies to diagonal systems which on freezing the leading
coefficients and discarding the right-hand sides and lower order terms reduce
to just one single equation rewritten several times in turn for all the unknown
functions; see also [8], [10], [9], [6], [3, p- 27], |2, pp- 32-33] and [1].

The technique we are utilizing has been employed earlier in [14] for semi-
linear systems (see also [7], [15] and [12]), and consists in switching to new
functions, for each of which the estimate is established in a conventional way,
whence the final conclusion about each component of the vector function so-
lution follows. This technique allows for extension to nondiagonal systems
with nonlinearities in the spatial derivatives also.

The main idea of our approach is as follows: instead of trying to establish
estimates for each component of a solution (u, v, w) we introduce some linear
combinations of the components of the solution:

Hy = aju+ f1v + w,
(1.1) Hy = asu + fov + w,
Hj3 = azu + B3v + w,

or more generally some functions H of ¢, x, u, v, w, for each of which the
estimates hold and from whose estimates we shall be able to derive estimates
for the components of (u, v, w).

In the present paper, restricting ourselves to systems of second order
equations in divergence form with a special structure, we demonstrate Hélder
continuity of solutions to a quasilinear singular parabolic system of three
equations in which coupling occurs in the leading derivatives and whose
leading coefficients depend on z, u, v, w and uy, vz, Wy.

2. Basic notations and hypotheses. We shall be concerned with a
system of three equations of the form

0
Ut — (A(l)(x, u>v7w7uw>vw>wr)) = B(l)(maua U, W, Ug, Vg, wm)a

8@- v

NG

(2.1) Ut — i xau>v7w7uw>vw>wr)) :B(2)($auavawauaﬂavrawm)a

0
wy — (A(3)<xa u>v7w7uw>vw>wr)) = B(S)(maua U, W, Ug, Vg, wm)a

8952- v
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for x € @ = (0,7] x §2. Boundary conditions of the Dirichlet type are
assumed:

(2.2) {(u —g1,v — g2, w — g3)(x,t) € Wol’p(Q) a.e. t € (0,7),
(u, v, w)(z,0) = (uo, vo, wo) ().
Solutions to system (2.1) with Dirichlet data (2.2) are defined as follows.
DEFINITION 2.1. A measurable bounded vector function (u!,u? u3) =
(u,v,w) is called a weak solution of problem (2.1)—(2.2) if
w e C(0,T; L*(Q)) N LP(0, T; WHP(Q)) N L®(Q)

and for all ¢t € (0,7,

Sujgoj(:c,t)da:—i- SS {—UjSOjt“‘AZ(-j)ngxi}dl'dT
Q Qx(0,t]

= Suéapj(:c,O) dr + SS Bly; dxdr
Q Qx(0,1]
for all bounded test functions
¢ € W0, T; L*(Q)) N LP(0, T; Wy *(Q)), ¢ > 0.
The boundary condition in (2.2) is meant in the weak sense.

Let us also define the boundary norms that will come in useful in further
considerations.

DEFINITION 2.2. Let {2 be a domain in R™ (here n is any natural number)
and 02 a portion of its boundary; let W ({2) be any Sobolev space. For a
function u defined on 9f2 we set

[ullwoo) = igf 1llw (),

where the infimum is taken over all functions 1 € W ({2) such that ¥ (x) =
u(z) a.e. on 9f2. We denote by W (9f2) the function space for which the
aforementioned norm is finite.

Let us describe the notions, quantities and functions that will appear in
this paper.

Here and onward we adopt the following notations: @ = (0,7] x §2;
S =00 x(0,T]; 0Q = {2 x {0}} U{02 x (0,T]}; 2 is a bounded domain
in R” with piecewise smooth boundary; z € 2; T > 0;t € (0,T]; 1 < p < 2;
p<mn;t=1,...,n; 5 = 1,2,3 and summation convention over repeated
indices is assumed; u,v,w € C(0,T; L%(£2)) N LP(0, T; WiP(02)); Wol’p((?)
is the space of functions in W1P(§2) vanishing on 9{2 in the sense of traces
for a.e. t € (0,T]. Throughout the paper, for brevity, |s| and |s;| denote the
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distance in 3n-dimensional and n-dimensional Euclidean spaces respectively,

S 6@ = ()

7j=11i=1 =1

where S‘g stands for a 3n-component vector.

By parabolicity of system (2.1) it is meant that the part without time
derivatives is elliptic. The notion of ellipticity of a system of differential
equations is understood in the following sense (see [4]): there are A > 0 and
0 < F = F(x) € LP/®=1)(Q) such that for all SZ € R¥, ry € R? and
r € R",

(2.3) Al(-j)(x,r, s)sg > As|P —

It should be emphasized that we impose neither the Legendre nor the
Legendre-Hadamard condition. Both produce an obstacle from the technical
point of view in the approach we take, while the ellipticity condition (2.3)
turns out to be the most appropriate for our ends.

Moreover, it is assumed that Agj) : 2 x R3 x R3" — R are measurable
functions subject to the following growth condition: there exists A2 > 0 such
that for all s/ € R3", 77 € R3 and x € R",

(2.4) AP (@, 5)| < Aafsp Y,
and to the following structure conditions: there exist «;, ; € R with

a1 Qg Qs

det| g1 f[2 B3 | #0
1 1 1

such that for all Sj e R, ri € R3 and z € R",

(2.5a) |041Al( (x,r,8) +ﬁ1A( (x,r,s)+ A( (x,7,8)

— (7, 8) (o s) +ﬁ18 + 83| < &(z, 7, 8) + Fi,
(2.5b) |a2AZ(-1)(:13,r, s) +62A (a: T, S) +A (a: T, S)
r,5)

— Xa(z,7,8) (s} —i—ﬁQs + 83)| < &o(x, 7, 8) + Fo,
(2.5¢) |a3A§1)(:E,r, s) +63A (:1: T, S) +A ( )8

— \s3(z,7, 8) (azst + Bss? + s2)| < &3(x, 7, 5) + F;
here \; = Aj(x,r,s) > 0 and & = &j(x,r,s) > 0 are some measurable

2 x R3 x R3" — R functions of z, u, v, w, Uy, vy, W, on which the following
growth conditions are imposed: there exist A;, A3 > 0 such that for all
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s € R, ri ¢ R? and z € R™,
(2.6) 0 < Aylajsi + 8587 + s3P7 < Nj(w,r, 8) < Ao|aysi + Bjsi + 55772
p(p —1)(1 — K1)

2.7 AGEEE] S V? 0< = )
( ) éj(‘r T 8) £0|S| v (n+p)
where £ is a positive number;

(p+n)

2. F; L° = 1
moreover
(2.9) at, B2 > 1
(2.10) g, a3, f1fs <1
(2.11) 3max[1/p, Ao max[a;*, B3, as, B3] < A1/(2Pp);
(2.12) 680 < A1/(2P'p).

REMARK 1. It is not difficult to check by direct calculation, taking into
account the fact that F; € Le+n)/(p=1)(1=K1)) that the structure conditions
(2.5a)—(2.5¢) along with (2.6) and (2.12) imply the ellipticity condition (2.3)
with A = A1 /(2PT'p) and F = Oy (|Fy| + |Fo| + |F3|)P/ P~ 4 Cy, where C4 o
are numbers depending only on the data.

REMARK 2. When aq, 82 — o0 and as, as, 81, 03 = 0 our system turns
into a diagonal one with a slight perturbation. Earlier such systems (called
weakly nondiagonal systems) were studied in [19], [17], [20] for the degenerate
case.

The right-hand sides B’(x,r, s) are assumed to be measurable 2 x R3 x
R3” — R functions satisfying: there exist

€€ <0,min {p;(l — m),p — 1”
(n+p)
and Az > 0 such that for all sg eR?, ri € R? and = € R,
(2.13) | B (x,r,s)| < As|s|°.
In what follows for brevity we use the notations:
~ up(z), x€,t=0,
o= {gl(z,t), z €90, te (0,T):
- {vo(x), ze 2, t=0,

T\ galat), zedn, te(0,T);
~ {U)O(CC), $EQ,t:0,
wn =

’ g3(z,t), =€, te(0,T).
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Let us introduce in addition the following function space:
DEFINITION 2.3.
W(Q) = LV (W' (0,T); 2) n IP(0, T, W'(92)), o =

i.e. a function u belongs to W(Q) if the integral
V) el + 157ulP + Juf” + [uf)
0

is finite.

The functions g;j(x,t), (uo,vo, wo)(x) in boundary data (2.2) are assumed
to satisfy

U € W(Q), To € W(Q), @€ W(Q);

and, in addition, for some a4y € (0,1) and ag € (0,1) their values on 0Q
satisfy

g;(x,t) € H*9/P(S), (ug, vy, wo)(x) € H* (2 x {0}),

where H% /P and H® denote Holder spaces with exponents agy and o
respectively.

3. Estimate for the sum of squares. We need to estimate the integral
of the sum of the squares of the spatial derivatives of the components of a
solution of problem (2.1)—(2.2).

Our goal in this section is to prove the following statement.

THEOREM 3.1. Let (u,v,w) be a solution to problem (2.1)—(2.2)and sup-
pose the hypotheses (2.5a)—(2.5¢), (2.6), (2.7)—(2.12) and (2.13) are satisfied.
Then

sup | Ju— o2+ sup | [v—50l + sup | |w— il
o<t<T 0 o<t<T 0 o<t<T )

T
+ \ V(Y@ =) + 1V (0 = )P + [V (w — @o)P) <
02

and
T

§§ (vul? + Vol + |Vul) < ©

wﬁfh a constant C depending only on the data: F}, HaO”'VT/(aQ)’ ||50H'V[7(8Q),
||w0||ﬁ/(8@)7 b, n, Ala A27 507 K1, Oj, ﬁja g, meSQa and anependent Of u, v

and w.
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REMARK 3. In the formulation of the theorem and in its proof, by ug, 0o
and w( are meant any functions from W(Q) coinciding with g, vy and wy
on the parabolic boundary. Therefore the final statement remains valid with
the boundary norms.

Proof. Multiply the first equation of (2.1) by u—uy, the second by v — vy,
and the third by w — wg. After adding the results and integrating over {2 x
(0,t) we obtain

31 | w—u)*+ | Sw-0)?+ | S(w— @)’
(1) () ()

+ \ § fdor [u — ol + | § [Boe| [v = Tol + § | [w@or] |w — o,
00 00 00
where integration by parts with respect to the time variable was performed
in the first two terms and the initial condition was taken into account. By
the ellipticity condition (2.3) and growth conditions (2.4), the second group
of terms on the left admits an estimate

t
— - -

11 AYY (u =) + APV (v — Tp) + AOV (w — )
0%

= [ {(ADvu + ADvy + ACVw — ADVE — AP VY, — AC Vi)
(0]

t
VAVl + [VolP + [VwP) = | | A(VuP~ + Vo=t + [V
02 09

v

O e+ O e

t
x (|Vuo| + Vol + [Vuwol) = | | (|| + [Fo| + | F3))
00

v
O ey

| 3A(Vul + Vol + [Vl
02

OL,-au-

M (I Vuol? + [Vuol? + [Vuw[?) —
(0]
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>

O ey

} 3AV (u = @0)|” + [V (v = G) P + |V (w — @) [”)
2

t

— | § Clo. M ([Vuol? + [Voo P + [Vuwl?) - C.

09
Here use is also made of Young’s inequality and the inequality
(3.2) la+ 0P < C(p)(|al? + |bP), Va,beR.

In view of Young’s inequality, the Sobolev inequality and growth condition
(2.13) the first three terms on the right of (3.1) can be estimated as follows:

t t
1B — ol + | § 1B o - ol +§ § 1B Jw — o]
(0] 09 09

O e

t
< [V (0vul + Vol + [Vw])*(ju — @G| + [v = To| + |w — @ol)
0

< 8101(e.p) | § (IV (= o) | + [V (v = T)| + [V (w — @p)|)?
02

+02Ca(p) | | (| = @o| + [0 = To| + |w — @ol)”
092
+ C(C1,2, 61,2, o, Vo, Wo, mes Q)
t
<85\ | (IV(u =) + V(v = T0)| + |V (w — @o)| )P + Cs.
092
Here it has been taken into account that /p 4+ 1/p < 1. In much the same
way we can estimate the last three integrals on the right-hand side of (3.1):
t t t
V1ol Ju — ol +  § %ot [v = To| + § § [@oe Jw — @i
09 09

09
t

< S S(’ﬂod + [Pot| + |wot]) (|u — To| + |v — Vo| + |w — wo))
00

! 1/p
< || [woe| + [vot| + |wor| Hp',Q(S | (Ju — o] + v —To| + |w — @0\)1”)
0

<84\ § (IV(u = T0)| + V(0 = To)| + |V (w — o) )7
022

+ C4(IH€SQ, 645 aOa 507 /&70)
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Collecting the above estimates, from (3.1) we get

[ 410w —10)% + (v —T0)? + (w — @0)?]
)

+ § 1 3V (= @) [P + [V (0 = 50) [P + [V (w — @) )
0

<05\ § IV (u—a0)” + |V (0 = 00) [P + [V (w — @o)[")
048

+ Cs(mes @, F, 65, o, Vo, Wo).
Choosing 65 = i)\ yields

(33) | 5llu—a0)®+ (v = T)* + (w — @)

+ [ § IV (=) + [V (0 = T0) [P + |V (w — o) P)
0N

S C4(IH€SQ, F7 657 607 :607 {EO)

Now we take the supremum over ¢ on the left-hand side of (3.3) to obtain

sup | Ju—iol2+ sup | [o—%0l + sup | |w— il
o<t<T ) o<t<T 0 o<t<T 0

T
+ S S (IV(u—uo)[" + V(v —00)[" + [V(w — wo)[") < C5

with a constant Cs dependlng onn, p, €, A\, Fj, p, n, A1, Aa, &, k1, o, Bj,

g, mes @ and, by Remark 3, on the boundary norms Hﬂo”ﬁ/(@@)’ H%HW(aQ)

and H{DOHW(aQ) of the functions in the boundary conditions only. Hence the
second statement of the theorem is self-evident. m

4. Holder continuity of weak solutions

Interior reqularity. We introduce the number ¢ > 1 such that

(p+n)

qg= , k1 €(0,1),
[ T 1€(0,1)
and the numbers ¢ and « satisfying
qp(1
(4.1) g= PR P

g—1 n
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Let K, be the n-dimensional cube centered at the origin with edge 2p:
K,={zeR"| mzaxla:i\ < o},
and let [z + K, be its translate,
(20 + K, = {z € R" | mlax\xi — z0i| < 0};
let Q(0, 0) be a cylinder of height 6 built over the cube K,:
Q(0, 0) = K, x {-0,0},

and [(zo, o) + Q(0, 0)] be its translate,

[(z0, o) + Q(0, 0)] = [wo + K] x {to — 0, t0};
let

Ai@ ={zexo+ K, | (H(z,7) — k)+ > 0},

where ¢ and 6 are positive numbers so small that [(zo,t0) + Q(0, 0)] C Q;
set

(4.2) Mki = esssup |[(H — k)| <6 <0y,
[(z0,t0)+Q(8,0)]

where 09 = Ay /45 is a positive parameter, and A; and Ay are from (2.6);
let ¢(x,t) be a piecewise smooth cutoff function in [(xg, %) + Q(0, 0)] with

C(z,t) €[0,1], [D{] < oo fora € [zg+ Ky,

(4.3) C(z,t) =0 for x & [xo + K,

For every ¢ € L'(Q) and 0 < h < T we introduce the Steklov averages:

1t+h
on(mt) =4 5 Ve )dr te (0.1 -1,
t
0, t>T—h,

for all 0 < ¢ < T. Recall that for ¢ € LI(£2 x (0,7)) we have ¢, — ¢ as
h —0in L9(£2 x (0,T —¢)) for every € € (0,T'); and for ¢ € C(0,T; L4(12)),
on(t) — @(t) as h — 0 in LY({2) for every t € (0,T —¢), Ve € (0,T).

According to the methodology set forth in [5], for Holder continuity of
weak solutions (Theorems 4.3 and 4.6 below) it is necessary to show the
following propositions, Theorems 4.1-4.5:

THEOREM 4.1 (Local energy estimates). Let (u,v,w) be a bounded solu-
tion to the system and H = H; be as in (1.1). There exist constants C and
do that can be determined a priori only in terms of the data such that for
every cylinder [(zo,t0) + Q(0,0)] C Q and for every level k satisfying (4.2)
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we have the estimate

(4.4) sup | (H-K)i(z,t)da
to—0<t<to [$0+Kg]
+C! i IV(H — k)+(|P da dr
[(w0,t0)+Q(8,0)]
< | H-wict@t-0de+C | (H-KLVC¢Pdadr

[0+ K] (@0.t0)+Q(6.,0)]
to
~ ~ p(1+K)/q
+¢ ] (H—k)i(p_lgddeJrC{ | |A§Q(T)|d7} .
[(z0,t0)+Q(8,0)] to—6

Proof. 1t suffices to prove (4.4) for the cube Q(6, o) since without loss of
generality (z,tp) may be assumed to be the origin. Acting as in the previous
section, multiply the first equation of system (2.1) by a (o = a1, g, @), the
second by 3 (8 = B1, B2, F3), then add the results and choose as test functions

¢ =+(Hp — k)",

with ((z,t) satisfying (4.3). After integrating in 7 over (—6,¢) with ¢ €
0,0), lettlng h tend to zero, and making use of the structure conditions
5a)—(2.5¢c) for the leading terms we get

(—
(2.
(4.5) | (@AW 484B 4 A®) £V (H—k)+(Php(H—k)+(P V() da dr

>A | [VHPC dedr

— Ay | IV, Vo, Vot DOm0/ 9\ G ]| da dr
Kox(—0,t)

-\ FvH|dzdr
K,yx(—0,t)

—pAy | |VHP N H - k)P V(| da dr
Kox(—0,t)

—pdy |} IVu, Vo, Vup OO0 (k) (P V¢ dadr
Kox(—0,t)

—p \ PEH-k)L V| dudr.
K,x(—0,t)
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Here and onward for brevity we write |Vu, Vo, Vw| = (|Vul? + |Vu|? +
|Vw|2)1/2. Let us estimate various terms of the latter expression by Young’s
inequality.

For the first group of terms in (4.5), we get

(4.6) I\ 1V, Vo, Vu = D0=m)/(0)| 7 H| (P da dr
K,x(—0,t)
< Calp, ArAg) | |V, Vo, Vo P00\ [(H — k), > 0] dadr
Kyx(—0,t)

+(A1/642) | [VH[PCP dxdr

K,ox(—0,t)
(4.7) W\ FIvHI(Pdodr
K,ox(—0,t)
< Cs(p, M1, 4s) | FPOIN[(H = k)y > 0] dwdr

Kox(=0,1)

+(A1/6) |\ |VHPCP dwdr.
Kox(—0,t)

For the second group of terms in (4.5) we obtain the following estimates:
48) p |} IVHPH - k)P V| dudr
K,x(—0,t)
< Culp, M, 4o) N\ (H—=R)EIVCP dadr
Kyx(—0,t)
+(A1/642) | |VHIPCP da dr;
Kox(—0,t)
49 p | [Vu, Vo, Ve DO=s)/0F0) (7 — ) (P V(| dadr
K,x(—0,t)
<(p—-1) “ |Vu, Vv, Vw|p2(1_“1)/(”+p)x[(H —k)+ > 0]dzdr
K,x(—0,t)
+ | #-REVCP dadr
K,x(—0.t)
4100 p || F(H -k V(| dadr
Kyx(—0,t)

< | #H-REV¢Pdedr+(p-1) || PPN [(H-k)+> 0] dzdr.
K,x(—0,t) K,x(—0,t)
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Now we turn our attention to the right-hand sides of the system, i.e.
to the terms containing B’s. Making use of the growth assumptions (2.13)
yields the following terms in the integral inequality:

+ |\ (@BYW+8B® + B®)(H - k)P dzdr
K,x(—0,t)
< Ma(laf+18+1) || [Vu, Vo, Vol*(H — k)+(P dz dr.
Kyx(—0,t)
By the restriction on the set of levels in (4.2) we get
411)  + || (@BW+8B® + BO)(H - k)P drdr
Kox(—0,t)
< Cr(pa B AL dy) | [Vu, Vo, VulPx[(H — k)= > 0] da dr.

KQX (_97t)

Collecting all the above estimates, i.e. (4.6), (4.7) and (4.8)—(4.11), we obtain
the following inequality:

% | (H— k)i, tyde+ (A1)2) | [V(H = k)<PP¢? dudr
Ko Kox(—0,t)
S t S (H — k)3¢P(x,—0) da
2 R,
t ~
+5 3 V=i dedr+ G (] (H = bLIVCPdodr
—0 K, Ky (0.1

+ 52 SS |Vu, Vo, Vw|p2(1_nl)/(n+p)X[(H —k)+ > 0]dzdr
Kox(—0,t)

+Cs | [FPPIX((H — k)s > 0)dwdr
Kox(—0,t)

+Cy SS |Vu, Vo, Vw|*x[(H — k)+ > 0] dx dr.
Kox(—0,t)
Taking the supremum over ¢t € (—6,0) yields
(412)  sup | (H -k t)de+ (A41/2) | [V(H = k)£P¢P dudr
—0<t<0 Qb.0)

<\ (H-kic@ -0 dedr+C (| (H—-k)LIVCPdzdr
K, Q(0,0)
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+C \\ (H-K)i¢  Gdudr
(

Estimating the last three terms on the right by Hélder’s inequality and taking
into account hypotheses (2.7), (2.13), and Theorem 3.1 we arrive at

(4.13) “ |Vu, VU,VwIPQ(l_“I)/(”+p)X[(H —k)x > 0]dzdr
Q(0,0)
+ |\ PPN (H — k)1 > 0] dadr
(

Q(0,0)

+ | |V, Vo, VX [(H — k)+ > 0] dz dr

Q(0,0)
p2(1—k1)/(n+p) (@-1)/q
< [[Vu, Vv, Vwllz 2 (1— m)/(nﬂ))@{ S |A o(T )’dr}
- S @1/a
+ IV, Vo, Vulle, of § 148, (1) ar}
-0

+IFIEE ) o § 14t () ar

(@-1)/q
an/(p—1), , } :

Applying the estimate
W v = k)slpe? dedr
Q(0,0)
< \\ IV(#H = k)s¢Pdudr+ (| (H—k)5|VC¢P dadr
Q(0,0) Q(0,0)
to the second integral on the left of (4.12) we finally obtain (4.4). =
THEOREM 4.2 (Local logarithmic estimates). Let (u,v,w) be a bounded

solution to the system and H = H; be as in (1.1). There exist constants C
and 0y that can be determined a priori only in terms of the data such that for
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every cylinder [(xo,to) + Q(0, 0)] C Q and for every level k satisfying (4.2)
we have the estimate

(4.14) sup | P2 (H - k)x,0) (2, 6)¢P(x) da

to—0<t<to [JEO‘FKQ}

< | OOE(H - k), 0)(@,t0 — 0)¢P(2) da
[o+K,]

+C I U\ (ME, (H — k), c) > P|VC¢P da dr
[(z0,t0)+Q(8,0)]

MEN (T p(1++)/q
2 k +
o/ (1em ) { ] g mnar )
to—0
where
M }
H-k)++c)’
(4.16) Int s = max{Ins,0} for s >0,

(4.15)  W(ME, (H—k)+,c) Eln+{Mi_( 0<c< ME,
k

and additionally it is assumed that ¢ is independent of t.

Proof. 1t suffices to prove (4.14) for the cube Q(0, g) since we may assume
(zo,t0) = (0,0). Choose as test functions

¢ = W2 (Hy)'¢,
where prime denotes differentiation with respect to H. By direct calculation
it is easy to verify that [W2(Hj)]"” = 2(1 + ¥)¥"? and ¢ is admissible. As
before, multiply the first equation of system (2.1) by a (o = aj, a2, a3),
the second by 8 (8 = f1, 52, 33), and then add all three together. After
integrating in 7 over (—6,t) with ¢ € (—6,0) and with test function ¢,

letting h tend to zero, and making use of hypotheses (2.5a)—(2.5¢) for the
leading terms we get

(4.17) 1| (2AW+BA@+A®) 214002V H(P+2p0 0 (PIVC) da dr
K,x(—0,t)
>oM (| +ww?vHPe

K,x(—0.t)

=24, || (L+@)0?|Vu, Vo, VPP~ D50/ 0001 B (P dz dr
K,x(—0,t)
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-2\ @+oe?FIVH|? dedr
Kox(—0,t)
—2pAy | OV |VHPY(H - k)" V(| dzdr
Kox(—0,t)
—ophy (| @V, Vo, Ve DO 04 (k) (P71 C da dr
K,x(—0,t)

—2p || wW'F(H - k)Y dadr
K,x(—0,t)

Let us estimate each term of the last expression by Young’s inequality. For
the second and third terms on the right of (4.17), we get

(418) 24y (| (1 4+ @)@ |Vu, Vo, Vet~ DO/ ()G 1| (P da dr
K,x(—0,t)
<(M/3) | O+ VHPC dedr
Kox(—0,t)
+Cl(p7A17A2)
< 0+ 0)w?|vu, Vo, Vo PO/ 00 gy dr
K,x(—0,t)
419 2 (| Q+o)w?FVH|(Pdzdr
K,x(—0.t)
</3) || @+ VHPE dodr

Kox(—0,t)

+Colp, A1, As) || (L + @)@ PP/ 07D (P da dr.
KQX(_evt)

For the last three terms on the right of (4.17) the following estimates are
valid:

(4200 2pdy  \|  w@/|VHPTPTN Y dodr
K,x(—0,t)
< Cs(p, M1, 49) | 0PIV dedr
K,x(—0,t)

+(A/3) || L+ @)@ VHPC dx dr
K,x(—0,t)



Hélder continuity of weak solutions 221

(421) 2p || @0 |Vu, Vo, Vo0 00) 0115 (| dz dr
K,yx(—0,t)
<2 || w@)?rvpdedr
K,x(—0.t)

+200-1) (| w@)?|Vu, Vo, Vw ")/ (FD P gy dr

Kox(—0,t)
422) 2 |\ wWF@PV( dudr
Kyx(—0,t)
<2 || w@)rvpdsdr
Kyx(—0,t)
+200-1) | w@)? P/ N dgar.
Kox(—0,t)

Now we turn our attention to the right-hand sides of the system, the
terms containing B’s. Making use of the growth assumptions (2.13) yields
the following terms in the integral inequality:

423) 2 (| (aBW+3B® + B (P dydr
K,x(—0.t)
<24y (la] + 181 +1) (| |Vu, Vo, Vu[*0@'¢? do dr.
Kox(—0,t)

From (4.2) and the restriction upon the set of levels k, taking into account
the definition of ¥ gives

(4.24) O = ME — (H —k)g +c < 26;
(4.25) v <In(Mf/e), W <1/ec

By (4.24) and (4.25), (4.23) can be rewritten as

426) 2 || (aBW+8B® + B (P drdr
K,x(—0.t)
< Cyle, lol, 18], A2) (1 + In(MjE /c))

X SS |Vu, Vo, Vw|*x[(H — k)+ > 0] dzdr.
Kox(—0,t)

Making use of (4.24) and (4.25) in (4.18), (4.19), and in (4.21) and (4.22),
implies the following estimates:
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(4.27) I\ +w)w?vu, Vo, Vu PP O=m)/00)cr g dr
K,x(—0,t)
< (1/e*)(1 + In(M; /¢))

<\ 1V, Vo, Vw PO/ O [(H — k) x> 0] da drs

K,ox(—0,t)
(4.28) W\ oo |pp/e-Deraedr< | (140w Fr/-Der e dr
Kox(—0.t) K,x(—0.t)
< /A +m@E/e) | [FP/OIX(H - k)+ > 0] dwdr.

K,yx(—0,t)

Apply inequalities (4.27) and (4.28) to the appropriate terms in estimates
(4.18), (4.19), and in (4.21) and (4.22). Combining (4.18), (4.19), (4.20)-
(4.22), and (4.26) yields

| verde< | vdet+c || @R rV¢Pdedr
K,o,x{t} K,x{-0} K,yx(—0,t)
+(C/A) (1 + (M fe))
< {1 1V, T, w0 (k) > 0] dadr
K,x(—0,t)
+ AV IFPPON((H - k)+ > 0)dadr

Kyx(—0,t)

+ “ |Vu, Vo, Vw|*x[(H — k)+ > 0] dz dT}.
Kox(—0,t)
Taking the supremum over ¢ € (—6,0) implies

(4.29) sup S 2P dx
—6<t<0

Kox{t}
< | vda+C (| v PV dedr
Kyx{—0} Q(0,0)

+(C/A)(+ In(MZ/c))
X { “ |Vu, Vv,Vw|p2(1_”1)/("+p)x[(H —k)+ > 0]dzdr
Q(6,0)

+ || (PP IX[(H-k)+ > 0] dwdr
Q(0,0)

+ | IVu, Vo, Vol x[(H — k)x > 0]do dT}.
Q(0,0)
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Estimating the last four terms on the right of (4.29) by Holder’s inequality,
as in (4.13), we arrive at (4.14). =

From Theorems 4.1 and 4.2, with the help of Lemma 2.2, Proposition
2.1, Lemma 4.1, and Lemma 4.2 of Chapter I of [5], it follows that a weak
solution to system (2.1) is Holder continuous in the interior of the domain Q:

THEOREM 4.3 (Interior Holder continuity). If H € C(0,T;L%*(£2)) N
LP(0, T; WP(£2)) is bounded and satisfies inequalities (4.4) of Theorem 4.1
and (4.14) of Theorem 4.2 then there exist constants C' and o € (0,1) de-
pending only upon the data, such that for all subdomains Q' C Q, for every

pair Of pOiTLtS (x17t1)7 ($27t2) € Qla

— _ 1/p\ «
|H({L’1,t1) — H(.’I?27t2)| < C(|-’E1 $2| + |t1 t2| )

dist(Q’, 0Q, p)
with
dist(Q',0Q,p) = inf (lz —y|+ [t —s['/7).

(z,t)eQ’
(y,8)€0Q

For the proof of this theorem see [5, p. 77, Theorem 1.1].

Regularity up to the boundary. Let us introduce some additional nota-
tion. Set

(4.30a) D/f,u.t = ess sup |(H —k)y| <d <o,
[(w0,t0)+Q(0,0)]NQ

and introduce the following restrictions on the set of levels:

k> sup [gr + Bg2 + g3]
[(w0,t0)+Q(6,0)INS
for the test function (H — k)4+(P,

< sup lag1 + Bg2 + g3]
[(zo0,t0)+Q(0,0)]NS

(4.30b)

for the test function —(H — k)_(P.
Here dy is the positive parameter from (4.2). Define
D:I:
I k }, c < D]:gt,
D, — (H—-Fk)x +c

(4.31)  W(Dif,(H —k)x,c) =InT {
and
B (1) ={x € [wo+ KN 2| (H(z,7) — k)+ > 0}.

THEOREM 4.4. There are constants C' and g determined only by the data
such that for fized (zo,to) € S for every cylinder [(xo,to) + Q(6, )] with 0



224 D. Portnyagin

so small that tg — 0 > 0, and for every level k satisfying (4.30a)—(4.30b),

(4.32) sup S (H — k)2.¢P(x,t) dx
to—0<t<to [xo-+K,]N$2
+C7! I \V(H — k)+C|P da dr
[(zo,t0)+Q(0,0)INQ
< | (H = k)i, to—0)da

[zo+K,]NS2
+C i (H — k)B|VC|P da dr
[(zo,t0)+Q(0,0)]NQ
fo 1+k)/r
+C i|  w-mieTGdear+c{ | IBE, (M dT}p( "
[(z0,t0)+Q(6.0)]NQ to—0

and, provided that the cut-off function is independent of t for t € (to—0,1o),

(4.33) sup | (D, (H = k)x,0)(2,1)¢P () da
to—0<t<to [$0+K9}OQ
< | w(Df (H = k)x,0)(,to — 0)¢P(2) da
[mo—l—Kg}ﬂQ
+C gg U0y (DE, (H — k), ¢)>P|V¢[P dedr
[(z0,t0)+Q(0,0)]NQ

D\ ¥ p(1+)/g
+(C/e) (1 +1n —’f){ | 1BE, ()] dT} .
¢ to—0
The proof is a literal repetition of that of Theorems 4.1 and 4.2 with
the only difference that we have to consider D,f instead of M, and B,;tg(r)
instead of Af@(T).

Initial regularity

THEOREM 4.5. There are constants C' and &g determined only by the data
such that for every (xo,to) € Q and for every cylinder [(xo,to)+Q(6, 0)] with
to — 0 =0, if the cut-off function C is independent of t for t € (0,tg), then

(434)  sup | (H-K)i(P(z,t)da+ i \V(H—k)+C|P dx dr
0SS0 [0y 4 K, [(0,t0)+Q(0,0)1NQ
to
(14+r)/r
<C 1 (H—k)ft]V(]pda:dT+C{ { |Bf5@(7’)|r/qd7'}p :

[(z0,t0)+Q(6,0)]NQ 0
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and moreover,

(4.35)  sup | Df (H - k)x,0)(2,1)¢"(2) do
0<t<tg [IO+KQ}0.Q
<C i Uy (DE, (H — k), )| P|V¢P de dr
[(z0,t0)+Q(6,0)]NQ
D:I: to
2 k +
+(C/e )(1 +1n7>{ § |Bjy ,(7) dr
where q, k satisfy (4.1), k fulfills (4.30a) and in addition the following re-
strictions are assumed:
k> sup Hy for(H—k)y,
[:C()-i-Kg}ﬂ.Q

k< sup Hy for(H—-Fk)_.
[:C()-i-Kg}ﬂ.Q

)

}p(1+fﬂ)/q

The proof is analogous to that of Theorems 4.1 and 4.2.
Thus, summing up, from Theorems 4.4 and 4.5 we come to the statement:

THEOREM 4.6 (Holder continuity up to the boundary). If H(z,t) from
Theorem 4.3 satisfies inequalities (4.32), (4.33) from Theorem 4.4, and
(4.34), (4.35) from Theorem 4.5, the boundary data are Hélder continuous
on S with exponent &y, and the initial data are Holder continuous in 2 with
exponent 626, then there exist constants ¢ > 0 and o € (0,1) depending only
upon the data of the problem such that for any (x1,t1), (x2,t2) € Q,

|H (w1,t1) = H (s, 12)| < e(|a1 — ma| + [t1 — ta] /).
For the proof of this theorem see [5, p. 78, Theorem 1.2]. Hence the

Holder continuity of the components of the solution themselves immediately
follows:
[ull graare = [[uA| graarn /| A
= [[(cau + frv +w)(B2 — B3) — (@ou + Bov + w)(B1 — B3)
+ (azu + B3v + w)(B1 — B2) || graern /14|
= |[(B2 — B3)H1 — (B1 — B3)Ha + (B1 — B2) H3|| gra,arn /| 4|
< (|82 = B3|C1 + |81 — B3]|C2 + | B1 — B2|C3) /| Al;
[0l geare = VA graarm /14|
= [[(a1u + B1v + w) (a2 — a3) — (agu + fov + w)(ag — ag)
+ (asu + B30 + w) (o1 — a2 gaarn /|4
= |2 — a3)H1 — (a1 — a3) Hz + (a1 — a2) Hs| gasasn /| A
< (Jag — a3]C1 + |1 — a3|Co + |1 — a2|C3) /] Al
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|| grasarr = ||(1u + Brv + w) — a1t — B1o]| ga,a/m
< ||H1 — aru — B1v|| grosasp

< [Hillgoars + leal lull gaare + 81l [0l gaare,

where || - || ja.a/» denotes the Hélder norm:

(1]
2]

(3]
[4]

[5]
[6]

[7]
(8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
[18]

[19]

]l reaarr = sup [u(es, ty) — ul@z, ta)]
a,a/p — .
" (@1,41),(w2,t2)€Q (|1 — T2| + [t1 — t2]1/P)e

References

A. V. Bitsadze, On elliptic systems of differential equations with partial derivatives
of second order, Dokl. Akad. Nauk SSSR 112 (1957), 983-986 (in Russian).

—, Boundary Value Problems for Second Order Elliptic Equations, Nauka, Moscow,
1966 (in Russian).

—, Some Classes of Partial Differential Equations, Nauka, Moscow, 1981.

Y. Z. Chen and L. C. Wu, Second Order Elliptic Equations and Elliptic Systems,
Amer. Math. Soc. Providence, RI, 1998.

E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.

E. DiBenedetto and Y. Z. Chen, Boundary estimates for solutions of monlinear
degenerate parabolic systems, J. Reine Angew. Math. 395 (1989), 102-131.

L. Dung, Holder regularity for certain strongly coupled parabolic systems, J. Differ-
ential Equations 151 (1999), 313-344.

A. Friedman and E. DiBenedetto, Regularity of solutions of nonlinear degenerate
parabolic systems, J. Reine Angew. Math. 349 (1984), 83-128.

—, —, Addendum to: “Hélder estimates for nonlinear degenerate parabolic systems”,
ibid. 363 (1985), 217-220.

—, —, Hélder estimates for nonlinear degenerate parabolic systems, J. Reine Angew.
Math. 357 (1985), 1-22.

E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di
tipo ellittico, Boll. Un. Mat. Ital. 1 (1968), 135-137.

K. H. W. Kiifner, Global existence for a certain strongly coupled quasilinear parabolic
system in population dynamics, Analysis 15 (1995), 343-357.

O. A. Ladyzhenskaya, N. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasi-
linear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI, 1968.

M. A. Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasi-
linear parabolic system, Nonlinear Anal. 12 (1990), 657-689.

M. Wiegner, Global solutions to a class of strongly coupled parabolic systems, Math.
Ann. 292 (1992), 711-727.

W. Zajaczkowski, Global ezistence of solutions for Dirichlet problem to nonlinear
diagonal parabolic system with mazimal growth conditions, J. Appl. Anal. 1 (1995),
159-172.

—, Loo-estimates for solutions of nonlinear parabolic systems with gradient linear
growth, in: Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 491-501.
—, Loo-estimate for qualitatively bounded weak solutions of nonlinear degenerate
diagonal parabolic systems, J. Appl. Anal. 2 (1996), 1-12.

—, Loo-estimate for solutions of nonlinear parabolic systems, in: Banach Center
Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 465-490.



Hélder continuity of weak solutions 227

[20] W. Zajaczkowski and D. Wrzosek, Ezistence of solutions and L*-bounds for quasi-
linear degenerate parabolic systems, J. Appl. Anal. 5 (1999), 197-221.

Institute for Condensed Matter Physics

of the National Academy of Sciences of Ukraine
1 Svientsitskii Street, 79011 Lviv, Ukraine
E-mail: port@icmp.lviv.ua

Received 4.5.2005
and in final form 17.9.2005 (1578)



