ANNALES
POLONICI MATHEMATICI
88.3 (2006)

A comparative analysis of Bernstein type estimates for
the derivative of multivariate polynomials

by SziLARD GY. REVESZ (Budapest)

Abstract. We compare the yields of two methods to obtain Bernstein type point-
wise estimates for the derivative of a multivariate polynomial in a domain where the
polynomial is assumed to have sup norm at most 1. One method, due to Sarantopou-
los, relies on inscribing ellipses in a convex domain K. The other, pluripotential-theoretic
approach, mainly due to Baran, works for even more general sets, and uses the pluricom-
plex Green function (the Zaharjuta—Siciak extremal function). When the inscribed ellipse
method is applied on nonsymmetric convex domains, a key role is played by the general-
ized Minkowski functional a(K, x). With the aid of this functional, our current knowledge
of the best constant in the multivariate Berstein inequality is precise within a constant
V2 factor. Recently L. Milev and the author derived the exact yield of the inscribed el-
lipse method in the case of the simplex, and a number of numerical improvements were
obtained compared to the general estimates known. Here we compare the yields of this
real, geometric method and the results of the complex, pluripotential-theoretical approach
in the case of the simplex. We observe a few remarkable facts, comment on the existing
conjectures, and formulate a number of new hypotheses.

1. Introduction. If p is a univariate algebraic polynomial of degree at
most n, then by the classical Bernstein—Szeg6 inequality ([41], [13], [9]) we
have
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This inequality is sharp for every n and every x € (a,b), as

(x
sup { L degp < . (o) < Iplctan |
VP12 — 72()

=)z —a)

We may say that the upper estimate (1) is exact, and the right hand side
is just the “true Bernstein factor” of the problem.

Polynomials and continuous polynomials are also defined on topological
vector spaces X (see e.g. [14]). The set of continuous polynomials over X
will be denoted by P = P(X), and the polynomials in P with degree not
exceeding n by P, = Pp(X).

In the multivariate setting a number of extensions were proved for the
classical result (1). However, due to the geometric variety of possible convex
sets replacing intervals of R, our present knowledge is still not final. The
exact Bernstein inequality is known only for symmetric convex bodies, and
we are within a bound of some constant factor in the general, nonsymmetric
case.

We may define formally, for any topological vector space X, a subset
K C X, and a point € K, the nth Bernstein factor as

(2)  Bn(K, z)

1 Dp(x
:: Esup{ H2 p(@)l —— : degp <, |p(x)| < !pHC(m}?
VIPI2 0 = P (@)

where Dp(z) is the derivative of p at z, and for any unit vector y € X,

(3)  Bu(K,2,y)

1 D

— Loup {22021
VPl ey — (@)

n
where (Dp(z),y) is the directional derivative in direction y (which equals
the value attained by the gradient, as a linear functional, at y).

Our aim is to investigate these and related quantities, and to analyze
methods of estimating them.

degp < n, (o)) < Il .

2. The inscribed ellipse method of Sarantopoulos. Recall that a
set K C X is called a convex body in a normed space (or a topological vector
space) X if it is a bounded, closed convex set with nonempty interior. The
convex body K is symmetric if there exists a center of symmetry x so that
reflection of K at x leaves the set invariant, that is, K = —(K — ) + 2 =
—K +2x. We will call K centrally symmetric if it is symmetric with respect
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to the origin, i.e. K = —K. This occurs iff K can be considered the unit ball
with respect to a norm || - ||(x), which is then equivalent to the original norm
H . ” of X in view of BX, ||,||(O,T) CKC BX7||.||(0,R).
The mazximal chord of K in direction v # 0 is

(4) 7(K,v):= sup{\A > 0: 3y, z € K such that z =y + \v}

= sup{A > 0: KN (K + M) # 0}

=sup{A\>0: weK—-K}

=2sup{A >0: v € C} where C:=C(K):=1(K - K).
Usually 7(K,v) is not a “maximal” chord length, but only a supremum.
Nevertheless, we shall use the familiar finite-dimensional terminology (see
for example [42]).

The support function to K, where K can be an arbitrary set, is defined
for all v* € X* (sometimes only for v* € S* := {v* € X* : ||[v*|| = 1}) as

(5) h(K,v") = szpv* =sup{(v*,z) : x € K},

and the width of K in direction v* € X* (or v* € S*) is
(6) w(K,v"):=h(K,v")+ h(K,—v*) =supv* + sup(—v")
K K

= sup{(v*,x —y) : x,y € K} =2h(C,v") = w(C,v").

Then the minimal width of K is w(K) := infg« w(K,v*) and the sharp
inequalities
(7) w(K) <7(K,v) <diam K, w(K)<w(K,v")<diamK
always hold, even in infinite-dimensional spaces (cf. [36, §2]).

In R the position of a point x € R with respect to the “convex body” I
can be expressed simply by |z| (as £z occupy symmetric positions). In the
multivariate case the most frequent tool is the Minkowski functional. For any

x € X the Minkowski functional or (Minkowski) distance function [16, p. 57|
or gauge [33, p. 28| or Minkowski gauge functional [31, §1.1(d)| is defined as

(8) ek (z) :==inf{A>0:2 € AK}.
Clearly (8) is a norm on X if and only if the convex body K is centrally
symmetric with respect to the origin. In that case the norm || - || ;) == ¢k

can be used in approximation-theoretic questions as well. As said above, for
|| - l(xy the unit ball of X will be K itself. In case K is nonsymmetric, the
so-called generalized Minkowski functional a(K,x) emerged in the problem
of quantitative description of the position of a point z € R% with respect to
the convex body K. This notion also goes back to Minkowski [25] and Radon
[32] (see also [15], [36]). There are several ways to introduce it; perhaps the
shortest is the following. First let
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9) v(K,x):= inf{Q Viiz [ al Qﬁ =0l ta,be 0K, x € [a,b]}.
a—

Then we can set
(10) a(K,z) :=+/1—~%(K, z).
In fact, the wide applicability of (10) stems from the fact that this geo-
metric quantity incorporates quite nicely the geometric aspects of the con-
figuration of x with respect to K, which is mirrored by about a dozen (!),
sometimes strikingly different-looking, equivalent defnitions of «(K, ). For
the above and many other equivalent formulations with full proofs, further
geometric properties and some notes on the applications in approximation
theory, see [36] and the references therein; for the first appearance of it in
approximation-theoretic questions, see [37].

The method of inscribed ellipses was introduced by Y. Sarantopoulos [38].
It works for arbitrary interior points of any, possibly nonsymmetric convex
body. The crux of the method is the following

LEMMA 1 (Inscribed Ellipse Lemma, Sarantopoulos, 1991). Let K be any
subset in a vector space X. Suppose that x € K and the ellipse

(11) r(t) =acost+ bysint+x—a (t€[—mmn)).

lies inside K. Then for any polynomial p of degree at most n we have the
Bernstein type inequality

(12 (Do) )| < 2 \JIpl2 ) — P2()

THEOREM 1 (Sarantopoulos, 1991). Let p be any polynomial of degree at
most n over the normed space X. Then for any unit vector y € X we have
the Bernstein type inequality

2
) Doy < /1Pl — )

T

THEOREM 2 (Sarantopoulos, 1991). Let K be a symmetric conver body
and y a unit vector in the normed space X . Let p be any polynomial of degree
at most n. Then

2n¢||pn||c P2 ()
D .
{Dp() )| € s s

In particular,

P 2n¢||puc(K - ()
P\T)| = )

(K) - (K,JI)
where w(K) stands for the width of K.
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The above solves the problem for the case of a symmetric convex body K.
However, in the general, nonsymmetric case it can be rather difficult to
determine or even estimate the b-parameter of the “best ellipse”, which can be
inscribed in a convex body K through z € K and be tangential to direction y.
Still, we can formalize what we want to find.

DEFINITION 1 (Milev—Révész, 2003). For any K C X and z,y € K, the
best ellipse constant is the extremal quantity

(14) E(K,z,y) :=sup{b:r C K with r as given in (11)}.
Also, in [23] we defined
(15) E(K,z) .= nf{E(K,z,y) :y € X, [ly] = 1}.

Clearly, the inscribed ellipse method yields Bernstein type estimates
whenever we can derive some estimate of the ellipse constants. In the case
of symmetric convex bodies, Sarantopoulos’s Theorems 1 and 2 are sharp;
for the nonsymmetric case we only know the following result.

THEOREM 3 (Kro6-Révész [20], 1998). Let K be an arbitrary convex
body in a normed space X, and let x € int K and Hy|| = 1. Then

2n¢ 21120y — 22 (2)
T(K,y)y/1 —a(K x)
for any polynomial p of degree at most n. Moreover,

20\l ey = 7P() _ 22019l )~ 92(0)
|Dp()]| < v 2 w77
w(K) 1—a(K x) w(K)\/1— a2(K, )

(16) [(Dp(x), y

(17)

Note that in [20] the best ellipse is not found; for most cases, the con-
struction there only gives a good estimate, but not an exact value of (14) or
(15). (In fact, here we have quoted [20] in a strengthened form: the original
paper contains a somewhat weaker formulation.)

It is worth recalling here that geometrically the proof of (16) follows
the following idea. To construct an ellipse through z, parallel to y there,
and inscribed in K, it suffices to find the best such ellipse (i.e., of maximal
possible b-parameter), which is inscribed in the quadrangle formed by the
vertices of a mazimal chord in direction y (or, in infinite dimensions, some
chord e-almost maximal in that direction), and the vertices of the parallel
chord through x. That ellipse is precisely calculated, and its b-parameter is
estimated independently of the location of these chords (even if they degen-
erate into one line, in which case the ellipse becomes a line segment). (In
general the best b-parameter cannot be calculated, though.) We will recall
this geometrical construction later.
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One of the most intriguing questions in this area is the following conjec-
ture, formulated first in [36].

CONJECTURE A (Révész—Sarantopoulos, 2001). Let X be a topological
vector space, and K be a convex body in X. For every x € int K and every
(bounded) polynomial p of degree at most n over X we have

Do) < 20 [11P 1250y — 72(2)
1PPl = T e
where w(K) stands for the width of K.

3. Some results on the simplex. We denote by ||y := (314, 22)1/2
the Euclidean norm of x = (x1,...,14) € R Let

d
A=Ay = {(:rl,...,:cd):xiZO,izl,...,d,ingl}
=1

be the standard simplex in R%. For fixed z € int A, and y = (y1,...,%4),
lyl2 = 1, the best ellipse constant of A is, by Definition 1, E(A, z,y). By a
tedious calculation via the Kuhn—Tucker theorem and some geometry, the
following was obtained in [23].

THEOREM 4 (Milev-Révész, 2003). Letp € P2 Then for every x € int A
and y € S*1 we have

18) . WMb P()
p )
! E(A,,y)

where

2 2 . 2y —1/2
(19) MALw:{ﬂ+m+@+(w+ +w)} |

I rg l1—x1— —xq

Note that

1 2

(20)

<
E(A,2,y) ~ 7(A4,y)/1 - a(A4, )

for every z € int A and y € S', which is not accidental: the general estimate
(16) must also be valid for A, and the precise value, calculated for A, can
only be better. But equality occurs for some directions; we will return to this
point soon.

From now on let us restrict ourselves to the case d = 2. We denote the
vertices of A by O = (0,0), A = (1,0), B = (0,1) and the centroid (i.e. mass
point) of A by M = (1/3,1/3). It is calculated in [23] that

(21) a(A,z)=1-2r(x)
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with
x1, x e ANOMB,
r:=r(z) = min{z, 22,1 — 21 — 22} = { w9, x &€ AOMA,
1l—2z1—x9, z€ ANAAMB,
and if y = (cos ¢, sinyp) (0 < ¢ < ) then

1/(:‘/1 + y2)’ pE [0,77'/2],
(22) T(Aa y) = 1/92, p e (7T/27 371—/4]a

—1/y1, v € (3n/4,7].
Then it can be calculated that we have equality in (20) exactly for the
directions y = (cos ¢, sin ) with ¢ = 0,7/2,37/4 + 7Z and for some values
of z.

Why is that so? For these and only these vectors, can we have a coinci-
dence of the above geometrical figure, the quadrangle in the proof of (16),
and the exact domain in which we must really inscribe the ellipse through
x and parallel to y there; for all other directions the maximal chord in di-
rection y lies strictly inside A, and another ellipse, slightly stretched behind
that chord, can also be inscribed. Therefore, it is geometrically natural that
nothing better can be obtained (than the ellipse calculated in Theorem 3)
only for these directions, while for other directions precise calculation of the
best ellipse must always yield a better ellipse constant.

Denote by |Dp(x)|2 the Euclidean length of the gradient vector of p at x,
also equal to the operator norm || Dp(x)|| with respect to the Euclidean norm.
In [23] the following estimates were deduced from Theorem 4.

PROPOSITION 5 (Milev-Révész, 2003). Let p € P2. Then for every x €
int A we have

mpum ~ (@)

(23) Dp(a BT
where
(24) E(A :17) _ 2.1‘1.%'2(1 — 1 — .%'2)

’ 21(1 — z1) + 22(1 — 22) + D(2)
with

(25) D(m) = \/[1‘1(1 — .%'1) + .%'2(1 — 1‘2)]2 — 41‘1.1}2(1 s .1'2)

= \/[xl(l —x1) —w2(1 —29)]2 + 42223 >0 (Vz € int A).

From this the following improvements of Theorem 3 were achieved for
the special case of K = A.
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PROPOSITION 6 (Milev-Révész, 2003). Let p € Pa and |pllcay = 1.
Then for every x € int A we have

V3n, [llpl )~ P(@)

w(A)/1—a(Az)
Furthermore, using the quantity /1 — a?(A,x) on the right, we even have
V3+VEn fllpl )~ rH (@)
w(A)y/1—a?(A,x) ‘

(26) [ Dp(x)]2 <

(27) [ Dp(z)]2 <

The result (27) improves the constant in Theorem 3 but falls short of

yielding Conjecture A, since 2v/2 = 2.8284 ... > /3 + /5 = 2.2882... > 2.
On the way of proving these, it was noted that no better constants follow
from the inscribed ellipse method, interpreted so that E (K, x) is considered
the yield of the ellipse method. We shall return to this subject later on.

4. Baran’s pluripotential-theoretic method. Another method of
considerable success in proving Bernstein and Markov type inequalities is the
pluripotential-theoretic approach. Classically, all that was considered only in
the finite-dimensional case, but nowadays even the normed spaces setting is
cultivated. To explain the method, one needs an understanding of complezifi-
cations of real normed spaces (see e.g. [28, 6]), as well as the Zaharjuta—Siciak
extremal function V(z). We start with a formulation which is perhaps easier
to digest. It is very much like the Chebyshev problem (cf. [36, §8]), except
that we consider it all over the complexification Y := X + ¢X of X, take
logarithms, and after normalization by the degree, merge the information de-
rived from all polynomials of any degree into one clustered quantity. Namely,
for any bounded F C Y, Vg vanishes on E, while outside E we have the
definition

(28)  Ve(z)
= sup {%log p(2)]|:0#pePu(Y), Iplle <1, n€ N} (¢ E).

For E C X one can easily restrict even to p € P(X).

Note that log|p(z)| is a plurisubharmonic function (PSH, for short), as
its one (complex) dimensional restrictions are just logarithms of univariate
polynomials over C. After normalization by the degree, (1/n)log|p(z)| has
very regular growth towards infinity: it is at most log, |2| + O(1). So it is
reasonable to consider the Lelong class of all such functions:

(29) L(E):={uePSH:ulg <0, u(z) <log|z| +O(1) (]z] = o)}
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and to define
(30) Ug(z) :=sup{u(z) : u € L(E)}.

This function may be named the pluricomplex Green function. The Zaharju-
ta—Siciak theorem says that (30) and (28) are equal, at least as long as
E c C% is compact, which we now assume together with E being a non-
pluripolar set. (A set E C C? is pluripolar if there exists a PSH function van-
ishing on F; otherwise, the set is called nonpluripolar.) Then, being suprema
of PSH functions (subharmonic functions on all complex “lines”), they are,
modulo upper semicontinuous regularization, PSH themselves. They play a
central role in the theory.

An extension of the Laplace and Poisson equations is the so-called com-
plex Monge—Ampére equation, using the operator

o))

2;02,

where dV (z) = dxy Adyp A --- Adxg A dyg is just the usual volume ele-
ment in C?. At first, the complex Monge-Ampére operator is applied only
to smooth functions, v € PSHN C? say, but due to the work of Bedford and
Taylor [7], the operator extends, in the appropriate sense, to the whole set of
locally bounded PSH functions (which covers the case of the upper semicon-
tinuous regularization V7 for any nonpluripolar E, see e.g. [19]). Therefore,
it makes sense to consider

(32) (80VE)4,

which is then a compactly supported measure Ag and is called the complex
equilibrium measure of the set E. It is shown [7] that in fact the support

(31) (00u)? := d!4%de t[

lies in the polynomial convex hull E of FE; in case F is convex, E=E
and Vz = Vg; moreover, this measure is normalized in a certain sense, as
Ap(C?) = Ag(E) = (2m)1.

For the theory of plurisubharmonic functions and some recent develop-
ments concerning Bernstein and Markov type inequalities for convex bodies
or even more general sets, we refer to [1-8, 10, 19, 21, 22, 26, 30].

There are further yields of the theory of PSH functions, when applied to
the Bernstein problem: here we present a few results of Mirostaw Baran. For
more precise notation we now introduce (interpreting 0/0 as 0 here)

DEFINITION 2.

(33) G(B,z) = { ﬁj""ip_(?(x)Q 0A£pEPone N},

and following Baran we also consider
(34) G(E,z) := conG(E, z).
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Clearly sup,en Bn(E, ¥) = supycc(pq) |1l for any compact E C R,

THREOREM 7 (Baran, 1995). Let E be a compact subset of R? with non-
empty interior. Then the equilibrium measure \|g is absolutely continuous
in the interior of E with respect to the Lebesque measure of RY. Denote its
density function by \(x) for all x € int E. Then (1/d)A(z) > volG(E, x)
for a.a. x € int E. Moreover, if E is a symmetric convex domain of R?, then

(1/d)\(x) = vol G(E, z) for a.a. z € int E.

CONJECTURE B (Baran, 1995). We have (1/d))A(z) = vol G(E, z) even
if E is a nonsymmetric convez body in R?.

Now consider E = K C X, where K is now a convex body. Our more
precise results in [35] (see also [36, §8]) yield

Vi (z) = log(a(K, z) + Va(K,x)? —1).

However, in the Bernstein problem the values of Vi are much more of interest
for complex points z = x + iy, in particular for x € K and y small and
nonzero. More precisely, the important quantity is the normal (sub)derivative
Ve(x + ic
(35) Dy Vi(z) := liminf M,
e—0 e

as this quantity occurs in the following estimate of the directional derivative
and thus also in the gradient.

THEOREM 8 (Baran, 1994 & 2004). Let E C X be any bounded, closed
set, x € int E and 0 # y € X. Then for all p € P,(X) we have

(36) [(Dp(x),y)| < nDy Vi (x)\/lIplE — p(x)*.

Proof. For R? and partial derivatives this is contained in [3]; the case
of infinite-dimensional spaces is considered in [6], but only for symmetric
convex bodies. The same estimate occurs, without proof but with reference
to Baran, in the recent publication [11]. For arbitrary directions y € R? one
can consider a rotation A : R? — R%. u

It is not obvious how such theoretical estimates can be applied to concrete
cases. First, one has to find the value of Vg precisely enough to be able
to compute even its derivative. Only then do we really have something.
However, even that is addressed by considering the Bedford—Taylor theory of
the Monge-Ampeére equation and the equilibrium measure [7], as the density
of the equilibrium measure gives the extremal function. In some concrete
applications all that may be calculated, a particular example (see |5, Example
4.8]) being the following.
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PROPOSITION 9 (Baran, 1995). The extremal function of the standard
simplex in R is
Va(z) =logh(lz1[ 4+ [zl + [1 = (214 - + 20)])].
Here h(z) := 2+ 2% — 1 is inverse to the Joukowski mapping ¢ — (1/2)({+

1/¢), with the choice of the square root that is positive for positive z exceed-
ing 1, so that h maps to the exterior of the unit disk.

From this and the calculation with the rotated directions above, we can
deduce (1)

PROPOSITION 10. For the standard simplex A of R, any unit vector
y=(y1,...,Yn) and any x = (x1,...,x,) € int A we have the formula

2 2 2

vi Yn , 4+ yn)
37 DiVa(z) =L+ 420 :
(37) y Va(z) \/ler Py

Hence we are led to the following surprising corollary.

COROLLARY 11. The pluripotential-theoretic estimate (36) of Baran, cal-
culated for the standard simplex of R? in (37), gives the result exactly iden-
tical to (18), obtained from the inscribed ellipse method.

Much remains to be explained in this striking coincidence, the first thing
being

HyPOTHESIS A. Let K C X be a convex body. Then for all points x €
int K the inscribed ellipse method and the pluripotential-theoretic method of
Baran results in exactly the same estimate, i.e. for all y € S* we have

1

38 D Vg (z) = ———.
o o VKD = K )

5. Further geometric calculations. At this point it seems worth for-
mulating a few naturally occurring assumptions.

HypPOTHESIS B. Let K C X be a convex body. Then for all x € int K the
exact Bernstein factor is just what results from the pluripotential-theoretic
method of Baran:

(39) By, (K,z) = sup D Vi(x).
yesSt

HyproOTHESIS C. Let K C X be a convex body. Then for all x € int K the
exact Bernstein factor is just what results from the inscribed ellipse method
of Sarantopoulos:

1

(40) BalK,2) = Foe o

(*) The same formula is mentioned in [11, p. 145].
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These hypotheses are certainly not true for the directional derivatives
in all directions y € S*, where both methods can be improved upon for
some y, as is seen below. Care has to be exercised in formulating conjectures
and hypotheses in these matters: the situation is more complex than one
might like to have, and the simple heuristics of extending the results of the
symmetric case sometimes fails. In this respect see [12, 21, 22| and [11], where
another case of deviation from symmetric case extension is observed for the
so-called “Baran metric” on the simplex.

There is an important and immediate observation we have not utilized
yet. Namely, we have exhibited methods (actually, two equivalently strong
ones) to estimate Dyp(x). However, if we are looking for the total derivative
grad p(x), then the estimate we used was only the trivial ||gradp(z)| <
supyeg« |[Dyp(z)|. Can we do any better? Yes, we can, depending on the
estimating functions we have for D,p(z).

Consider e.g. the estimates from Theorem 3, which was obtained also for
the simplex and thus the triangle A. For the triangle we have an explicit
computation of the maximal chords 7(A, z) (cf. (22)), and also of the gener-
alized Minkowski functional a(A, z) (see (21)), so everything is explicit and
we can compute the estimating functions. As an example, consider e.g. the
point M := (1/3,1/3) and compute all quantities involved in the normal-
ization of the directional derivative estimates. As a result, we can exactly
determine the arising domain H (A, M), where in general we write

(41) H:=H(Kz):={v=ty:y=(y1,-.-,5a), [t| <r(y)}
with r(y) being the available normalized estimate for the directional deriva-
tive in direction y.

It turns out that the domain H(A, M) described by the general es-
timates of Theorem 3 is a fleecy-cloud like domain which is symmetric
with respect to the origin, and its upper half is (the part above the x-axis
of) the union of three disks: D((1/3/2,/3/2),v/3) U D((0,+/3/2),/3/2) U

\/— 0) \/— (Here the reader may WlSh to draw a figure for better
Vlsuahzatlon) An 1mmed1ate observation is that the domain is not convez,
and so this is certainly not an exact description of all possible directional
derivatives of the gradient.

We can conclude that if some domain (41) is given with 7(y) being some
normalized estimate for the directional derivative in direction y, then to
bound G(K,x) an additional process of restricting to the “kernel” part

(42) H:=HKz)= ){v:[(v,y)] <r()}
yeS*

is available. That is, we always have é(K, x) C H. Note that H is a convex,
symmetric domain for any point set H.
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In order to illustrate this “kernel technique”, let us come back to the above
case of estimates from Theorem 3 for the triangle at point M. After some
standard considerations with Thales circles we find that H is the hexagonal
domain

H(A,M)
= con{(V/6,0), (v/6,V6), (0,V6), (—V6,0), (—V6, —V6), (0, —V6)}.

Observe that the area of the possible stretch of G is considerably reduced
from the “fleecy-cloud” domain to the derived hexagonal domain as

9
area H(A, M) =9+ Dy =23.137...
s

while area fNI(A, M) = 18. For comparison recall that Baran’s Conjecture B
would say that the area should be AA(M) = 7/v373 =16.324. . ..
Let us calculate the “kernel set” H (A, z) from the exact estimates (18),

(36), (37) which we obtain from the ellipse (and hence also from Baran’s)
method. We obtain the following (?).

PROPOSITION 12. With the above notations, H(A,x) is an ellipse do-
main. Moreover, its magjor axis p = p(x) and minor azis v = v(x) are
given by

2
= \/x1(1 — 1)+ 22(1 —22) + D(z)’
(43)

2
v = ,
\/xl(l — 1) + 22(1 — 22) — D(x)
where D(x) is the quantity defined in (25).

Proof. For fixed z € A we are to describe the solution set (42) for K = A,
with r(y) being the quantity (19). That is, we determine all those vectors u =
(u1,u2) € R? which satisfy |(u,y)| < 1/E(A,z,y) for all y = (cos p,sin ).
Using (19) and squaring, we see that the defining inequalities describe the
set

2 12
COS S11
cos?p | sin®

(44) {u : (ug cos p + ugsinp)? <
T X9

: 2
n (cos ¢ + sin ) (Vo € R)}
1-— Tl — X2
(2) These computations were executed jointly with Nikola Naidenov from the Univer-
sity of Sofia during the author’s stay in Sofia in October 2004. The author regrets that
in spite of his undoubted contribution [29] to this work, Nikola Naidenov chose not to be
named as a coauthor.
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Putting x3 := 1 — 21 — 2, the case of cos? ¢ > 0 yields
1 (1+¢)?
(45) (u1 + UQt)2 < —+ —+ u (Vt :=tanp € R),
I xI9 I3
which is a second degree inequality in ¢. Solving it we arrive at
(46) au% + bu% —cuqug < 1,
where the coefficients are all strictly positive and have the form
a:=a(x):=z1(1—x1), b:=0b(x):=mz2(l—x9),
(47)
c:=c(x) =2z 129.
Thus (46) determines an ellipse domain, and calculation of its axes leads to
the result. m
So we are led to the following result.

THEOREM 13. With the above notations, we have
area H(A, z) = T .
\/1‘1.%‘2(1 — 1 — .’L‘2)
Proof. As is well known, the area of an ellipse domain with axes p and
v is muv, hence Proposition 12 leads to the asserted value. m

COROLLARY 14. We have G(z) C conG(z) C H(z) with area H(z) =

A(z). Hence either conG(x) = H(x) for all x € A, or Baran’s Conjecture
fails.

1
2
B

Proof. One must compute the density function A(x) of the equilibrium

measure. This has already been done by Baran, |5, Example 4.8|: we have
Mz) = 2r/\/z122(1 — 71 — 22). On comparing to Theorem 13 we find the

asserted identity. Since H is an ellipse domain and also con G is a convex
domain, the inclusion con G(z) C H(z) and equality of their areas entails
that con G(z) = H(z). On the other hand, if at some point € A the
respective areas differ, then areaconG(z) < area H(x) = 1\(z), hence the

-2
conjectured identity of Baran fails. m

REMARK 1. While using the information on the support functional from
H(A,z) improves upon the known area estimates, it does not improve the
maximal gradient norm estimate of [23].

Indeed, as fI(A,a:) is an ellipse domain, we have to consider its major
axis. It turns out that in the case of the standard triangle, this calculation
yields max 7 [[v|| = maxyen [[v]| = 1/E(A, ).

Note that max,cv ||v|| = maxyeconv ||v]| for any set V, hence regard-
ing the maximal gradient norm estimate it makes no difference whether we
consider con G(z) or G(z) only. Also note that starting from a set H O G
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and considering the “kernel” H we necessarily obtain a convex set, so from
G C H it follows that even taking the convex hull we still have conG C H.

COROLLARY 15. Conjectures A and B cannot hold simultaneously.

Proof. According to Corollary 14, Baran’s Conjecture B holds if only
there can be no improvement on the estimates of the ellipse (or Baran’s)
method on the simplex. But then Conjecture A fails. Conversely, if Conjec-
ture A holds, then there is an improvement at least at certain points and
in certain directions compared to the estimates of the ellipse (or Baran’s)
method, hence the estimates of Corollary 14 strictly exceed the right value
and Baran’s Conjecture B fails. »

6. Concluding remarks. Also, another real, geometric method of ob-
taining Bernstein type inequalities, due to Skalyga [39, 40|, should be men-
tioned here; the difficulty with it is that to the best of our knowledge, no one
has ever been able to compute, neither for the seemingly least complicated
case of the standard triangle of R?, nor in any other particular nonsymmetric
case, the yield of that abstract method. Hence in spite of some remarks that
the method is sharp in some sense, it is unclear how close these estimates
are to the right answer and of what use they can be in any concrete cases.

Given the above findings, it seems plausible that Conjecture A, if not
true, can be disproved by some explicit example. To construct a polynomial
with large gradient, as compared to the norm, means to construct a highly
oscillating polynomial. For that, various natural and more intricate ideas
were tried by Nikola Naidenov [29] in Sofia during the Fall of 2004. We hope
he will report on his experiences in the near future.

The author would like to thank Norm Levenberg for enlightening com-
ments and suggestions, and an anonymous referee for careful corrections.
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