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A 
omparative analysis of Bernstein type estimates forthe derivative of multivariate polynomialsby Szilárd Gy. Révész (Budapest)Abstra
t. We 
ompare the yields of two methods to obtain Bernstein type point-wise estimates for the derivative of a multivariate polynomial in a domain where thepolynomial is assumed to have sup norm at most 1. One method, due to Sarantopou-los, relies on ins
ribing ellipses in a 
onvex domain K. The other, pluripotential-theoreti
approa
h, mainly due to Baran, works for even more general sets, and uses the pluri
om-plex Green fun
tion (the Zaharjuta�Si
iak extremal fun
tion). When the ins
ribed ellipsemethod is applied on nonsymmetri
 
onvex domains, a key role is played by the general-ized Minkowski fun
tional α(K, x). With the aid of this fun
tional, our 
urrent knowledgeof the best 
onstant in the multivariate Berstein inequality is pre
ise within a 
onstant
√

2 fa
tor. Re
ently L. Milev and the author derived the exa
t yield of the ins
ribed el-lipse method in the 
ase of the simplex, and a number of numeri
al improvements wereobtained 
ompared to the general estimates known. Here we 
ompare the yields of thisreal, geometri
 method and the results of the 
omplex, pluripotential-theoreti
al approa
hin the 
ase of the simplex. We observe a few remarkable fa
ts, 
omment on the existing
onje
tures, and formulate a number of new hypotheses.1. Introdu
tion. If p is a univariate algebrai
 polynomial of degree atmost n, then by the 
lassi
al Bernstein�Szeg® inequality ([41℄, [13℄, [9℄) wehave(1) |p′(x)| ≤
n
√

‖p‖2
C[a,b] − p2(x)

√
(b − x)(x − a)

(a < x < b).
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230 Sz. Gy. RévészThis inequality is sharp for every n and every x ∈ (a, b), as
sup

{ |p′(x)|√
‖p‖2

C[a,b] − p2(x)
: deg p ≤ n, |p(x)| < ‖p‖C[a,b]

}

=
n√

(b − x)(x − a)
.We may say that the upper estimate (1) is exa
t, and the right hand sideis just the �true Bernstein fa
tor� of the problem.Polynomials and 
ontinuous polynomials are also de�ned on topologi
alve
tor spa
es X (see e.g. [14℄). The set of 
ontinuous polynomials over Xwill be denoted by P = P(X), and the polynomials in P with degree notex
eeding n by Pn = Pn(X).In the multivariate setting a number of extensions were proved for the
lassi
al result (1). However, due to the geometri
 variety of possible 
onvexsets repla
ing intervals of R, our present knowledge is still not �nal. Theexa
t Bernstein inequality is known only for symmetri
 
onvex bodies, andwe are within a bound of some 
onstant fa
tor in the general, nonsymmetri

ase.We may de�ne formally, for any topologi
al ve
tor spa
e X, a subset

K ⊂ X, and a point x ∈ K, the nth Bernstein fa
tor as
(2) Bn(K, x)

:=
1

n
sup

{ ‖Dp(x)‖√
‖p‖2

C(K) − p2(x)
: deg p ≤ n, |p(x)| < ‖p‖C(K)

}
,

where Dp(x) is the derivative of p at x, and for any unit ve
tor y ∈ X,
(3) Bn(K, x, y)

:=
1

n
sup

{ 〈Dp(x), y〉√
‖p‖2

C(K) − p2(x)
: deg p ≤ n, |p(x)| < ‖p‖C(K)

}
,

where 〈Dp(x), y〉 is the dire
tional derivative in dire
tion y (whi
h equalsthe value attained by the gradient, as a linear fun
tional, at y).Our aim is to investigate these and related quantities, and to analyzemethods of estimating them.2. The ins
ribed ellipse method of Sarantopoulos. Re
all that aset K ⊂ X is 
alled a 
onvex body in a normed spa
e (or a topologi
al ve
torspa
e) X if it is a bounded, 
losed 
onvex set with nonempty interior. The
onvex body K is symmetri
 if there exists a 
enter of symmetry x so thatre�e
tion of K at x leaves the set invariant, that is, K = −(K − x) + x =
−K + 2x. We will 
all K 
entrally symmetri
 if it is symmetri
 with respe
t



Bernstein type estimates 231to the origin, i.e. K = −K. This o

urs i� K 
an be 
onsidered the unit ballwith respe
t to a norm ‖ · ‖(K), whi
h is then equivalent to the original norm
‖ · ‖ of X in view of BX, ‖·‖(0, r) ⊂ K ⊂ BX, ‖·‖(0, R).The maximal 
hord of K in dire
tion v 6= 0 is

τ(K, v) := sup{λ ≥ 0 : ∃y, z ∈ K su
h that z = y + λv}(4)
= sup{λ ≥ 0 : K ∩ (K + λv) 6= ∅}
= sup{λ ≥ 0 : λv ∈ K − K}
= 2 sup{λ ≥ 0 : λv ∈ C} where C := C(K) := 1

2(K − K).Usually τ(K, v) is not a �maximal� 
hord length, but only a supremum.Nevertheless, we shall use the familiar �nite-dimensional terminology (seefor example [42℄).The support fun
tion to K, where K 
an be an arbitrary set, is de�nedfor all v∗ ∈ X∗ (sometimes only for v∗ ∈ S∗ := {v∗ ∈ X∗ : ‖v∗‖ = 1}) as(5) h(K, v∗) := sup
K

v∗ = sup{〈v∗, x〉 : x ∈ K},and the width of K in dire
tion v∗ ∈ X∗ (or v∗ ∈ S∗) is
w(K, v∗) := h(K, v∗) + h(K,−v∗) = sup

K
v∗ + sup

K
(−v∗)(6)

= sup{〈v∗, x − y〉 : x, y ∈ K} = 2h(C, v∗) = w(C, v∗).Then the minimal width of K is w(K) := infS∗ w(K, v∗) and the sharpinequalities(7) w(K) ≤ τ(K, v) ≤ diamK, w(K) ≤ w(K, v∗) ≤ diamKalways hold, even in in�nite-dimensional spa
es (
f. [36, �2℄).In R the position of a point x ∈ R with respe
t to the �
onvex body� I
an be expressed simply by |x| (as ±x o

upy symmetri
 positions). In themultivariate 
ase the most frequent tool is the Minkowski fun
tional. For any
x ∈ X the Minkowski fun
tional or (Minkowski) distan
e fun
tion [16, p. 57℄or gauge [33, p. 28℄ or Minkowski gauge fun
tional [31, �1.1(d)℄ is de�ned as(8) ϕK(x) := inf{λ > 0 : x ∈ λK}.Clearly (8) is a norm on X if and only if the 
onvex body K is 
entrallysymmetri
 with respe
t to the origin. In that 
ase the norm ‖ · ‖(K) := ϕK
an be used in approximation-theoreti
 questions as well. As said above, for
‖ · ‖(K) the unit ball of X will be K itself. In 
ase K is nonsymmetri
, theso-
alled generalized Minkowski fun
tional α(K, x) emerged in the problemof quantitative des
ription of the position of a point x ∈ R

d with respe
t tothe 
onvex body K. This notion also goes ba
k to Minkowski [25℄ and Radon[32℄ (see also [15℄, [36℄). There are several ways to introdu
e it; perhaps theshortest is the following. First let
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(9) γ(K, x) := inf

{
2

√
‖x − a‖ ‖x − b‖

‖a − b‖ : a, b ∈ ∂K, x ∈ [a, b]

}
.Then we 
an set(10) α(K, x) :=

√
1 − γ2(K, x).In fa
t, the wide appli
ability of (10) stems from the fa
t that this geo-metri
 quantity in
orporates quite ni
ely the geometri
 aspe
ts of the 
on-�guration of x with respe
t to K, whi
h is mirrored by about a dozen (!),sometimes strikingly di�erent-looking, equivalent defnitions of α(K, x). Forthe above and many other equivalent formulations with full proofs, furthergeometri
 properties and some notes on the appli
ations in approximationtheory, see [36℄ and the referen
es therein; for the �rst appearan
e of it inapproximation-theoreti
 questions, see [37℄.The method of ins
ribed ellipses was introdu
ed by Y. Sarantopoulos [38℄.It works for arbitrary interior points of any, possibly nonsymmetri
 
onvexbody. The 
rux of the method is the followingLemma 1 (Ins
ribed Ellipse Lemma, Sarantopoulos, 1991). Let K be anysubset in a ve
tor spa
e X. Suppose that x ∈ K and the ellipse(11) r(t) = a cos t + by sin t + x − a (t ∈ [−π, π)).lies inside K. Then for any polynomial p of degree at most n we have theBernstein type inequality(12) |〈Dp(x), y〉| ≤ n

b

√
‖p‖2

C(K) − p2(x).Theorem 1 (Sarantopoulos, 1991). Let p be any polynomial of degree atmost n over the normed spa
e X. Then for any unit ve
tor y ∈ X we havethe Bernstein type inequality
(13) |〈Dp(x), y〉| ≤

n
√

‖p‖2
C(K) − p2(x)

√
1 − ‖x‖2

(K)

.

Theorem 2 (Sarantopoulos, 1991). Let K be a symmetri
 
onvex bodyand y a unit ve
tor in the normed spa
e X. Let p be any polynomial of degreeat most n. Then
|〈Dp(x), y〉| ≤

2n
√

‖pn‖2
C(K)

− p2(x)

τ(K, y)
√

1 − ϕ2(K, x)
.In parti
ular ,

‖Dp(x)‖ ≤
2n

√
‖p‖2

C(K) − p2(x)

w(K)
√

1 − ϕ2(K, x)
,where w(K) stands for the width of K.



Bernstein type estimates 233The above solves the problem for the 
ase of a symmetri
 
onvex body K.However, in the general, nonsymmetri
 
ase it 
an be rather di�
ult todetermine or even estimate the b-parameter of the �best ellipse�, whi
h 
an beins
ribed in a 
onvex body K through x ∈ K and be tangential to dire
tion y.Still, we 
an formalize what we want to �nd.Definition 1 (Milev�Révész, 2003). For any K ⊂ X and x, y ∈ K, thebest ellipse 
onstant is the extremal quantity(14) E(K, x, y) := sup{b : r ⊂ K with r as given in (11)}.Also, in [23℄ we de�ned(15) E(K, x) := inf{E(K, x, y) : y ∈ X, ‖y‖ = 1}.Clearly, the ins
ribed ellipse method yields Bernstein type estimateswhenever we 
an derive some estimate of the ellipse 
onstants. In the 
aseof symmetri
 
onvex bodies, Sarantopoulos's Theorems 1 and 2 are sharp;for the nonsymmetri
 
ase we only know the following result.Theorem 3 (Kroó�Révész [20℄, 1998). Let K be an arbitrary 
onvexbody in a normed spa
e X, and let x ∈ intK and ‖y‖ = 1. Then
(16) |〈Dp(x), y〉| ≤

2n
√

‖p‖2
C(K) − p2(x)

τ(K, y)
√

1 − α(K, x)for any polynomial p of degree at most n. Moreover ,
(17) ‖Dp(x)‖ ≤

2n
√

‖p‖2
C(K) − p2(x)

w(K)
√

1 − α(K, x)
≤

2
√

2n
√

‖p‖2
C(K) − p2(x)

w(K)
√

1 − α2(K, x)
.Note that in [20℄ the best ellipse is not found; for most 
ases, the 
on-stru
tion there only gives a good estimate, but not an exa
t value of (14) or(15). (In fa
t, here we have quoted [20℄ in a strengthened form: the originalpaper 
ontains a somewhat weaker formulation.)It is worth re
alling here that geometri
ally the proof of (16) followsthe following idea. To 
onstru
t an ellipse through x, parallel to y there,and ins
ribed in K, it su�
es to �nd the best su
h ellipse (i.e., of maximalpossible b-parameter), whi
h is ins
ribed in the quadrangle formed by theverti
es of a maximal 
hord in dire
tion y (or, in in�nite dimensions, some
hord ε-almost maximal in that dire
tion), and the verti
es of the parallel
hord through x. That ellipse is pre
isely 
al
ulated, and its b-parameter isestimated independently of the lo
ation of these 
hords (even if they degen-erate into one line, in whi
h 
ase the ellipse be
omes a line segment). (Ingeneral the best b-parameter 
annot be 
al
ulated, though.) We will re
allthis geometri
al 
onstru
tion later.



234 Sz. Gy. RévészOne of the most intriguing questions in this area is the following 
onje
-ture, formulated �rst in [36℄.
Conjecture A (Révész�Sarantopoulos, 2001). Let X be a topologi
alve
tor spa
e, and K be a 
onvex body in X. For every x ∈ intK and every(bounded) polynomial p of degree at most n over X we have

‖Dp(x)‖ ≤
2n

√
‖p‖2

C(K) − p2(x)

w(K)
√

1 − α2(K, x)
,where w(K) stands for the width of K.3. Some results on the simplex. We denote by |x|2 := (

∑d
i=1 x2

i )
1/2the Eu
lidean norm of x = (x1, . . . , xd) ∈ R

d. Let
∆ := ∆d :=

{
(x1, . . . , xd) : xi ≥ 0, i = 1, . . . , d,

d∑

i=1

xi ≤ 1
}

be the standard simplex in R
d. For �xed x ∈ int∆, and y = (y1, . . . , yd),

|y|2 = 1, the best ellipse 
onstant of ∆ is, by De�nition 1, E(∆, x, y). By atedious 
al
ulation via the Kuhn�Tu
ker theorem and some geometry, thefollowing was obtained in [23℄.Theorem 4 (Milev�Révész, 2003). Let p ∈ Pd
n. Then for every x ∈ int∆and y ∈ S

d−1 we have
(18) |Dyp(x)| ≤

n
√
‖p‖2

C(∆) − p2(x)

E(∆, x, y)
,where(19) E(∆, x, y) =

{
y2
1

x1
+ · · · + y2

d

xd
+

(y1 + · · · + yd)
2

1 − x1 − · · · − xd

}−1/2

.Note that(20) 1

E(∆, x, y)
≤ 2

τ(∆, y)
√

1 − α(∆, x)for every x ∈ int∆ and y ∈ S
1, whi
h is not a

idental: the general estimate(16) must also be valid for ∆, and the pre
ise value, 
al
ulated for ∆, 
anonly be better. But equality o

urs for some dire
tions; we will return to thispoint soon.From now on let us restri
t ourselves to the 
ase d = 2. We denote theverti
es of ∆ by O = (0, 0), A = (1, 0), B = (0, 1) and the 
entroid (i.e. masspoint) of ∆ by M = (1/3, 1/3). It is 
al
ulated in [23℄ that(21) α(∆, x) = 1 − 2r(x)
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r := r(x) = min{x1, x2, 1 − x1 − x2} =





x1, x ∈ △OMB,
x2, x ∈ △OMA,
1 − x1 − x2, x ∈ △AMB,and if y = (cos ϕ, sinϕ) (0 ≤ ϕ ≤ π) then

(22) τ(∆, y) =





1/(y1 + y2), ϕ ∈ [0, π/2],
1/y2, ϕ ∈ (π/2, 3π/4],
−1/y1, ϕ ∈ (3π/4, π].Then it 
an be 
al
ulated that we have equality in (20) exa
tly for thedire
tions y = (cosϕ, sinϕ) with ϕ = 0, π/2, 3π/4 + πZ and for some valuesof x.Why is that so? For these and only these ve
tors, 
an we have a 
oin
i-den
e of the above geometri
al �gure, the quadrangle in the proof of (16),and the exa
t domain in whi
h we must really ins
ribe the ellipse through

x and parallel to y there; for all other dire
tions the maximal 
hord in di-re
tion y lies stri
tly inside ∆, and another ellipse, slightly stret
hed behindthat 
hord, 
an also be ins
ribed. Therefore, it is geometri
ally natural thatnothing better 
an be obtained (than the ellipse 
al
ulated in Theorem 3)only for these dire
tions, while for other dire
tions pre
ise 
al
ulation of thebest ellipse must always yield a better ellipse 
onstant.Denote by |Dp(x)|2 the Eu
lidean length of the gradient ve
tor of p at x,also equal to the operator norm ‖Dp(x)‖ with respe
t to the Eu
lidean norm.In [23℄ the following estimates were dedu
ed from Theorem 4.Proposition 5 (Milev�Révész, 2003). Let p ∈ P2
n. Then for every x ∈

int∆ we have
(23) |Dp(x)|2 ≤

n
√

‖p‖2
C(∆) − p2(x)

E(∆, x)
,where(24) E(∆, x) =

√
2x1x2(1 − x1 − x2)

x1(1 − x1) + x2(1 − x2) + D(x)with
D(x) :=

√
[x1(1 − x1) + x2(1 − x2)]2 − 4x1x2(1 − x1 − x2)(25)

=
√

[x1(1 − x1) − x2(1 − x2)]2 + 4x2
1x

2
2 > 0 (∀x ∈ int∆).From this the following improvements of Theorem 3 were a
hieved forthe spe
ial 
ase of K = ∆.



236 Sz. Gy. RévészProposition 6 (Milev-Révész, 2003). Let p ∈ P2
n and ‖p‖C(∆) = 1.Then for every x ∈ int∆ we have

(26) |Dp(x)|2 ≤

√
3n

√
‖p‖2

C(∆) − p2(x)

w(∆)
√

1 − α(∆, x)
.

Furthermore, using the quantity √
1 − α2(∆, x) on the right , we even have

(27) |Dp(x)|2 ≤

√
3 +

√
5n

√
‖p‖2

C(∆) − p2(x)

w(∆)
√

1 − α2(∆, x)
.The result (27) improves the 
onstant in Theorem 3 but falls short ofyielding Conje
ture A, sin
e 2

√
2 = 2.8284 . . . >

√
3 +

√
5 = 2.2882 . . . > 2.On the way of proving these, it was noted that no better 
onstants followfrom the ins
ribed ellipse method, interpreted so that E(K, x) is 
onsideredthe yield of the ellipse method. We shall return to this subje
t later on.4. Baran's pluripotential-theoreti
 method. Another method of
onsiderable su

ess in proving Bernstein and Markov type inequalities is thepluripotential-theoreti
 approa
h. Classi
ally, all that was 
onsidered only inthe �nite-dimensional 
ase, but nowadays even the normed spa
es setting is
ultivated. To explain the method, one needs an understanding of 
omplexi�-
ations of real normed spa
es (see e.g. [28, 6℄), as well as the Zaharjuta�Si
iakextremal fun
tion V (z). We start with a formulation whi
h is perhaps easierto digest. It is very mu
h like the Chebyshev problem (
f. [36, �8℄), ex
eptthat we 
onsider it all over the 
omplexi�
ation Y := X + iX of X, takelogarithms, and after normalization by the degree, merge the information de-rived from all polynomials of any degree into one 
lustered quantity. Namely,for any bounded E ⊂ Y , VE vanishes on E, while outside E we have thede�nition

(28) VE(z)

:= sup

{
1

n
log |p(z)| : 0 6= p ∈ Pn(Y ), ‖p‖E ≤ 1, n ∈ N

}
(z /∈ E).For E ⊂ X one 
an easily restri
t even to p ∈ P(X).Note that log |p(z)| is a plurisubharmoni
 fun
tion (PSH, for short), asits one (
omplex) dimensional restri
tions are just logarithms of univariatepolynomials over C. After normalization by the degree, (1/n) log |p(z)| hasvery regular growth towards in�nity: it is at most log+ |z| + O(1). So it isreasonable to 
onsider the Lelong 
lass of all su
h fun
tions:(29) L(E) := {u ∈ PSH : u|E ≤ 0, u(z) ≤ log |z| + O(1) (|z| → ∞)}



Bernstein type estimates 237and to de�ne(30) UE(z) := sup{u(z) : u ∈ L(E)}.This fun
tion may be named the pluri
omplex Green fun
tion. The Zaharju-ta�Si
iak theorem says that (30) and (28) are equal, at least as long as
E ⊂ C

d is 
ompa
t, whi
h we now assume together with E being a non-pluripolar set. (A set E ⊂ C
d is pluripolar if there exists a PSH fun
tion van-ishing on E; otherwise, the set is 
alled nonpluripolar.) Then, being supremaof PSH fun
tions (subharmoni
 fun
tions on all 
omplex �lines�), they are,modulo upper semi
ontinuous regularization, PSH themselves. They play a
entral role in the theory.An extension of the Lapla
e and Poisson equations is the so-
alled 
om-plex Monge�Ampère equation, using the operator(31) (∂∂u)d := d!4ddet[ ∂2u

∂zj∂zk

(z)

]
dV (z),where dV (z) = dx1 ∧ dy1 ∧ · · · ∧ dxd ∧ dyd is just the usual volume ele-ment in C

d. At �rst, the 
omplex Monge�Ampère operator is applied onlyto smooth fun
tions, u ∈ PSH∩C2 say, but due to the work of Bedford andTaylor [7℄, the operator extends, in the appropriate sense, to the whole set oflo
ally bounded PSH fun
tions (whi
h 
overs the 
ase of the upper semi
on-tinuous regularization V ∗
E for any nonpluripolar E, see e.g. [19℄). Therefore,it makes sense to 
onsider(32) (∂∂V ∗

E)d,whi
h is then a 
ompa
tly supported measure λE and is 
alled the 
omplexequilibrium measure of the set E. It is shown [7℄ that in fa
t the supportlies in the polynomial 
onvex hull Ê of E; in 
ase E is 
onvex, Ê = Eand V ∗
E = VE ; moreover, this measure is normalized in a 
ertain sense, as

λ|E(Cd) = λ|E(Ê) = (2π)d.For the theory of plurisubharmoni
 fun
tions and some re
ent develop-ments 
on
erning Bernstein and Markov type inequalities for 
onvex bodiesor even more general sets, we refer to [1�8, 10, 19, 21, 22, 26, 30℄.There are further yields of the theory of PSH fun
tions, when applied tothe Bernstein problem: here we present a few results of Mirosªaw Baran. Formore pre
ise notation we now introdu
e (interpreting 0/0 as 0 here)Definition 2.(33) G(E, x) :=

{
grad p(x)

n
√

‖p‖2 − p(x)2
: 0 6= p ∈ Pn, n ∈ N

}
,and following Baran we also 
onsider(34) G̃(E, x) := conG(E, x).



238 Sz. Gy. RévészClearly supn∈N Bn(E, x) = supu∈G(E,x) ‖u‖ for any 
ompa
t E ⊂ R
d.Theorem 7 (Baran, 1995). Let E be a 
ompa
t subset of R

d with non-empty interior. Then the equilibrium measure λ|E is absolutely 
ontinuousin the interior of E with respe
t to the Lebesgue measure of R
d. Denote itsdensity fun
tion by λ(x) for all x ∈ intE. Then (1/d!)λ(x) ≥ vol G̃(E, x)for a.a. x ∈ intE. Moreover , if E is a symmetri
 
onvex domain of R

d, then
(1/d!)λ(x) = vol G̃(E, x) for a.a. x ∈ intE.
Conjecture B (Baran, 1995). We have (1/d!)λ(x) = vol G̃(E, x) evenif E is a nonsymmetri
 
onvex body in R

d.Now 
onsider E = K ⊂ X, where K is now a 
onvex body. Our morepre
ise results in [35℄ (see also [36, �8℄) yield
VK(x) = log(α(K, x) +

√
α(K, x)2 − 1).However, in the Bernstein problem the values of VK are mu
h more of interestfor 
omplex points z = x + iy, in parti
ular for x ∈ K and y small andnonzero. More pre
isely, the important quantity is the normal (sub)derivative(35) D+

y VE(x) := lim inf
ε→0

VE(x + iεy)

ε
,as this quantity o

urs in the following estimate of the dire
tional derivativeand thus also in the gradient.Theorem 8 (Baran, 1994 & 2004). Let E ⊂ X be any bounded , 
losedset , x ∈ intE and 0 6= y ∈ X. Then for all p ∈ Pn(X) we have(36) |〈Dp(x), y〉| ≤ nD+

y VE(x)
√
‖p‖2

E − p(x)2.Proof. For R
d and partial derivatives this is 
ontained in [3℄; the 
aseof in�nite-dimensional spa
es is 
onsidered in [6℄, but only for symmetri

onvex bodies. The same estimate o

urs, without proof but with referen
eto Baran, in the re
ent publi
ation [11℄. For arbitrary dire
tions y ∈ R

d one
an 
onsider a rotation A : R
d → R

d.It is not obvious how su
h theoreti
al estimates 
an be applied to 
on
rete
ases. First, one has to �nd the value of VE pre
isely enough to be ableto 
ompute even its derivative. Only then do we really have something.However, even that is addressed by 
onsidering the Bedford�Taylor theory ofthe Monge�Ampère equation and the equilibrium measure [7℄, as the densityof the equilibrium measure gives the extremal fun
tion. In some 
on
reteappli
ations all that may be 
al
ulated, a parti
ular example (see [5, Example4.8℄) being the following.
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tion of the standardsimplex in R
d is

V∆(z) = log |h(|z1| + · · · + |zn| + |1 − (z1 + · · · + zn)|)|.Here h(z) := z+
√

z2 − 1 is inverse to the Joukowski mapping ζ 7→ (1/2)(ζ +
1/ζ), with the 
hoi
e of the square root that is positive for positive z ex
eed-ing 1, so that h maps to the exterior of the unit disk.From this and the 
al
ulation with the rotated dire
tions above, we 
andedu
e (1)Proposition 10. For the standard simplex ∆ of R

d, any unit ve
tor
y = (y1, . . . , yn) and any x = (x1, . . . , xn) ∈ int∆ we have the formula(37) D+

y V∆(x) =

√
y2
1

x1
+ · · · + y2

n

xn
+

(y1 + · · · + yn)2

1 − (x1 + · · · + xn)
.Hen
e we are led to the following surprising 
orollary.Corollary 11. The pluripotential-theoreti
 estimate (36) of Baran, 
al-
ulated for the standard simplex of R

d in (37), gives the result exa
tly iden-ti
al to (18), obtained from the ins
ribed ellipse method.Mu
h remains to be explained in this striking 
oin
iden
e, the �rst thingbeing
Hypothesis A. Let K ⊂ X be a 
onvex body. Then for all points x ∈

intK the ins
ribed ellipse method and the pluripotential-theoreti
 method ofBaran results in exa
tly the same estimate, i.e. for all y ∈ S∗ we have(38) D+
y VK(x) =

1

E(K, x, y)
.

5. Further geometri
 
al
ulations. At this point it seems worth for-mulating a few naturally o

urring assumptions.
Hypothesis B. Let K ⊂ X be a 
onvex body. Then for all x ∈ intK theexa
t Bernstein fa
tor is just what results from the pluripotential-theoreti
method of Baran:(39) Bn(K, x) = sup

y∈S+

D+
y VK(x).

Hypothesis C. Let K ⊂ X be a 
onvex body. Then for all x ∈ intK theexa
t Bernstein fa
tor is just what results from the ins
ribed ellipse methodof Sarantopoulos:(40) Bn(K, x) =
1

E(K, x)
.

(1) The same formula is mentioned in [11, p. 145℄.



240 Sz. Gy. RévészThese hypotheses are 
ertainly not true for the dire
tional derivativesin all dire
tions y ∈ S∗, where both methods 
an be improved upon forsome y, as is seen below. Care has to be exer
ised in formulating 
onje
turesand hypotheses in these matters: the situation is more 
omplex than onemight like to have, and the simple heuristi
s of extending the results of thesymmetri
 
ase sometimes fails. In this respe
t see [12, 21, 22℄ and [11℄, whereanother 
ase of deviation from symmetri
 
ase extension is observed for theso-
alled �Baran metri
� on the simplex.There is an important and immediate observation we have not utilizedyet. Namely, we have exhibited methods (a
tually, two equivalently strongones) to estimate Dyp(x). However, if we are looking for the total derivative
grad p(x), then the estimate we used was only the trivial ‖grad p(x)‖ ≤
supy∈S∗ |Dyp(x)|. Can we do any better? Yes, we 
an, depending on theestimating fun
tions we have for Dyp(x).Consider e.g. the estimates from Theorem 3, whi
h was obtained also forthe simplex and thus the triangle ∆. For the triangle we have an expli
it
omputation of the maximal 
hords τ(∆, x) (
f. (22)), and also of the gener-alized Minkowski fun
tional α(∆, x) (see (21)), so everything is expli
it andwe 
an 
ompute the estimating fun
tions. As an example, 
onsider e.g. thepoint M := (1/3, 1/3) and 
ompute all quantities involved in the normal-ization of the dire
tional derivative estimates. As a result, we 
an exa
tlydetermine the arising domain H(∆, M), where in general we write(41) H := H(K, x) := {v = ty : y = (y1, . . . , yd), |t| ≤ r(y)}with r(y) being the available normalized estimate for the dire
tional deriva-tive in dire
tion y.It turns out that the domain H(∆, M) des
ribed by the general es-timates of Theorem 3 is a �ee
y-
loud like domain whi
h is symmetri
with respe
t to the origin, and its upper half is (the part above the x-axisof) the union of three disks: D((

√
3/2,

√
3/2),

√
3) ∪D((0,

√
3/2),

√
3/2) ∪

D((−
√

3/2, 0),
√

3/2). (Here the reader may wish to draw a �gure for bettervisualization.) An immediate observation is that the domain is not 
onvex,and so this is 
ertainly not an exa
t des
ription of all possible dire
tionalderivatives of the gradient.We 
an 
on
lude that if some domain (41) is given with r(y) being somenormalized estimate for the dire
tional derivative in dire
tion y, then tobound G(K, x) an additional pro
ess of restri
ting to the �kernel� part(42) H̃ := H̃(K, x) :=
⋂

y∈S∗

{v : |〈v, y〉| ≤ r(y)}

is available. That is, we always have G̃(K, x) ⊂ H̃. Note that H̃ is a 
onvex,symmetri
 domain for any point set H.
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hnique�, let us 
ome ba
k to the above
ase of estimates from Theorem 3 for the triangle at point M . After somestandard 
onsiderations with Thales 
ir
les we �nd that H̃ is the hexagonaldomain
H̃(∆, M)

= con{(
√

6, 0), (
√

6,
√

6), (0,
√

6), (−
√

6, 0), (−
√

6,−
√

6), (0,−
√

6)}.Observe that the area of the possible stret
h of G is 
onsiderably redu
edfrom the ��ee
y-
loud� domain to the derived hexagonal domain as
areaH(∆, M) = 9 +

9

2π
= 23.137 . . .while area H̃(∆, M) = 18. For 
omparison re
all that Baran's Conje
ture Bwould say that the area should be 1

2λ∆(M) = π/
√

3−3 = 16.324 . . . .Let us 
al
ulate the �kernel set� H̃(∆, x) from the exa
t estimates (18),(36), (37) whi
h we obtain from the ellipse (and hen
e also from Baran's)method. We obtain the following (2).Proposition 12. With the above notations, H̃(∆, x) is an ellipse do-main. Moreover , its major axis µ := µ(x) and minor axis ν := ν(x) aregiven by
(43) µ =

√
2

x1(1 − x1) + x2(1 − x2) + D(x)
,

ν =

√
2

x1(1 − x1) + x2(1 − x2) − D(x)
,where D(x) is the quantity de�ned in (25).Proof. For �xed x ∈ ∆ we are to des
ribe the solution set (42) for K = ∆,with r(y) being the quantity (19). That is, we determine all those ve
tors u =

(u1, u2) ∈ R
2 whi
h satisfy |〈u, y〉| ≤ 1/E(∆, x, y) for all y = (cos ϕ, sinϕ).Using (19) and squaring, we see that the de�ning inequalities des
ribe theset {

u : (u1 cos ϕ + u2 sinϕ)2 ≤ cos2 ϕ

x1
+

sin2 ϕ

x2
(44)

+
(cosϕ + sinϕ)2

1 − x1 − x2
(∀ϕ ∈ R)

}
.

(2) These 
omputations were exe
uted jointly with Nikola Naidenov from the Univer-sity of So�a during the author's stay in So�a in O
tober 2004. The author regrets thatin spite of his undoubted 
ontribution [29℄ to this work, Nikola Naidenov 
hose not to benamed as a 
oauthor.



242 Sz. Gy. RévészPutting x3 := 1 − x1 − x2, the 
ase of cos2 ϕ > 0 yields(45) (u1 + u2t)
2 ≤ 1

x1
+

t2

x2
+

(1 + t)2

x3
(∀t := tanϕ ∈ R),whi
h is a se
ond degree inequality in t. Solving it we arrive at(46) au2

1 + bu2
2 − cu1u2 ≤ 1,where the 
oe�
ients are all stri
tly positive and have the form(47) a := a(x) := x1(1 − x1), b := b(x) := x2(1 − x2),

c := c(x) := 2x1x2.Thus (46) determines an ellipse domain, and 
al
ulation of its axes leads tothe result.So we are led to the following result.Theorem 13. With the above notations, we have
area H̃(∆, x) =

π√
x1x2(1 − x1 − x2)

.Proof. As is well known, the area of an ellipse domain with axes µ and
ν is πµν, hen
e Proposition 12 leads to the asserted value.Corollary 14. We have G(x) ⊆ conG(x) ⊆ H̃(x) with area H̃(x) =
1
2λ(x). Hen
e either conG(x) = H̃(x) for all x ∈ ∆, or Baran's Conje
tureB fails.Proof. One must 
ompute the density fun
tion λ(x) of the equilibriummeasure. This has already been done by Baran, [5, Example 4.8℄: we have
λ(x) = 2π/

√
x1x2(1 − x1 − x2). On 
omparing to Theorem 13 we �nd theasserted identity. Sin
e H̃ is an ellipse domain and also conG is a 
onvexdomain, the in
lusion conG(x) ⊂ H̃(x) and equality of their areas entailsthat conG(x) = H̃(x). On the other hand, if at some point x ∈ ∆ therespe
tive areas di�er, then area conG(x) < area H̃(x) = 1

2λ(x), hen
e the
onje
tured identity of Baran fails.Remark 1. While using the information on the support fun
tional from
H(∆, x) improves upon the known area estimates, it does not improve themaximal gradient norm estimate of [23℄.Indeed, as H̃(∆, x) is an ellipse domain, we have to 
onsider its majoraxis. It turns out that in the 
ase of the standard triangle, this 
al
ulationyields max

v∈H̃
‖v‖ = maxv∈H ‖v‖ = 1/E(∆, x).Note that maxv∈V ‖v‖ = maxv∈conV ‖v‖ for any set V , hen
e regard-ing the maximal gradient norm estimate it makes no di�eren
e whether we
onsider conG(x) or G(x) only. Also note that starting from a set H ⊃ G
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onsidering the �kernel� H̃, we ne
essarily obtain a 
onvex set, so from
G ⊂ H̃ it follows that even taking the 
onvex hull we still have conG ⊂ H̃.Corollary 15. Conje
tures A and B 
annot hold simultaneously.Proof. A

ording to Corollary 14, Baran's Conje
ture B holds if onlythere 
an be no improvement on the estimates of the ellipse (or Baran's)method on the simplex. But then Conje
ture A fails. Conversely, if Conje
-ture A holds, then there is an improvement at least at 
ertain points andin 
ertain dire
tions 
ompared to the estimates of the ellipse (or Baran's)method, hen
e the estimates of Corollary 14 stri
tly ex
eed the right valueand Baran's Conje
ture B fails.6. Con
luding remarks. Also, another real, geometri
 method of ob-taining Bernstein type inequalities, due to Skalyga [39, 40℄, should be men-tioned here; the di�
ulty with it is that to the best of our knowledge, no onehas ever been able to 
ompute, neither for the seemingly least 
ompli
ated
ase of the standard triangle of R

2, nor in any other parti
ular nonsymmetri

ase, the yield of that abstra
t method. Hen
e in spite of some remarks thatthe method is sharp in some sense, it is un
lear how 
lose these estimatesare to the right answer and of what use they 
an be in any 
on
rete 
ases.Given the above �ndings, it seems plausible that Conje
ture A, if nottrue, 
an be disproved by some expli
it example. To 
onstru
t a polynomialwith large gradient, as 
ompared to the norm, means to 
onstru
t a highlyos
illating polynomial. For that, various natural and more intri
ate ideaswere tried by Nikola Naidenov [29℄ in So�a during the Fall of 2004. We hopehe will report on his experien
es in the near future.The author would like to thank Norm Levenberg for enlightening 
om-ments and suggestions, and an anonymous referee for 
areful 
orre
tions.
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