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The comparison principle and Dirichlet problem

in the class Ep(f), p > 0

by Pham Hoang Hiep (Hanoi)

Abstract. We establish the comparison principle in the class Ep(f). The result ob-
tained is applied to the Dirichlet problem in Ep(f).

1. Introduction. Let Ω be a bounded hyperconvex domain in C
n. We

denote by PSH(Ω) the set of plurisubharmonic (psh) functions on Ω. In
[BT1,2] the authors established and used the comparison principle to study
the Dirichlet problem in PSH∩L∞loc(Ω). Recently, Cegrell introduced a gen-
eral class E of psh functions on which the complex Monge–Ampère operator
(ddc·)n can be defined. He obtained many important results of pluripotential
theory in the class E , for example, the comparison principle and solvabil-
ity of the Dirichlet problem (see [Ce1–3]). In [H], the author proved the
comparison principle in the class F .
The aim of the present paper is to continue the study of the class Ep(f).

In Section 3 we prove a comparison principle of the Xing type in the class
Ep(f), p > 0. This is aplied to the Dirichlet problem in Ep(f). In particular,
in Section 4, we prove that for a positive measure µ on Ω the equation
(ddcu)n = µ has a solution in Ep(f) if and only if Ep(Ω) ⊂ Lp(Ω,µ).

Acknowledgments. The author is grateful to Professor Nguyen Van
Khue for suggesting the problem and for many helpful discussions during
the preparation of this work. The author is also indebted to the referee for
his useful comments that helped to improve the paper.

2. Preliminaries. First we recall some elements of pluripotential theory
that will be used throughout the paper. All this can be found in [BT1,2],
[Ce1–3].
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2.1. Unless otherwise specified, Ω will be a bounded hyperconvex do-
main in C

n, meaning that there exists a negative exhaustive psh function
for Ω.

2.2. Let Ω be a bounded domain in C
n. The Cn-capacity in the sense

of Bedford and Taylor on Ω is the set function given by

Cn(E) = Cn(E,Ω) = sup
{ \
E

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u ≤ 0
}

for every Borel set E in Ω. It is known [BT2] that

Cn(E) =
\
Ω

(ddch∗E,Ω)
n

where h∗E,Ω is the relative extremal psh function for E (relative to Ω) defined
as the smallest upper semicontinuous majorant of hE,Ω,

hE,Ω(z) = sup{u(z) : u ∈ PSH(Ω), −1 ≤ u ≤ 0, u ≤ −1 on E}.

The following definition was introduced in [Xi]: A sequence uj ∈ PSH
−(Ω)

converges to u in Cn-capacity if

Cn(K ∩ {|uj − u| > δ})→ 0, j →∞, ∀K ⊂⊂ Ω, δ > 0.

2.3. The following classes of psh functions were introduced by Cegrell
in [Ce1,2]:

E0 = E0(Ω) =
{
ϕ ∈ PSH(Ω) ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z) = 0,

\
Ω

(ddcϕ)n <∞
}
,

E = E(Ω) =
{
ϕ ∈ PSH(Ω) : ∀z0 ∈ Ω ∃ a neighbourhood ω ∋ z0,

∃E0 ∋ ϕj ց ϕ on ω, sup
j≥1

\
Ω

(ddcϕj)
n <∞

}
,

F = F(Ω) =
{
ϕ ∈ PSH(Ω) : ∃E0 ∋ ϕj ց ϕ, sup

j≥1

\
Ω

(ddcϕj)
n <∞

}
,

Ep = Ep(Ω) =
{
ϕ ∈ PSH(Ω) : ∃E0 ∋ϕj ց ϕ, sup

j≥1

\
Ω

(−ϕj)
p(ddcϕj)

n<∞
}
,

Fp = Fp(Ω) =
{
ϕ ∈ Ep(Ω) : ∃E0 ∋ ϕj ց ϕ, sup

j≥1

\
Ω

(ddcϕj)
n <∞

}
.

2.4. Let f : ∂Ω → R be a continuous function. Recall that the Perron–
Bremermann envelope of f is defined by

U(0, f)(z) = sup{ϕ(z) : ϕ ∈ PSH(Ω), lim
w→ξ

ϕ(w) ≤ f(ξ) ∀ξ ∈ ∂Ω}.

A plurisubharmonic function u defined on Ω belongs to the class Ep(f) if
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there exists a function ϕ ∈ Ep such that

ϕ+ U(0, f) ≤ u ≤ U(0, f).

Next we introduce some results needed for our paper:

2.5. Proposition. Let uj ∈ PSH
−(Ω) be such that uj is increasing a.e.

with respect to the Lebesgue measure to some u ∈ PSH−(Ω). Then uj → u
in Cn-capacity as j →∞.

Proof. Let K ⊂⊂ Ω and δ, ε > 0. By [BT1,2] we can choose t > 0 such
that

Cn(K ∩ {u1 < −t}) < ε.

By Proposition 2.5 in [Cz] there exists j0 such that

Cn(K ∩ {|max(uj ,−t)−max(u,−t)| > δ}) < ε, ∀j ≥ j0.

For each j ≥ j0, we have

Cn(K ∩ {|uj − u| > δ}) ≤ Cn(K ∩ {|max(uj ,−t)−max(u,−t)| > δ})

+ Cn(K ∩ {uj < −t}) + Cn(K ∩ {u < −t})

≤ Cn(K ∩ {|max(uj ,−t)−max(u,−t)| > δ})

+ 2Cn(K ∩ {u1 < −t})

≤ 3ε.

2.6. Proposition. Let uj ∈ E be such that uj is increasing a.e. with
respect to the Lebesgue measure to some u ∈ E. Then (ddcuj)

n → (ddcu)n

weakly as j →∞.

Proof. Let D ⊂⊂ Ω. By the remark after Definition 4.6 in [Ce2] we can
find v ∈ F such that v|D = u1|D. We set

ũj = max(uj , v), ũ = max(u, v).

We have F ∋ ũj ր ũ ∈ F and ũj |D = uj |D, ũ|D = u|D. By Proposition 2.5
and Theorem 1.1 in [Ce4] we have (ddcũj)

n → (ddcũ)n weakly as j → ∞.
Hence (ddcuj)

n → (ddcu)n weakly as j →∞.

2.7. Proposition. Let u ∈ E be such that

snCn({u < −s})→ 0 as s→∞.

Then (ddcu)n is locally absolutely continuous with respect to Cn-capacity.

Proof. Let D ⊂⊂ Ω. By the remark following Definition 4.6 in [Ce2] we
can choose v ∈ F such that v = u on D and v ≥ u on Ω. We have

snCn({v < −s}) ≤ s
nCn({u < −s})→ 0 as s→∞.

By Proposition 3.4 in [CKZ], (ddcv)n is absolutely continuous with respect to
Cn-capacity. Therefore, (dd

cu)n is locally absolutely continuous with respect
to Cn-capacity.
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2.8. Proposition. Let u ∈ Ep(f). Then (dd
cu)n is locally absolutely

continuous with respect to Cn-capacity.

Proof. We can assume that 0 ≤ f ≤ 1. By the definition of Ep(f), there
exists a function ϕ ∈ Ep such that

ϕ+ U(0, f) ≤ u ≤ U(0, f).

We set v = u− 1 ∈ E . By Proposition 3.1 in [CKZ] we have

snCn({v < −s}) ≤ s
nCn({ϕ < −s+ 1}) ≤ cn,pep(ϕ)

sn

(s− 1)n+p
→ 0

as s → ∞. Using Proposition 2.7 we conclude that (ddcu)n = (ddcv)n is
locally absolutely continuous with respect to Cn-capacity.

2.9. Theorem. Let u, v ∈ Ep be such that (dd
cu)n ≤ (ddcv)n. Then

u ≥ v.

Proof. See the proof of Theorem 6.2 in [Ce1] for p ≥ 1 and Theorem 4.2
in [CHÅ] for 0 < p < 1.

2.10. Theorem. Let u, v ∈ Ep. Then

1

n!

\
{u<v}

(v − u)nddcw1 ∧ · · · ∧ dd
cwn +

\
{u<v}

(r − w1)(dd
cv)n

≤
\

{u<v}

(r − w1)(dd
cu)n

for all wj ∈ PSH(Ω), 0 ≤ wj ≤ 1, j = 1, . . . , n and all r ≥ 1.

Proof. Use Theorem 2.9 and Proposition 4.7 of [KH].

The following theorem was proved by Persson [Per] for p ≥ 1 and in
[CHÅ] for 0 < p < 1.

2.11. Theorem. Let u0, u1, . . . , un be functions in PSH∩L
∞(Ω) such

that limz→∂Ω uj(z) = 0 for j = 0, 1, . . . , n. Then\
Ω

(−u0)
pddcu1 ∧ · · · ∧ dd

cun

≤ Cp,n

[ \
Ω

(−u0)
p(ddcu0)

n
]p/(p+n)[ \

Ω

(−u1)
p(ddcu1)

n
]1/(p+n)

. . .
[ \
Ω

(−un)
p(ddcun)

n
]1/(p+n)

.

Finally, we need the following theorem on the Dirichlet problem.

2.12. Theorem. Let p > 0 and µ a positive measure on Ω. Then there
exists a unique function u ∈ Ep such that (dd

cu)n = µ if , and only if , there
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is a constant A > 0 such that\
Ω

(−ϕ)p dµ ≤ A
[ \
Ω

(−ϕ)p(ddcϕ)n
]p/(p+n)

for every ϕ ∈ E0.

Proof. The assumption on µ implies that it vanishes on pluripolar sets
and therefore Theorem 5.11 in [Ce2] shows that there exist φ ∈ E0 and
0 ≤ f ∈ L1loc((dd

cφ)n) such that µ = f(ddcφ)n. Kołodziej’s theorem ([Ko])
implies that there exist uj ∈ E0 such that (dd

cuj)
n = min{f, j}(ddcφ)n.

Using the assumption on µ for ϕ = uj , we obtain\
Ω

(−uj)
p(ddcuj)

n ≤ A(n+p)/n.

Thus uj ց u ∈ Ep and (dd
cu)n = dµ. Uniqueness follows from Theorem 2.9.

For the converse, let p > 0 and assume that there exists u ∈ Ep such that
(ddcu)n = µ. By Theorem 2.1 in [Ce2] there exist uj ∈ E0 such that uj ց u.
We have

B = sup
j≥1

\
Ω

(−uj)
p(ddcuj)

n <∞.

Theorem 2.11 yields\
Ω

(−ϕ)p dµ ≤ lim
j→∞

\
Ω

(−ϕ)p(ddcuj)
n

≤ lim
j→∞

[ \
Ω

(−ϕ)p(ddcϕ)n
]p/(p+n)[ \

Ω

(−uj)
p(ddcuj)

n
]n/(p+n)

≤ Bn/(p+n)
[ \
Ω

(−ϕ)p(ddcϕ)n
]p/(p+n)

.

3. The comparison principle in Ep(f). In this section we prove the
comparison principle in the class Ep(f) with p > 0. The theorem is proved
using the ideas from the proof of Theorem 3.10 in [Ce3].

3.1. Theorem. Let u ∈ Ep(f) and v ∈ Ep(g) with f ∈ C(∂Ω) and
f ≥ g. Then

(∗)
1

n!

\
{u<v}

(v − u)nddcw1 ∧ · · · ∧ dd
cwn +

\
{u<v}

(r − w1)(dd
cv)n

≤
\

{u<v}

(r − w1)(dd
cu)n

for all wj ∈ PSH(Ω), 0 ≤ wj ≤ 1, j = 1, . . . , n and all r ≥ 1.

We need the following
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3.2. Lemma. Let ϕ ∈ Ep. There exist E0 ∋ ϕj ց ϕ and Ep ∋ ψj ր 0
a.e. such that ϕj + ψj ≤ ϕ ≤ ϕj , ψj .

Proof. Let h ∈ E0 with h 6≡ 0. For every j > 0 by Proposition 4.1 in [KH]
we have

(ddcϕ)n = 1{ϕ>jh}(dd
cϕ)n + 1{ϕ≤jh}(dd

cϕ)n

= 1{ϕ>jh}(dd
cmax(ϕ, jh))n + 1{ϕ≤jh}(dd

cϕ)n,

where 1E denotes the characteristic function of E ⊂ Ω. By Kołodziej’s
theorem ([Ko]) there exists ϕj ∈ E0 such that

(ddcϕj)
n = 1{ϕ>jh}(dd

cmax(ϕ, jh))n = 1{ϕ>jh}(dd
cϕ)n.

On the other hand, by Theorem 2.12 there exists ψj ∈ Ep such that

(ddcψj)
n = 1{ϕ≤jh}(dd

cϕ)n.

Therefore

max((ddcϕj)
n, (ddcψj)

n) = max(1{ϕ>jh}(dd
cϕ)n, 1{ϕ≤jh}(dd

cϕ)n)

≤ (ddcϕ)n = (ddcϕj)
n + (ddcψj)

n

≤ (ddc(ϕj + ψj))
n.

Using Theorem 2.9 we get

ϕj + ψj ≤ ϕ ≤ ϕj , ψj

and

ϕj ց ϕ̃ ≥ ϕ and ψj ր ψ̃ ∈ Ep a.e.

Thus by Theorem 4.5 in [Ce2] and Proposition 2.6, we have

(ddcϕj)
n → (ddcϕ̃)n, (ddcψj)

n → (ddcψ̃)n as j →∞.

On the other hand, we also have

(ddcϕj)
n → (ddcϕ)n, (ddcψj)

n → 0 as j →∞.

Indeed, let ω ∈ C∞0 (Ω). First note that 1{ϕ>jh} → 1Ω , 1{ϕ≤jh} → 0 except
on a pluripolar set, as j → ∞. Then by Proposition 2.8 and Lebesgue’s
convergence theorem we have

lim
j→∞

\
Ω

ω(ddcϕj)
n = lim

j→∞

\
Ω

ω1{ϕ>jh}(dd
cϕ)n =

\
Ω

ω(ddcϕ)n

and

lim
j→∞

\
Ω

ω(ddcψj)
n = lim

j→∞

\
Ω

ω1{ϕ≤jh}(dd
cϕ)n = 0.

Thus

(ddcϕ̃)n = (ddcϕ)n and (ddcψ̃)n = 0.

Hence ϕ̃ = ϕ and ψ̃ = 0.
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Proof of Theorem 3.1. Obviously, we may assume that f ≤ −1. First
consider the case u, v ∈ Ep(f). Let ϕ ∈ Ep be such that

ϕ+ U(0, f) ≤ u, v ≤ U(0, f).

Replacing u by u+ ε, without loss of generality we may assume that

U(0, f + ε) + ϕ ≤ u ≤ U(0, f + ε).

Using Lemma 3.2 we can find E0 ∋ ϕj ց ϕ and Ep ∋ ψj ր 0 a.e. such that

ϕj + ψj ≤ ϕ ≤ ϕj , ψj .

For each j ≥ 1 take hj ∈ E0 such that hj < U(0, f) on {ϕj < −ε} ⊂⊂ Ω.
We set

uj = max(u, ϕ+max(U(0, f), hj)) ∈ Ep,

vj = max(v + ψj , 2ϕ+max(U(0, f), hj)) ∈ Ep.

Using Theorem 2.10, we have

(1)
1

n!

\
{uj<vj}

(vj − uj)
nddcw1 ∧ · · · ∧ dd

cwn +
\

{uj<vj}

(r − w1)(dd
cvj)

n

≤
\

{uj<vj}

(r − w1)(dd
cuj)

n

for all wj ∈ PSH(Ω), 0 ≤ wj ≤ 1, j = 1, . . . , n and all r ≥ 1. From the
inclusions

{u < v + ψj} ⊂ {ϕ+ U(0, f + ε) < ψj + U(0, f)}

⊂ {ϕj + ψj + U(0, f + ε) < ψj + U(0, f)} ⊂ {ϕj < −ε}.

we have
{uj < vj} ⊂ {ϕj < −ε}.

Moreover, uj = u and vj = v + ψj on {ϕj < −ε} because hj < U(0, f) on
{ϕj < −ε}. It follows from (1) that

1

n!

\
{u<v+ψj}

(v+ψj−u)
nddcw1∧· · ·∧dd

cwn+
\

{u<v+ψj}

(r−w1)(dd
c(v+ψj))

n

≤
\

{u<v+ψj}

(r − w1)(dd
cu)n.

We get

(2)
1

n!

\
Ω

1{u<v+ψj}(v + ψj − u)
nddcw1 ∧ · · · ∧ dd

cwn

+
\
Ω

1{u<v+ψj}(r − w1)(dd
cv)n

≤
\

{u<v}

(r − w1)(dd
cu)n.
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From supj≥1 ψj = (supj≥1 ψj)
∗ = 0 except on a pluripolar set, it follows

that 1{u<v+ψj} ր 1{u<v} and 1{u<v+ψj}(v + ψj − u)
n ր 1{u<v}(v − u)

n

except on a pluripolar set. On the other hand, from the locally abso-
lute continuity of ddcw1 ∧ · · · ∧ dd

cwn and (dd
cv)n with respect to Cn-

capacity (see Proposition 2.8) it follows that 1{u<v+ψj} ր 1{u<v} and
1{u<v+ψj}(v+ψj−u)

n ր 1{u<v}(v−u)
n a.e. with respect to these measures.

Thus applying Lebesgue’s monotone convergence theorem to (2) we obtain
(∗) in Theorem 3.1.

Now assume that u ∈ Ep(f) and v ∈ Ep(g). Then v1 = max(u, v) ∈ Ep(f)
and thus (∗) holds for u and v1. Thus using Proposition 4.1 of [KH] and
the inclusion {u < v} = {u < v1} it follows that (∗) holds for u and v. The
theorem is proved.

3.3. Theorem. Let u ∈ Ep(f) and v ∈ E(g) be such that f, g ∈ C(∂Ω)
and f ≥ g. If (ddcu)n ≤ (ddcv)n then u ≥ v.

Proof. Obviously, we may assume that f ≤ −1. First consider the case
u, v ∈ Ep(f). Let ϕ ∈ Ep be such that

ϕ+ U(0, f) ≤ u, v ≤ U(0, f).

Using Lemma 3.2 we can find E0 ∋ ϕj ց ϕ and Ep ∋ ψj ր 0 a.e. such that

ϕj + ψj ≤ ϕ ≤ ϕj , ψj .

Theorem 3.1 yields

(3)
1

n!

\
{u+ε<v+ψj}

(v + ψj − u− ε)
nddcw1 ∧ · · · ∧ dd

cwn

+
\

{u+ε<v+ψj}

(r − w1)(dd
c(v + ψj))

n

≤
\

{u+ε<v+ψj}

(r − w1)(dd
cu)n

for all wj ∈ PSH(Ω), 0 ≤ wj ≤ 1, j = 1, . . . , n and all r ≥ 1. From the
inclusions

{u < v + ψj} ⊂ {ϕ+ U(0, f) + ε < ψj + U(0, f)}

⊂ {ϕj + ψj + U(0, f) + ε < ψj + U(0, f)} ⊂ {ϕj < −ε}

we have

{u+ ε < v + ψj} ⊂ {ϕj < −ε} ⊂⊂ Ω.

Moreover (ddcu)n ≤ (ddcv)n. It follows from (3) that\
{u+ε<v+ψj}

(v + ψj − u− ε)
nddcw1 ∧ · · · ∧ dd

cwn = 0
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for all wj ∈ PSH(Ω), 0 ≤ wj ≤ 1, j = 1, . . . , n. Therefore u + ε ≥ v + ψj .
Letting j →∞ and ε→ 0, we obtain u ≥ v.

Now assume that u ∈ Ep(f) and v ∈ Ep(g). Then v1 = max(u, v) ∈ Ep(f).
By Proposition 4.3 in [KH], we have (ddcu)n ≤ (ddcv1)

n. Hence u ≥ v1 ≥ v.
The theorem is proved.

4. The Dirichlet problem in Ep(f). In this section, first using The-
orem 3.3 by a standard method we prove the following

4.1. Theorem. Let µ be a positive measure such that µ ≤ (ddcv)n with
v ∈ Ep(f). If limz→ξ U(0, f) = f(ξ) for all ξ ∈ ∂Ω then there is a unique
function u ∈ Ep(f) such that µ = (dd

cu)n.

Proof. The uniqueness is known from Theorem 3.3. It remains to show
the existence of u ∈ Ep(f) such that µ = (dd

cu)n. By Theorem 6.3 in [Ce1]
we can find ψ ∈ E0 and 0 ≤ ϕ ∈ L1loc((dd

cψ)n) such that µ = ϕ(ddcψ)n.
We set µk = min(ϕ, k)(dd

cψ)n. Then µk ≤ (dd
ck1/nψ)n. By Kołodziej’s

theorem (see [Ko]) there exists ωk ∈ E0 such that (dd
cωk)

n = µk. From the
relations {

U((ddc(ωk + U(0, f)))
n, f) = ωk + U(0, f),

(ddc(ωk + U(0, f)))
n ≥ µk,

and from Theorem 8.1 in [Ce1] it follows that
{
(ddcU(µk, f))

n = µk,
U(0, f) ≥ U(µk, f) ≥ ωk + U(0, f).

Theorem 3.3 implies that U(µk, f) ց u ≥ v. Obviously, we have u ∈ Ep(f)
and µ = (ddcu)n.

4.2. Example. There exists 0 ≤ ϕ ∈ L1(Ω) such that no function

u ∈
⋃
{Ep(f) : p > 0, f ∈ C(∂Ω)}

satisfies (ddcu)n ≥ ϕdλ, where dλ is the Lebesgue measure on C
n.

Indeed, take an arbitrary subdomain D ⊂⊂ Ω. Let zj ∈ D, sj ց 0,
pj ց 0 and aj > 0 be such that B(zj , sj) = {z ∈ C

n : ‖z − zj‖ < sj} ⊂ D
and
∑∞
j=1 aj <∞. Define

ϕ =
∞∑

j=1

aj
dnr2nj

1B(zj ,rj) ∈ L
1(Ω)

where dn is the volume of the unit ball in C
n and 0 < rj < sj are chosen so

that
1

aj
(Cn(B(zj , rj), Ω))

pj/(pj+n) → 0 as j →∞.
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Assume that ϕdλ ≤ (ddcu)n for some u ∈ Ep(f) with p > 0 and f ∈ C(∂Ω).
Obviously, we may assume that f < 0. Take ψ ∈ Ep such that ψ+U(0, f) ≤
u ≤ U(0, f). Put

ω = max

(
U(0, f),−

M

supD hD,Ω
hD,Ω

)
∈ E0

where M > 0 is such that −M < inf∂Ω f < 0. Hence ω = U(0, f) on D. Let
ũ = max(u, ψ + ω). We have ψ + ω ≤ ũ ≤ 0 and ψ + ω ∈ Ep + E0 ⊂ Ep. By
[Ce1] we have ũ ∈ Ep. Moreover ũ = u on D. Thus for Bj = B(zj, rj) we
have

aj =
\
Bj

ϕdλ ≤
\
Bj

(ddcu)n =
\
Bj

(ddcũ)n.

Let E0 ∋ ũk ց ũ be as in the definition of Ep. Then (dd
cũk)

n → (ddcũ)n

weakly (see [Ce1]). Theorem 2.11 implies the estimates

aj ≤
\
Bj

(ddcũ)n ≤ lim
k→∞

\
Bj

(ddcũk)
n ≤ lim

k→∞

\
Ω

(−hBj ,Ω)
p(ddcũk)

n

≤ Cp,n lim
k→∞

[\
Ω

(−hBj ,Ω)
p(ddchBj ,Ω)

n
]p/(p+n)[\

Ω

(−ũk)
p(ddcũk)

n
]n/(p+n)

≤ α
[ \
Ω

(ddchBj )
n
]p/(p+n)

= α[Cn(Bj , Ω)]
p/(p+n)

where Cp,n is a positive constant and

α = Cp,n

[
sup
k≥1

\
Ω

(−ũk)
p(ddcũk)

n
]n/(p+n)

<∞.

This is impossible, because

lim
j→∞

[Cn(Bj , Ω)]
p/(p+n)

aj
≤ lim
j→∞

[Cn(Bj , Ω)]
pj/(pj+n)

aj
= 0.

4.3. Theorem. Let f ∈ C(∂Ω) be such that

lim
z→ξ

U(0, f)(z) = f(ξ) ∀ξ ∈ ∂Ω

and

U(0, f) + U(0,−f) ∈ Ep.

Assume that µ is a positive measure on Ω. Then the following are equivalent :

(i) There exists a function u ∈ Ep(f) with (dd
cu)n = µ.

(ii) There exists a constant A > 0 such that

(∗∗)
\
Ω

(−ϕ)p dµ ≤ A
[ \
Ω

(−ϕ)p(ddcϕ)n
]p/(p+n)

∀ϕ ∈ E0(Ω).
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(iii) There exists a constant A > 0 such that\
Ω′

(−ϕ)p dµ ≤ A
[ \
Ω′

(−ϕ)p(ddcϕ)n
]p/(p+n)

∀ϕ ∈ E0(Ω
′)

for all hyperconvex subdomains Ω′ ⊂⊂ Ω.

(iv) Ep(Ω) ⊂ Lp(Ω,µ).

Proof. (i)⇒(ii). Suppose that µ = (ddcu)n for some u ∈ Ep(f). Take
ψ ∈ Ep with

ψ + U(0, f) ≤ u ≤ U(0, f).

Hence
ψ + U(0, f) + U(0,−f) ≤ u+ U(0,−f) ≤ 0.

It follows that u + U(0,−f) ∈ Ep because ψ + U(0, f) + U(0,−f) ∈ Ep.
By Theorem 2.12, (ddc(u + U(0,−f)))n satisfies (∗∗). Hence so also does
µ = (ddcu)n.

(ii)⇒(i). Assume that µ satisfies (∗∗). From Theorem 2.12 we find v ∈ Ep
such that (ddcv)n = µ. Since µ ≤ (ddc(v + U(0, f)))n, using Theorem 4.1
we have (ii)⇒(i).

(ii)⇒(iii). Assume that (∗∗) holds for all ϕ ∈ E0(Ω). Since Theorem 2.12
we can write µ = (ddcu)n for some u ∈ Ep(Ω). By [Åh] we find v ∈ F(Ω

′)
such that (ddcv)n = µ|Ω′ . By the comparison principle we have v ≥ u|Ω′ .
Therefore \

Ω′

(−v)p(ddcv)n ≤
\
Ω

(−u)p(ddcu)n.

Theorem 2.11 implies that (∗∗) holds for ϕ ∈ E0(Ω
′) with

A = Cp,n

[ \
Ω

(−u)p(ddcu)n
]p/(p+n)

,

which is independent of Ω′.

(iii)⇒(ii). Take an increasing exhaustion sequence of Ω by relatively
compact hyperconvex subdomains Ωj . Let ϕ ∈ E0(Ω). By [Åh], there are
ϕj ∈ F ∩ L

∞(Ωj) such that (dd
cϕj)

n = (ddcϕ)n|Ωj . The comparison prin-
ciple implies that ϕj ց ϕ. We have\
Ωj

(−ϕj)
p dµ ≤ A

[ \
Ωj

(−ϕj)
p(ddcϕj)

n
]p/(p+n)

=A
[ \
Ωj

(−ϕj)
p(ddcϕ)n

]p/(p+n)

for all j ≥ 1. Letting j →∞, we have\
Ω

(−ϕ)p dµ ≤ A
[ \
Ω

(−ϕ)p(ddcϕ)n
]p/(p+n)

.

(ii)⇒(iv) is obvious. In order to prove (iv)⇒(ii) we need
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4.4. Lemma.

(a) If p ≥ 1 then\
Ω

(
−

k∑

j=1

αjuj

)p(
ddc
( k∑

j=1

αjuj

))n
≤ Cp,n max

1≤j≤k

\
Ω

(−uj)
p(ddcuj)

n

for all u1, . . . , uk ∈ Ep and 0 ≤ α1, . . . , αk ≤ 1 with
∑k
j=1 αj = 1.

(b) If 0 < p < 1 then\
Ω

(
−

k∑

j=1

αjuj

)p(
ddc
( k∑

j=1

αjuj

))n
≤ Cp,n

( k∑

j=1

αpj

)
max
1≤j≤k

\
Ω

(−uj)
p(ddcuj)

n

for all u1, . . . , uk ∈ Ep and 0 ≤ α1, . . . , αk ≤ 1 with
∑k
j=1 αj = 1,

where Cp,n is as in Theorem 2.11.

Proof. Set

ep(u) =
\
Ω

(−u)p(ddcu)n, u ∈ Ep, M = max
1≤j≤k

\
Ω

(−uj)
p(ddcuj)

n.

(a) By Theorem 2.11 we have

(
ep

( k∑

j=1

αjuj

))1/p
=
[ \
Ω

(
−

k∑

j=1

αjuj

)p(
ddc
( k∑

j=1

αjuj

))n]1/p

≤
k∑

j=1

[ \
Ω

(−αjuj)
p
(
ddc
( k∑

j=1

αjuj

))n]1/p

=
k∑

j=1

αj

[ \
Ω

(−uj)
p
(
ddc
( k∑

j=1

αjuj

))n]1/p

=
k∑

j=1

αj

[ \
Ω

(−uj)
p

∑

1≤i1,...,in≤k

αi1 · · ·αindd
cui1 ∧ · · · ∧ dd

cuin

]1/p

≤
k∑

j=1

αj

[
Cp,n

∑

1≤i1,...,in≤k

αi1 · · ·αinep(uj)
p/(p+n)ep(ui1)

1/(p+n) · · ·

ep(uin)
1/(p+n)

]1/p

≤
k∑

j=1

αj

[
Cp,nM

∑

1≤i1,...,in≤k

αi1 · · ·αin

]1/p

= (Cp,nM)
1/p

k∑

j=1

αj [(α1 + · · ·+ αk)
n]1/p = (Cp,nM)

1/p.

Hence ep(
∑k
j=1 αjuj) ≤ Cp,nM .
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(b) By Theorem 2.11 we have

ep

( k∑

j=1

αjuj

)
=
\
Ω

(
−

k∑

j=1

αjuj

)p(
ddc
( k∑

j=1

αjuj

))n

≤
k∑

j=1

\
Ω

(−αjuj)
p
(
ddc
( k∑

j=1

αjuj

))n

=
k∑

j=1

αpj

\
Ω

(−uj)
p
(
ddc
( k∑

j=1

αjuj

))n

=

k∑

j=1

αpj

[ \
Ω

(−uj)
p

∑

1≤i1,...,in≤k

αi1 · · ·αindd
cui1 ∧ · · · ∧ dd

cuin

]

≤

k∑

j=1

αpj

[
Cp,n

∑

1≤i1,...,in≤k

αi1 · · ·αinep(uj)
p/(p+n)ep(ui1)

1/(p+n)

· · · ep(uin)
1/(p+n)

]

≤
k∑

j=1

αpj

[
Cp,nM

∑

1≤i1,...,in≤k

αi1 · · ·αin

]

= Cp,nM
k∑

j=1

αpj (α1 + · · ·+ αk)
n = Cp,nM

k∑

j=1

αpj .

Now we prove that (iv)⇒(ii). Assume that (∗∗) is not true. Then we can
find ϕj ∈ E0(Ω) such that\

Ω

(−ϕj)
p dµ ≥ 4jp

[ \
Ω

(−ϕj)
p(ddcϕj)

n
]p/(p+n)

.

Set

ψj =
ϕj

ep(ϕj)1/(p+n)
, j ≥ 1.

Obviously, we have ep(ψj) = 1 and\
Ω

(−ψj)
p dµ =

1

ep(ϕj)p/(p+n)

\
Ω

(−ϕj)
p dµ

≥
4jp

ep(ϕj)p/(p+n)

[ \
Ω

(−ϕj)
p(ddcϕj)

n
]p/(p+n)

.

Thus ep(ψj) = 1 and
T
Ω
(−ψj)

p dµ ≥ 4jp. Let ψ =
∑∞
j=1 ψj/2

j . Then

E0 ∋
k∑

j=1

ψj
2j
ց ψ as k →∞
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and by Lemma 4.4 there exists Dp,n > 0 such that

ep

( k∑

j=1

ψj
2j

)
≤ Dp,nmax(ep(ψ1), . . . , ep(ψk)) ≤ Dp,n for all j ≥ 1.

Therefore ψ ∈ Ep(Ω) ⊂ Lp(Ω,µ). Since\
Ω

(−ψj)
p dµ = 2jp

\
Ω

(
−
ψj
2j

)p
dµ ≤ 2jp

\
Ω

(−ψ)p dµ for all j ≥ 1,

it follows that

∞ >
\
Ω

(−ψ)p dµ ≥
1

2jp

\
Ω

(−ψj)
p dµ ≥ 2jp for all j ≥ 1,

which is impossible.

4.5. Corollary. Let µ be a finite positive measure on Ω such that

µ(E) ≤ A(Cn(E,Ω))
α

for all Borel sets E ⊂ Ω, where A and α are positive constants with
α > p/(p+ n). Then there exists a unique u ∈ Fp such that (dd

cu)n = µ.

Proof. By Theorem 4.3 it suffices to show that Ep(Ω) ⊂ Lp(Ω,µ). Given
ϕ ∈ Ep(Ω). By using the inequality Cn({ϕ < −s}) ≤ Cϕ/s

p+n for all s > 0
(see Proposition 3.1 in [CKZ]) we have\
Ω

(−ϕ)p dµ =
\

{ϕ<−1}

(−ϕ)p dµ+
\

{ϕ≥−1}

(−ϕ)p dµ

≤
\

{ϕ<−1}

(−ϕ)p dµ+ µ(Ω) =

∞\
1

ptp−1µ({ϕ < −t}) dt+ µ(Ω)

≤ Ap

∞\
1

tp−1Cn({ϕ < −t})
α dt+ µ(Ω)

≤ Ap

∞\
1

Cαϕ
dt

tα(p+n)+1−p
+ µ(Ω) <∞.

Therefore ϕ ∈ Lp(Ω,µ).
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