Canonical tensor fields of type $(p, 0)$ on Weil bundles

by Jacek Dębecki (Kraków)

Abstract

We give a classification of canonical tensor fields of type $(p, 0)$ on an arbitrary Weil bundle over n-dimensional manifolds under the condition that $n \geq p$. Roughly speaking, the result we obtain says that each such canonical tensor field is a sum of tensor products of canonical vector fields on the Weil bundle.

Let A be a Weil algebra and T^{A} the Weil functor corresponding to A, which is a product preserving bundle functor (see [2]). Fix non-negative integers n and p. A canonical tensor field of type $(p, 0)$ on T^{A} is, by definition, a family of tensor fields V_{M} of type $(p, 0)$ on $T^{A} M$ indexed by n-dimensional manifolds and satisfying for all such manifolds M, N and every embedding $f: M \rightarrow N$ the condition

$$
\begin{equation*}
\otimes^{p} T T^{A} f \circ V_{M}=V_{N} \circ T^{A} f \tag{1}
\end{equation*}
$$

Recall that a derivation of the algebra A is a linear map $D: A \rightarrow A$ such that $D(a b)=a D(b)+b D(a)$ for all $a, b \in A$. The vector space of derivations of A will be denoted by $\operatorname{Der} A$. It is well known (see [1]) that if $n \geq 1$, then there is a one-to-one correspondence between the canonical tensor fields of type (1,0) (in other words, canonical vector fields) on T^{A} and the derivations of A. Namely, every $D \in \operatorname{Der} A$ induces a unique canonical vector field \widetilde{D} on T^{A} such that

$$
\begin{equation*}
\widetilde{D}_{\mathbb{R}^{n}}(X)=\left(D\left(X^{1}\right), \ldots, D\left(X^{n}\right)\right) \tag{2}
\end{equation*}
$$

for every $X \in A^{n}$, and conversely, for every canonical vector field V on T^{A} there is a unique $D \in \operatorname{Der} A$ such that $V=\widetilde{D}$. Our purpose is to generalize this result to all p.

Consider the tensor product $\bigotimes^{p} A$ of the vector spaces A. For every $r \in\{1, \ldots, p\}$ and every $a \in A$ we have the linear map $Z_{a}^{r}: \bigotimes^{p} A \rightarrow \bigotimes^{p} A$ such that

Key words and phrases: product preserving bundle functor, Weil algebra.

$$
Z_{a}^{r}\left(b_{1} \otimes \cdots \otimes b_{p}\right)=b_{1} \otimes \cdots \otimes b_{r-1} \otimes a b_{r} \otimes b_{r+1} \otimes \cdots \otimes b_{p}
$$

for all $b_{1}, \ldots, b_{p} \in A$.
Definition. Let $\operatorname{Der}^{p} A$ denote the vector space of p-linear maps D : $A \times \cdots \times A \rightarrow \bigotimes^{p} A$ with the property that

$$
\begin{align*}
& D\left(a_{1}, \ldots, a_{r-1}, b c, a_{r+1}, \ldots, a_{p}\right) \tag{3}\\
&= Z_{b}^{r}\left(D\left(a_{1}, \ldots, a_{r-1}, c, a_{r+1}, \ldots, a_{p}\right)\right) \\
&+Z_{c}^{r}\left(D\left(a_{1}, \ldots, a_{r-1}, b, a_{r+1}, \ldots, a_{p}\right)\right)
\end{align*}
$$

for every $r \in\{1, \ldots, p\}$ and all $a_{1}, \ldots, a_{r-1}, a_{r+1}, \ldots, a_{p}, b, c \in A$.
Note that $\operatorname{Der}^{0} A=\mathbb{R}$ and $\operatorname{Der}^{1} A=\operatorname{Der} A$.
Consider the tensor product $\bigotimes^{p} \operatorname{Der} A$ of the vector spaces Der A. We have the linear map $I^{p}: \bigotimes^{p} \operatorname{Der} A \rightarrow \operatorname{Der}^{p} A$ such that

$$
I^{p}\left(D_{1} \otimes \cdots \otimes D_{p}\right)\left(a_{1}, \ldots, a_{p}\right)=D_{1}\left(a_{1}\right) \otimes \cdots \otimes D_{p}\left(a_{p}\right)
$$

for all $D_{1}, \ldots, D_{p} \in \operatorname{Der} A$ and $a_{1}, \ldots, a_{p} \in A$.
Lemma. $I^{p}: \bigotimes^{p} \operatorname{Der} A \rightarrow \operatorname{Der}^{p} A$ is an isomorphism of vector spaces.
Proof. The proof is by induction on p. For $p=0$ and $p=1$ there is nothing to prove. Suppose $p \geq 2$ and the assertion of the Lemma is true for $p-1$. Let $D \in \operatorname{Der}^{p} A$.

Fix a basis $\varepsilon_{1}, \ldots, \varepsilon_{a}$ of the vector space A. For any $a_{1}, \ldots, a_{p-1}, b \in A$ there are unique $E_{b}^{i}\left(a_{1}, \ldots, a_{p-1}\right) \in \bigotimes^{p-1} A$ indexed by $i \in\{1, \ldots, a\}$ such that

$$
D\left(a_{1}, \ldots, a_{p-1}, b\right)=\sum_{i=1}^{a} E_{b}^{i}\left(a_{1}, \ldots, a_{p-1}\right) \otimes \varepsilon_{i} .
$$

From the uniqueness of $E_{b}^{i}\left(a_{1}, \ldots, a_{p-1}\right)$ we easily deduce that $E_{b}^{i} \in \operatorname{Der}^{p-1} A$ for every $i \in\{1, \ldots, a\}$ and every $b \in A$.

Fix a basis $\partial_{1}, \ldots, \partial_{d}$ of the vector space Der A. By assumption, I^{p-1} is an isomorphism, and so $I^{p-1}\left(\partial_{l_{1}} \otimes \cdots \otimes \partial_{l_{p-1}}\right)$ for $l_{1}, \ldots, l_{p-1} \in\{1, \ldots, d\}$ form a basis of the vector space $\operatorname{Der}^{p-1} A$. Therefore for every $i \in\{1, \ldots, a\}$ and every $b \in A$ there are unique $F^{l_{1} \ldots l_{p-1} i}(b) \in \mathbb{R}$ indexed by $l_{1}, \ldots, l_{p-1} \in$ $\{1, \ldots, d\}$ such that

$$
E_{b}^{i}=\sum_{l_{1}=1}^{d} \ldots \sum_{l_{p-1}=1}^{d} F^{l_{1} \ldots l_{p-1} i}(b) I^{p-1}\left(\partial_{l_{1}} \otimes \cdots \otimes \partial_{l_{p-1}}\right),
$$

which is equivalent to

$$
E_{b}^{i}\left(a_{1}, \ldots, a_{p-1}\right)=\sum_{l_{1}=1}^{d} \ldots \sum_{l_{p-1}=1}^{d} F^{l_{1} \ldots l_{p-1} i}(b) \partial_{l_{1}}\left(a_{1}\right) \otimes \cdots \otimes \partial_{l_{p-1}}\left(a_{p-1}\right)
$$

for all $a_{1}, \ldots, a_{p-1} \in A$.

Taking, for every $b \in A$,

$$
G^{l_{1} \ldots l_{p-1}}(b)=\sum_{i=1}^{a} F^{l_{1} \ldots l_{p-1} i}(b) \varepsilon_{i}
$$

we get a family of elements of A indexed by $l_{1}, \ldots, l_{p-1} \in\{1, \ldots, d\}$ such that

$$
D\left(a_{1}, \ldots, a_{p-1}, b\right)=\sum_{l_{1}=1}^{d} \ldots \sum_{l_{p-1}=1}^{d} \partial_{l_{1}}\left(a_{1}\right) \otimes \cdots \otimes \partial_{l_{p-1}}\left(a_{p-1}\right) \otimes G^{l_{1} \ldots l_{p-1}}(b)
$$

for all $a_{1}, \ldots, a_{p-1} \in A$. Moreover, $G^{l_{1}, \ldots, l_{p-1}}(b)$ in this formula are uniquely determined, because of the uniqueness of $E_{b}^{i}\left(a_{1}, \ldots, a_{p-1}\right)$ and $F^{l_{1} \ldots l_{p-1}{ }^{i}}(b)$. From the uniqueness of $G^{l_{1} \ldots l_{p-1}}(b)$ we easily deduce that $G^{l_{1} \ldots l_{p-1}} \in \operatorname{Der} A$ for all $l_{1}, \ldots, l_{p-1} \in\{1, \ldots, d\}$.

For any $l_{1}, \ldots, l_{p-1} \in\{1, \ldots, d\}$ there are unique $H^{l_{1} \ldots l_{p-1} m} \in \mathbb{R}$ indexed by $m \in\{1, \ldots, d\}$ such that

$$
G^{l_{1} \ldots l_{p-1}}=\sum_{m=1}^{d} H^{l_{1} \ldots l_{p-1} m} \partial_{m}
$$

Hence

$$
\begin{equation*}
D\left(a_{1}, \ldots, a_{p}\right)=\sum_{l_{1}=1}^{d} \ldots \sum_{l_{p}=1}^{d} H^{l_{1} \ldots l_{p}} \partial_{l_{1}}\left(a_{1}\right) \otimes \cdots \otimes \partial_{l_{p}}\left(a_{p}\right) \tag{4}
\end{equation*}
$$

for all $a_{1}, \ldots, a_{p} \in A$, which is equivalent to

$$
D=\sum_{l_{1}=1}^{d} \ldots \sum_{l_{p}=1}^{d} H^{l_{1} \ldots l_{p}} I^{p}\left(\partial_{l_{1}} \otimes \cdots \otimes \partial_{l_{p}}\right)
$$

Moreover, $H^{l_{1} \ldots l_{p}}$ in these formulas are uniquely determined, because of the uniqueness of $G^{l_{1} \ldots l_{p-1}}(b)$ and $H^{l_{1} \ldots l_{p-1} m}$ in the previous formulas. This means that $I^{p}\left(\partial_{l_{1}} \otimes \cdots \otimes \partial_{l_{p}}\right)$ for $l_{1}, \ldots, l_{p} \in\{1, \ldots, d\}$ form a basis of $\operatorname{Der}^{p} A$, which implies that I^{p} is an isomorphism. This completes the proof.

Let e_{1}, \ldots, e_{n} denote the standard basis of \mathbb{R}^{n}. We will identify A^{n} with $A \otimes \mathbb{R}^{n}$, and consequently $\bigotimes^{p} A^{n}$ with $\bigotimes^{p} A \otimes \bigotimes^{p} \mathbb{R}^{n}$. Hence (2) may be written as

$$
\widetilde{D}_{\mathbb{R}^{n}}(X)=\sum_{s=1}^{n} D\left(X^{s}\right) \otimes e_{s}
$$

for every $D \in \operatorname{Der} A$ and every $X \in A^{n}$.
We can now formulate our main result.
TheOrem. If $n \geq p$, then there is a one-to-one correspondence between the canonical tensor fields of type $(p, 0)$ on T^{A} and the elements of $\operatorname{Der}^{p} A$.

Namely, every $D \in \operatorname{Der}^{p} A$ induces a unique canonical tensor field \widetilde{D} of type $(p, 0)$ on T^{A} such that

$$
\begin{equation*}
\widetilde{D}_{\mathbb{R}^{n}}(X)=\sum_{s_{1}=1}^{n} \ldots \sum_{s_{p}=1}^{n} D\left(X^{s_{1}}, \ldots, X^{s_{p}}\right) \otimes e_{s_{1}} \otimes \cdots \otimes e_{s_{p}} \tag{5}
\end{equation*}
$$

for every $X \in A^{n}$, and conversely, for every canonical tensor field V of type $(p, 0)$ on T^{A} there is a unique $D \in \operatorname{Der}^{p} A$ such that $V=\widetilde{D}$.

Proof. Let $D \in \operatorname{Der}^{p} A$. Our first task is to construct \widetilde{D}. Since we can use any chart on an n-dimensional manifold as f in (1), we see that if V, W are two canonical tensor fields of type $(p, 0)$ on T^{A} such that $V_{\mathbb{R}^{n}}=W_{\mathbb{R}^{n}}$, then $V=W$. Hence (5) guarantees the uniqueness of \widetilde{D}. Let $\partial_{1}, \ldots, \partial_{d}$ be a basis of the vector space $\operatorname{Der} A$. By the lemma, there are $H^{l_{1} \ldots l_{p}} \in \mathbb{R}$ for $l_{1}, \ldots, l_{p} \in\{1, \ldots, d\}$ such that (4) holds. Put

$$
\widetilde{D}_{M}=\sum_{l_{1}=1}^{d} \ldots \sum_{l_{p}=1}^{d} H^{l_{1} \ldots l_{p}} \widetilde{\partial_{l_{1} M}} \otimes \cdots \otimes \widetilde{\partial_{l_{p}}}
$$

for every n-dimensional manifold M. It is evident that this \widetilde{D} is a canonical tensor field of type $(p, 0)$ on T^{A}. From (4) we conclude that it satisfies (5), and the construction of \widetilde{D} is complete.

We now turn to the second part of the theorem. Fix a canonical tensor field V of type $(p, 0)$ on T^{A}.

Since for every $X \in A^{n}$ we have $V_{\mathbb{R}^{n}}(X) \in \bigotimes^{p} A \otimes \bigotimes^{p} \mathbb{R}^{n}$, there are unique smooth $B^{s_{1} \ldots s_{p}}: A^{n} \rightarrow \bigotimes^{p} A$ for $s_{1}, \ldots, s_{p} \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
V_{\mathbb{R}^{n}}(X)=\sum_{s_{1}=1}^{n} \ldots \sum_{s_{p}=1}^{n} B^{s_{1} \ldots s_{p}}(X) \otimes e_{s_{1}} \otimes \cdots \otimes e_{s_{p}} \tag{6}
\end{equation*}
$$

for every $X \in A^{n}$. Hence for every open subset U of \mathbb{R}^{n} and every embedding $f: U \rightarrow \mathbb{R}^{n}$ we can write (1) in the form

$$
\begin{align*}
& \sum_{t_{1}=1}^{n} \ldots \sum_{t_{p}=1}^{n}\left(Z_{T^{A} \frac{\partial f^{s_{1}}}{\partial x^{t_{1}}}(X)}^{1} \circ \cdots \circ Z_{T^{A} \frac{\partial f^{s_{p}}}{\partial x^{t_{p}}}(X)}^{p}\right)\left(B^{t_{1} \ldots t_{p}}(X)\right) \tag{7}\\
&=B^{s_{1} \ldots s_{p}}\left(T^{A} f(X)\right)
\end{align*}
$$

for all $s_{1}, \ldots, s_{p} \in\{1, \ldots, n\}$ and every $X \in T^{A} U$.
From (7) with

$$
f: \mathbb{R}^{n} \ni x \mapsto\left(\lambda^{1} x^{1}, \ldots, \lambda^{n} x^{n}\right) \in \mathbb{R}^{n}
$$

where $\lambda^{1}, \ldots, \lambda^{n} \in \mathbb{R} \backslash\{0\}$, we have

$$
\lambda^{s_{1}} \cdots \lambda^{s_{p}} B^{s_{1} \ldots s_{p}}(X)=B^{s_{1} \ldots s_{p}}\left(\lambda^{1} X^{1}, \ldots, \lambda^{n} X^{n}\right)
$$

for all $s_{1}, \ldots, s_{p} \in\{1, \ldots, n\}$ and every $X \in A^{n}$. By continuity, the same is true for all $\lambda^{1}, \ldots, \lambda^{n} \in \mathbb{R}$. The homogeneous function theorem (see [2]) now shows that for any $s_{1}, \ldots, s_{p} \in\{1, \ldots, n\}$ there is a p-linear $C^{s_{1} \ldots s_{p}}$: $A \times \cdots \times A \rightarrow \bigotimes^{p} A$ such that

$$
B^{s_{1} \ldots s_{p}}(X)=C^{s_{1} \ldots s_{p}}\left(X^{s_{1}}, \ldots, X^{s_{p}}\right)
$$

for every $X \in A^{n}$.
From now on we use the assumption $n \geq p$. Put

$$
D=C^{1 \ldots p}
$$

Let $r \in\{1, \ldots, p\}$. From (7) with $s_{1}=1, \ldots, s_{p}=p, U=\left\{x \in \mathbb{R}^{n}: x^{r}>0\right\}$ and

$$
f: U \ni x \mapsto\left(x^{1}, \ldots, x^{r-1},\left(x^{r}\right)^{2}, x^{r+1}, \ldots, x^{n}\right) \in \mathbb{R}^{n}
$$

we have

$$
2 Z_{X^{r}}^{r}\left(B^{1 \ldots p}(X)\right)=B^{1 \ldots p}\left(X^{1}, \ldots, X^{r-1},\left(X^{r}\right)^{2}, X^{r+1}, \ldots, X^{n}\right)
$$

for every $X \in T^{A} U$. This may be written as

$$
\begin{equation*}
2 Z_{X_{r}}^{r}\left(D\left(X^{1}, \ldots, X^{p}\right)\right)=D\left(X^{1}, \ldots, X^{r-1},\left(X^{r}\right)^{2}, X^{r+1}, \ldots, X^{p}\right) \tag{8}
\end{equation*}
$$

In the same manner, with U replaced by $\left\{x \in \mathbb{R}^{n}: x^{r}<0\right\}$, we can see that (8) also holds for $X \in T^{A}\left\{x \in \mathbb{R}^{n}: x^{r}<0\right\}$, and so, by continuity, for every $X \in A^{n}$. Now the polarization of (8) with respect to X^{r} shows that D satisfies (3), and consequently $D \in \operatorname{Der}^{p} A$.

Our next goal is to show that

$$
\begin{equation*}
C^{u_{1} \ldots u_{p}}\left(X^{u_{1}}, \ldots, X^{u_{p}}\right)=D\left(X^{u_{1}}, \ldots, X^{u_{p}}\right) \tag{9}
\end{equation*}
$$

for all $u_{1}, \ldots, u_{p} \in\{1, \ldots, n\}$ and every $X \in A^{n}$. We will identify any sequence $u_{1}, \ldots, u_{p} \in\{1, \ldots, n\}$ with $u:\{1, \ldots, p\} \rightarrow\{1, \ldots, n\}$ given by $u(1)=u_{1}, \ldots, u(p)=u_{p}$ and denote by $N(u)$ the number of elements of the set $u(\{1, \ldots, p\})$ for every such function u. The proof of (9) is by induction on $N(u)$. Fix $v:\{1, \ldots, p\} \rightarrow\{1, \ldots, n\}$ and suppose (9) holds whenever $N(u) \in\{N(v)+1, \ldots, p\}$. Choose a subset R of $\{1, \ldots, p\}$ such that for each $r \in v(\{1, \ldots, p\})$ the set $v^{-1}(\{r\}) \cap R$ has one element. There is a bijective $w:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ such that $w|R=v| R$. Put

$$
S_{r}= \begin{cases}\left\{w_{r}\right\} & \text { if } r \in R \cup\{p+1, \ldots, n\} \\ \left\{v_{r}, w_{r}\right\} & \text { if } r \in\{1, \ldots, p\} \backslash R\end{cases}
$$

From (7) with $s_{1}=1, \ldots, s_{p}=p$ and

$$
f: \mathbb{R}^{n} \ni x \mapsto\left(\sum_{u_{1} \in S_{1}} x^{u_{1}}, \ldots, \sum_{u_{n} \in S_{n}} x^{u_{n}}\right) \in \mathbb{R}^{n}
$$

we have

$$
\sum_{u_{1} \in S_{1}} \ldots \sum_{u_{p} \in S_{p}} B^{u_{1} \ldots u_{p}}(X)=B^{1 \ldots p}\left(\sum_{u_{1} \in S_{1}} X^{u_{1}}, \ldots, \sum_{u_{n} \in S_{n}} X^{u_{n}}\right)
$$

for every $X \in A^{n}$. This may be written as

$$
\begin{align*}
& \sum_{u_{1} \in S_{1}} \ldots \sum_{u_{p} \in S_{p}} C^{u_{1} \ldots u_{p}}\left(X^{u_{1}}, \ldots, X^{u_{p}}\right) \tag{10}\\
&=\sum_{u_{1} \in S_{1}} \ldots \sum_{u_{p} \in S_{p}} D\left(X^{u_{1}}, \ldots, X^{u_{p}}\right)
\end{align*}
$$

But if $u_{1} \in S_{1}, \ldots, u_{p} \in S_{p}$ are such that there is $r \in\{1, \ldots, p\} \backslash R$ with the property that $u_{r}=w_{r}$, then $C^{u_{1} \ldots u_{p}}\left(X^{u_{1}}, \ldots, X^{u_{p}}\right)=D\left(X^{u_{1}}, \ldots, X^{u_{p}}\right)$, on account of our assumption, because $N(u) \in\{N(v)+1, \ldots, p\}$ in this case. Subtracting all terms with such indices u_{1}, \ldots, u_{p} from each side of (10) gives $C^{v_{1} \ldots v_{p}}\left(X^{v_{1}}, \ldots, X^{v_{p}}\right)=D\left(X^{v_{1}}, \ldots, X^{v_{p}}\right)$, which is due to the fact that $w|R=v| R$. This completes the proof of (9).

Applying (9) we can rewrite (6) as

$$
V_{\mathbb{R}^{n}}(X)=\sum_{s_{1}=1}^{n} \ldots \sum_{s_{p}=1}^{n} D\left(X^{s_{1}}, \ldots, X^{s_{p}}\right) \otimes e_{s_{1}} \otimes \cdots \otimes e_{s_{p}}
$$

for every $X \in A^{n}$. Hence $V_{\mathbb{R}^{n}}=\widetilde{D}_{\mathbb{R}^{n}}$, which yields $V=\widetilde{D}$ on account of the above remark. The uniqueness of D is obvious. This completes the proof.

Combining the lemma with the theorem we obtain the following corollary.
Corollary. If $n \geq p$, then every canonical tensor field of type $(p, 0)$ on T^{A} is a sum of tensor products of canonical vector fields on T^{A}. More precisely, if $\partial_{1}, \ldots, \partial_{d}$ is a basis of the vector space Der A, then for every canonical tensor field V of type $(p, 0)$ on T^{A} there are unique $H^{l_{1} \ldots l_{p}} \in \mathbb{R}$ for $l_{1}, \ldots, l_{p} \in\{1, \ldots, d\}$ such that

$$
V_{M}=\sum_{l_{1}=1}^{d} \ldots \sum_{l_{p}=1}^{d} H^{l_{1} \ldots l_{p}} \widetilde{\partial_{l_{1} M}} \otimes \cdots \otimes \widetilde{\partial_{l_{p}}}
$$

for every n-dimensional manifold M.
The remainder of the paper is devoted to the following example.
Example. Consider the Weil algebra \mathbb{D}_{k}^{r} of r-jets at 0 of smooth functions $\mathbb{R}^{k} \rightarrow \mathbb{R}$, where r and k are non-negative integers.

We will denote by x^{i} for $i \in\{1, \ldots, k\}$ the r-jet at 0 of the i th projection $\mathbb{R}^{k} \rightarrow \mathbb{R}$ and write $x^{\alpha}=\left(x^{1}\right)^{\alpha^{1}} \cdots\left(x^{k}\right)^{\alpha^{k}}$ and $|\alpha|=\alpha^{1}+\cdots+\alpha^{k}$ for $\alpha \in \mathbb{N}^{k}$, where \mathbb{N} stands for the set of non-negative integers. In addition, let e_{1}, \ldots, e_{k} denote the standard basis of the module \mathbb{Z}^{k}.

Let $D \in \operatorname{Der} \mathbb{D}_{k}^{r}$. For every $\alpha \in \mathbb{N}^{k}$,

$$
\begin{equation*}
D\left(x^{\alpha}\right)=\sum_{i \in\left\{l \in\{1, \ldots, k\}: \alpha^{l}>0\right\}} \alpha^{i} x^{\alpha-e_{i}} D\left(x^{i}\right), \tag{11}
\end{equation*}
$$

as is easy to check by induction on $|\alpha|$. Of course, for every $i \in\{1, \ldots, k\}$ there are unique $K_{\alpha}^{i} \in \mathbb{R}$ indexed by $\alpha \in \mathbb{N}^{k}$ such that $|\alpha| \leq r$, for which

$$
\begin{equation*}
D\left(x^{i}\right)=\sum_{\alpha \in\left\{\beta \in \mathbb{N}^{k}:|\beta| \leq r\right\}} K_{\alpha}^{i} x^{\alpha} . \tag{12}
\end{equation*}
$$

Since $\left(x^{i}\right)^{r+1}=0$, from (11) it follows that $0=(r+1)\left(x^{i}\right)^{r} D\left(x^{i}\right)$. Combining this with (12) yields $(r+1) K_{0}^{i}\left(x^{i}\right)^{r}=0$, and so $K_{0}^{i}=0$. Hence (12) can be rewritten as

$$
\begin{equation*}
D\left(x^{i}\right)=\sum_{\alpha \in\left\{\beta \in \mathbb{N}^{k}: 1 \leq|\beta| \leq r\right\}} K_{\alpha}^{i} x^{\alpha} . \tag{13}
\end{equation*}
$$

Conversely, let $K_{\alpha}^{i} \in \mathbb{R}$ for $(i, \alpha) \in\{1, \ldots, k\} \times\left\{\beta \in \mathbb{N}^{k}: 1 \leq|\beta| \leq r\right\}$. We prove that there is a unique $D \in \operatorname{Der} \mathbb{D}_{k}^{r}$ such that (13) holds. Obviously, we define $D\left(x^{i}\right)$ for $i \in\{1, \ldots, k\}$ by (13), and next $D\left(x^{\alpha}\right)$ for $\alpha \in \mathbb{N}^{k}$ such that $|\alpha| \leq r$ by (11). Thus we have defined a linear $D: \mathbb{D}_{k}^{r} \rightarrow \mathbb{D}_{k}^{r}$, because the x^{α} for $\alpha \in \mathbb{N}^{k}$ such that $|\alpha| \leq r$ form a basis of the vector space \mathbb{D}_{k}^{r}. We only need to show that

$$
\begin{equation*}
D\left(x^{\gamma} x^{\delta}\right)=x^{\gamma} D\left(x^{\delta}\right)+x^{\delta} D\left(x^{\gamma}\right) \tag{14}
\end{equation*}
$$

for all $\gamma, \delta \in \mathbb{N}^{k}$ such that $|\gamma| \leq r,|\delta| \leq r$. If $|\gamma+\delta| \leq r$, then $x^{\gamma} x^{\delta}=x^{\gamma+\delta}$ is an element of the basis in question, so we may use (11) three times to verify (14) in this case. Clearly, the left hand side of (14) vanishes whenever $|\gamma+\delta| \geq r+1$. If $|\gamma+\delta| \geq r+2$, then the right hand side vanishes on account of (11). If $|\gamma+\delta|=r+1$, then the right hand side also vanishes on account of (11) and the fact that the term K_{0}^{i} is excluded from (13) for every $i \in\{1, \ldots, k\}$. This completes the proof.

Summing up, the map $J: \operatorname{Der} \mathbb{D}_{k}^{r} \rightarrow \mathbb{R}^{\{1, \ldots, k\} \times\left\{\beta \in \mathbb{N}^{k}: 1 \leq|\beta| \leq r\right\}}$ defined by the requirement that

$$
D\left(x^{i}\right)=\sum_{\alpha \in\left\{\beta \in \mathbb{N}^{k}: 1 \leq|\beta| \leq r\right\}} J(D)(i, \alpha) x^{\alpha}
$$

for all $D \in \operatorname{Der} \mathbb{D}_{k}^{r}$ and $i \in\{1, \ldots, k\}$ is an isomorphism of vector spaces. Counting elements of the set $\{1, \ldots, k\} \times\left\{\beta \in \mathbb{N}^{k}: 1 \leq|\beta| \leq r\right\}$ we obtain

$$
\operatorname{dim} \operatorname{Der} \mathbb{D}_{k}^{r}=k\left(\binom{r+k}{k}-1\right)
$$

The above corollary now asserts that if $n \geq p$, then the dimension of the vector space of canonical tensor fields of type $(p, 0)$ on $T^{\mathbb{D}_{k}^{r}}$ equals

$$
\left(k\left(\binom{r+k}{k}-1\right)\right)^{p}
$$

Of course, a canonical tensor field V of type $(p, 0)$ on T^{A} is called symmetric or skew-symmetric if the tensor field V_{M} is symmetric or skew-symmetric
for every n-dimensional manifold. Therefore if $n \geq p$, then the dimensions of the vector spaces of symmetric and skew-symmetric canonical tensor fields of type $(p, 0)$ on $T^{\mathbb{D}_{k}^{r}}$ equal

$$
\binom{k\left(\binom{r+k}{k}-1\right)+p-1}{p} \quad \text { and } \quad\binom{k\left(\binom{r+k}{k}-1\right)}{p}
$$

respectively.

References

[1] I. Kolář, On the natural operators on vector fields, Ann. Global Anal. Geom. 6 (1988), 109-117.
[2] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: debecki@im.uj.edu.pl

