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Width asymptotics for
a pair of Reinhardt domains

by A. AYTUNA (Ankara), A. RAsHkOvsKIl (Kharkov) and
V. ZAHARIUTA (Rostov-na-Donu and Ankara)

Abstract. For complete Reinhardt pairs “compact set — domain” K C D in C", we
prove Zahariuta’s conjecture about the exact asymptotics

Ind (AD) — nts v s — 00
T 7(K,D)) ’

for the Kolmogorov widths d (A[%) of the compact set in C(K) consisting of all analytic
functions in D with moduli not exceeding 1 in D, 7(K, D) being the condenser plurica-
pacity of K with respect to D.

1. Introduction. The Kolmogorov widths of a compact set A in a Ba-
nach space X are the numbers

ds(A) = do(A, X) = infsupinf{|lz —y|x 1y €L}, s € Zy,
z€A

where L runs through the set of all s-dimensional subspaces of X.

Let K be a compact subset of an open set D C C™ and AIQ be the
subset of C'(K) consisting of all analytic functions in D whose moduli do
not exceed 1 in D. For quite general pairs (K, D), the weak asymptotics

(1) Ind,(AR) < /" s — o0,

is known to be true; it is equivalent to the result of Kolmogorov [8] on the
asymptotics for the e-entropy of the set AL:

n+1
(2) H.(AD) = (m é) L e—0
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(the equivalence of the asymptotics (1) and (2) follows from the results of
Mityagin [10] and Levin—Tikhomirov [9]). Kolmogorov also suggested the
conjecture that in the one-dimensional case, for quite general pairs (K, D),
the strong asymptotics

Indy(AR) ~ ——2
should be true, where 7(K, D) is the Green capacity of K with respect to
D (or the capacity of the condenser (K, D), see e.g. [7]). This conjecture
was confirmed by many authors ([5, 3, 17, 11, 6, 16, 14]; for more details
see [19]).

The problem of existence of the strong asymptotics
(4) Ind,(AR) ~ —ost/m

for several variables was considered in [19], where some estimates from above
and from below for the numbers ds(AZ) were obtained and, as a conse-
quence, some sufficient conditions for the existence of the asymptotics (4)
were presented. Under those conditions (they seem to be quite general, al-
though it is not clear yet how to check them even for relatively simple specific
pairs (K, D)), the constant o has a natural expression:

where 7(K,D) = (2r)""C(K, D) and C(K, D) is the pluricapacity of K
with respect to D, introduced by Bedford and Taylor [4]. On the ground of
this result it was conjectured ([19], Conjecture 3.1.3) that this asymptotics
should be true under quite general assumptions about the pairs (K, D).

Here we prove this conjecture for any pair K = Dy, D = D;, where
D,, v =0,1, are bounded complete logarithmically convex Reinhardt (i.e.
n-circular) domains (Theorem 5). The main steps of the proof are as follows.
First, the strong asymptotics (4) is valid with some constant o expressed
through the support functions of the domains D, (see Section 3), which was
proved independently by L. Ronkin and V. Zahariuta (unpublished). On the
other hand, the pluripotential w(D;, Dg; z) can also be represented by means
of the support functions [19]. To compute the pluricapacity, we reduce the
problem to the real Monge-Ampeére operator for convex functions, which
can be expressed in geometric terms [13]. The calculation gives us exactly
the value o obtained.

2. Preliminaries. Let ({2 be a bounded pseudoconvex domain in C"
and K be a compact subset of 2. The Green pluripotential w($2, K; z) of K
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with respect to {2 is defined as
w2, K;2) = ?—m sup{u(¢) : u € PSH($2), u <1, u|x <0},

PSH(£2) being the cone of all plurisubharmonic functions in 2.

The image (dd°u)™ of any bounded plurisubharmonic function w in {2
under the complex Monge-Ampere operator (see [4]) is a non-negative Borel
measure on §2 (here d = 9+ 0, d° =i(d—9)). The pluricapacity 7(K, 2) of
K with respect to {2 (in other words, of the condenser (K, (2)) is the value

(6) (K, 2) = (2m) 7" | (dd°w (82, K; 2))",
K

which differs from the Bedford—Taylor pluricapacity ([4]) only by a constant
factor.

Given a bounded complete logarithmically convex Reinhardt domain
D c C™, its support function is

hD(G):sup{Zleog\zk| :ZED}, 6 € RY,

where R = {6 = (0,) € R" : 6, > 0, v = 1,...,n}. It is a convex
homogeneous function in R’} such that

(7) D:{ZE(C”:ZHklog]zk\ < hp(9), 062},

where X := {0 = (01,...,0,) € R : Y p_, 0, =1}

Let D,, v = 1,2, be a pair of bounded complete logarithmically convex
Reinhardt domains, and Dy C D;. The following formula for the pluripo-
tential of Dy with respect to D; was given in [19], Proposition 1.4.3:

=N > Ok log |2k — hpy(0)
(8) w(Dl,Dg,z)—sup{ ho(0) — ho (0) .962}

for z € D1\ Dy, and w(D1, Dg; z) = 0 for all z € Dy (see Lemmas 1 and 4
below). Note that, due to homogeneity of the support functions, the set X
can be changed to R’} in (7) and (8).

3. Width asymptotics. First we consider a Hilbert version of the prob-
lem about the asymptotics (4), which is much more convenient to study.
Let D,, v = 0,1, be bounded complete logarithmically convex Reinhardt
domains such that Dy C Dy and H, be any pair of Hilbert spaces such that
there are linear continuous embeddings

(9) A(Dy) C Hy C A(Dy) C A(Dy) C Ho C A(Dy).

Consider a common orthogonal basis {e;(2)}icn for the spaces Hy and Hy,
which we suppose being normalized and rearranged in such a way that

(10) lejllmy =1, pj(Ho, Hy) := [lej ]|, T oo
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The following fact is a particular case of well known results ([19], 3.1.2, see
also [18, 1]).

LEMMA 1. Let Hy, Hy be any pair of Hilbert spaces complying with the
linear continuous embeddings (9) and {e;(z)} be their common orthogonal
basis satisfying the conditions (10). Then

= : , In fe; (¢)]
11 w(Dq, Dy; z) = limsup lim sup ———222_—
( ) ( ! 0 ) (—z Jj—o0 lnuj(H():Hl)
for z € D1\ Dg. Therefore we have the asymptotics
In 1 (Ho, Hy) ~ —Ind;(AD),  j — oc.

Thus the problem about the asymptotics (4), in the case K = Do, D= Dy,
is reduced to the problem about the asymptotics

(12) In p;(Ho, Hy) ~ oj'/™,  j — o0,

in view of the fact that neither the existence of such asymptotics nor the
constant o depends on the concrete choice of the spaces Hy, H; ([19], 3.1.2).
Therefore we choose our Hilbert spaces in a way most convenient for cal-
culations, so that the system of all monomials g;(z) = 2#U) enumerated
according to non-decreasing degrees s(j) := ki(j) + ...+ k,(j) T oo forms a
common orthogonal basis for Hy, H;. Namely, we set (v =0, 1)

(13) H, = {m - icjgj Nella, = (i ;|2 exp 2hDV(k:(j))>1/2< oo}.

It can be easily checked that the Hilbert spaces (13) satisfy the conditions
of Lemma 1 and, by construction, we have

(14) Inpij(Ho, Hy) = hp, (k(7)) — hp, (k(7)), €N

Instead of directly studying the asymptotics of this sequence it is more
convenient to consider its counting function

o(t) = |{j : In oy (Ho, Hy) < )] = [{k € 27 < hp, (k) — hp, (k) < 1},

where |A| denotes the number of elements of a finite set A. Then to prove
the asymptotics (12) it is sufficient to show that (see, e.g., [2])

p(t) ~ (t/o)", t— oo

The value ¢(t) is just the number of points k& € Z7 lying in the closed
domain tO, t > 0, where

(15) O ={0 €R" : hp,(0) — hp,(0) < 1}.

Now we use the following elementary fact (see, e.g., [15]).
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LEMMA 2. Let G be a closed domain in R™ measurable in the sense of
Jordan and o(t) ;== |{k € Z" : k € tG}|. Then

o(t) ~t" VolG, t— oo.

Since the domain (15) is obviously measurable in the sense of Jordan,
the following theorem is proved.

THEOREM 3. For K, D satisfying the condition of this section, the asym-
ptotics (4), (12) hold with the constant

1 1/n
o= <V01@) '

From (11), due to the special choice of Hilbert spaces, we can also obtain

LEMMA 4. The formula (8) is true.

Since the proof is only sketched in [19], here we consider it in more detail.
Applying (11) to the basis e;(2) = exp{—hp, (k(j))}2*V), j € N, and taking
into account (14), we get

B 21 T sy i sy vt B 18|26 = oy (5(1))

(D1, Dos z) =l suplimsup =5 "o s = G
Setting 0(7) = (05(j)) := k(3)/|k(5)| and using the homogeneity of the
support functions, we can rewrite the right-hand side of this equality in the
form (the first upper limit can be dropped, because the expression within it
turns out to be continuous)

S B U AC) L YEN R N (6)) BN U A T EN Y ()

vex o) -0  hp, (007)) — hpy (6(7)) ven  hpy(0) —hpo(0)

which completes the proof of the lemma.

In the next section we will compute the pluricapacity of the condenser
(Dy, D1); then the following main result will be derived immediately from
Theorem 3.

THEOREM 5. For any pair (K, D) with K = Dy C Dy = D, were D,, are
bounded complete logarithmically convexr Reinhardt domains, the asymptotics
(4) is true with the constant (5).

4. Pluricapacity of a pair of Reinhardt domains. In what follows
we will employ the correspondence between multicircular domains in C™ and
convex ones in R™ by means of the transformation

Expt=(e,...,e"), t=(ty,...,t,) €R".
Indeed, the pull-back function
(16) 9(t) :== (Exp” w)(t) = w(D1, Do; Expt)
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is convex on the convex set Gi = {t € R" : Expt € D;} and identically
zero on Gy = {t € R" : Expt € Dy}.

Then the complex Monge-Ampere operator (dd®)™ is transformed into
the real Monge-Ampere operator MA defined for smooth convex functions

MAJ](t) = det <gt;a(2>

and extended as a positive measure to all convex functions in R™ (see [13]).
So, for any bounded plurisubharmonic function » in Dy which depends only
on |z1],...,|zn| and for any multicircular Borel set A CC Dy we have

(17) | (dd“u)" = (27)"nI M A[Exp* u](A)
A

with A = {t e R" : Expt € A}, since (dd°u)™ cannot charge the pluripolar
set AN{z: z1...2, = 0} (see details in [12]). Moreover, by [13], for any
convex function v in a domain G; and any measurable set B C (G, we have

(18) MA[|(B) = Vol 4(B, v),
where
v(B,v) = | {b ER™:u(t) = u(t?) + 3 bulte — 1) Vi € Gl}
t9¢B k
is the gradient image of the set B for the surface {y = v(x) : z € G }.
Let F':= {t € R" : Expt € 0Dy }. The Monge-Ampere measure (dd‘w)™
is supported by 9Dy, so, by (16) and (17), we have
| ([@dd°w)" = | (dd°w)" = (2m)"nIMA[g](F).
D1 aDO
Thus, due to (6), (18),
(19) #(Do, D1) = n! Vol 7(F, g).
Note that since g =0 on F,
vF.g9) = | {b ER™: g(t) > Y bulty — 1) Vi € Gl}.
tOcF k
LEMMA 6. The relation y(F, g) = © holds with © defined in (15).
Proof. Let b € v(F,g). Then there is a point t° € F such that g(t) >
> ok bt —9) for all t € Gy. In particular, > ok be(te —t9) <0 forall t € Gy

and so b € R”}.
For each b € v(F, g) we have

hp, (b) — hp, (b) < sup > bt — 1)) <1
te 1 k

and thus v(F, g) C 6.
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Conversely, let b € ©. Then hp,(b) = Y, bt} for some t° € F. Take

any t € G1. If 3", bi(ty, — t2) <0, then certainly Y, by (tx —t2) < g(t). On
the other hand if >, by(tx — t%) > 0, then, taking into account (8),

Dbt — 1) 3oy brtk — hp, (b)
hD1 (b) - hDo (b) B th (b) - hDo (b)

>k @kt — b, (a)
<s =g(t),
0 Ry (@) —hpu() )

IA

> bilts — 1)
k

and so b € y(F, g), which completes the proof.

Lemma 6 together with (19) implies
THEOREM 7. 7(Dg, D1) = n! Vol O.

Comparing this fact with Theorem 3, we get Theorem 5 immediately.

References

A. Aytuna, Stein spaces M for which O(M) is isomorphic to a power series space,
in: Advances in the Theory of Fréchet Spaces, T. Terzioglu (ed.), Kluwer, Dordrecht,
1988, 115-154.

A. Aytuna and T. Terzioglu, Some applications of a decomposition method, in:
Progress in Functional Analysis, K. D. Bierstedt et al. (eds.), Elsevier, 1992, 85-95.
K. I. Babenko, On entropy of a class of analytic functions, Nauchn. Dokl. Vyssh.
Shkoly Ser. Fiz.-Mat. 2 (1958), 9-13 (in Russian).

E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta
Math. 149 (1982), 1-40.

V. D. Erokhin, On asymptotic properties of e-entropy of analytic functions, Dokl.
Akad. Nauk SSSR 120 (1958), 949-952.

S. D. Fisher and C. A. Micchelli, The n-widths of sets of analytic functions, Duke
Math. J. 47 (1980), 789-801.

W. K. Hayman and P. B. Kennedy, Subharmonic Functions, I, Academic Press,
New York, 1976.

A. N. Kolmogorov and V. M. Tikhomirov, e-entropy and e-capacity of sets in func-
tion spaces, Uspekhi Mat. Nauk 14 (1959), no. 2, 3-86 (in Russian).

A. L. Levin and V. M. Tikhomirov, On Erokhin’s theorem, Soviet Math. Surveys
23 (1968), 119-132.

B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Russian
Math. Surveys 16 (1961), 59-127.

T. V. Nguyen, Bases de Schauder dans certains espaces de fonctions holomorphes,
Ann. Inst. Fourier (Grenoble) 22 (1972), no. 2, 169-253.

A. Rashkovskii, Newton numbers and residual measures of plurisubharmonic func-
tions, Ann. Polon. Math. 75 (2000), 213-231.

J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge—
Ampére equation, Rocky Mountain J. Math. 7 (1977), 345-364.

N. L. Skiba and V. P. Zahariuta, Estimates of n-diameters of some classes of analytic
functions on Riemann surfaces, Math. Notes 19 (1976), 525-532.



38 A. Aytuna et al.

[15] N.I. Skiba and V. P. Zahariuta, Asymptotics of Kolmogorov diameters for classes
of harmonic functions on spheroids, J. Approx. Theory 102 (2000), 175-188.

[16] H. Widom, Rational approzimation and n-dimensional diameter, ibid. 5 (1972),
343-361.

[17] V. P. Zahariuta, On extendible bases in spaces of analytic functions of one and
several variables, Siberian Math. J. 8 (1967), 204-216.

[18] —, Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of
spaces of analytic functions of several variables, I, II, Teor. Funktsii Funktsional.
Anal. i Prilozhen. 19 (1974), 133-157; 21 (1974), 65-83 (in Russian).

[19] —, Spaces of analytic functions and complex potential theory, Linear Topol. Spaces
Complex Anal. 1 (1994), 74-146.

Department of Mathematics Institute for Low Temperature Physics
Middle East Technical University Kharkov, Ukraine
Ankara, Turkey E-mail: rashkovs@ilt.kharkov.ua

E-mail: aytuna@metu.edu.tr

Rostov State University
Rostov-na-Donu, Russia

and

Department of Mathematics
Middle East Technical University
Ankara, Turkey

E-mail: zaha@math.metu.edu.tr

Regu par la Rédaction le 19.12.2000 (1226)



