Algebraic dependences of meromorphic mappings sharing few moving hyperplanes

by Si Duc Quang (Hanoi)

Abstract

We study algebraic dependences of three meromorphic mappings which share few moving hyperplanes without counting multiplicity.

1. Introduction. In 1926, R. Nevanlinna showed that two distinct nonconstant meromorphic functions f and g on the complex plane \mathbb{C} cannot have the same inverse images for five distinct values, and that g is a special type of linear fractional transformation of f if they have the same inverse images counted with multiplicities for four distinct values.

Recently, motivated by the establishment of the second main theorem of value distribution theory for moving targets (e.g., Ru and Wang [RW], Thai and Quang [TQ2]) with truncated multiplicities, the finiteness problem of meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ intersecting a few moving hyperplanes (i.e, moving targets) regardless of multiplicity has been studied intensively. We recall the recent results of Thai and Quang TQ1 which are the best results available at present.

Let $a_{1}, \ldots, a_{q}(q \geq N+1)$ be meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ with reduced representations $a_{i}=\left(a_{i 0}: \cdots: a_{i N}\right)(1 \leq i \leq q)$. We say that a_{1}, \ldots, a_{q} are in general position if $\operatorname{det}\left(a_{i_{k} j}\right) \not \equiv 0$ for any $1 \leq i_{0}<i_{1}<\cdots<$ $i_{N} \leq q$.

Throughout this paper, we denote by \mathcal{M} the field of all meromorphic functions on \mathbb{C}^{n} and denote by $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right) \subset \mathcal{M}$ the smallest subfield of \mathcal{M} which contains \mathbb{C} and all $a_{j k} / a_{j l}$ with $a_{j l} \not \equiv 0$.

Let f be a meromorphic mapping of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ with reduced representation $f=\left(f_{0}: \cdots: f_{N}\right)$. We say that f is linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{j=1}^{q}\right)$ if f_{0}, \ldots, f_{N} are linearly independent over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$.

[^0]Let f, a be two meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ with reduced representations $f=\left(f_{0}: \cdots: f_{N}\right), a=\left(a_{0}: \cdots: a_{N}\right)$ respectively. We say that a is small with respect to f if $\| T_{a}(r)=o\left(T_{f}(r)\right)$ as $r \rightarrow \infty$. Put $(f, a)=\sum_{j=0}^{N} a_{j} f_{j}$.

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{P}^{N}(\mathbb{C})$ be a meromorphic mapping. Let d be a positive integer. Let $\left\{a_{j}\right\}_{j=1}^{q}$ be small (with respect to f) meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ in general position such that

$$
\operatorname{dim}\left\{z \in \mathbb{C}^{n}:\left(f, a_{i}\right)(z)=\left(f, a_{j}\right)(z)=0\right\} \leq n-2 \quad(1 \leq i<j \leq q)
$$

Consider the set $\mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, d\right)$ of all meromorphic maps $g: \mathbb{C}^{n} \rightarrow$ $\mathbb{P}^{N}(\mathbb{C})$ satisfying the conditions:
(i) $\min \left(\nu_{\left(f, a_{j}\right)}, d\right)=\min \left(\nu_{\left(g, a_{j}\right)}, d\right)(1 \leq j \leq q)$,
(ii) $f(z)=g(z)$ on $\bigcup_{j=1}^{q}\left\{z \in \mathbb{C}^{n}:\left(f, a_{j}\right)(z)=0\right\}$.

Denote by $\sharp S$ the cardinality of the set S. In TQ1 Thai and Quang proved the following.

Theorem A ([TQ1, Theorem 1.2]). Assume that f is linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$.
(a) If $q=2 N^{2}+4 N$ and $N \geq 2$, then $\sharp \mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, 1\right)=1$.
(b) If $q=\left(3 N^{2}+7 N+2\right) / 2$ and $N \geq 2$, then $\sharp \mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, 2\right) \leq 2$.

Note that in the original paper TQ1, the authors assume that all maps g in the definition of the family $\mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, 1\right)$ are linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$. Actually, in this paper we will show that if f is linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$ then so is each $g \in \mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, 1\right)$, for $q>N(N+2)$.

As far as we know, there has been no result on the family $\mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, 1\right)$ in the case where $q<\left(3 N^{2}+7 N+2\right) / 2$.

Our purpose in the present work is to handle this case. We will prove a theorem on algebraic dependence of three maps in $\mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, 1\right)$ as follows.

Main Theorem 1.1. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{P}^{N}(\mathbb{C})(N \geq 2)$ be a meromorphic mapping. Let $\left\{a_{j}\right\}_{j=1}^{q}$ be small (with respect to f) meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ in general position such that

$$
\operatorname{dim} \operatorname{Zero}\left(f, a_{i}\right) \cap \operatorname{Zero}\left(f, a_{j}\right) \leq n-2 \quad(1 \leq i<j \leq q)
$$

Let $f_{1}, f_{2}, f_{3} \in \mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, 1\right)$.
(a) If $q>3 N^{2}+3 / 2$ then $f_{1} \wedge f_{2} \wedge f_{3} \equiv 0$.
(b) If f is linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$ and $q>\left(3 N^{2}+3 N+3\right) / 2$ then $f_{1} \wedge f_{2} \wedge f_{3} \equiv 0$.

Thoan-Duc $[\mathrm{PP}$ and Min Ru [R] have given some results on algebraic dependence of meromorphic mappings. In the case of three maps, the main theorem of the present paper is an improvement of their results.

2. Basic notions and auxiliary results from Nevanlinna theory

2.1. We set $\|z\|=\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}\right)^{1 / 2}$ for $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, and

$$
B(r):=\left\{z \in \mathbb{C}^{n}:\|z\|<r\right\}, \quad S(r):=\left\{z \in \mathbb{C}^{n}:\|z\|=r\right\} \quad(0<r<\infty) .
$$

Define

$$
\begin{aligned}
v_{n-1}(z) & :=\left(d d^{c}\|z\|^{2}\right)^{n-1}, \\
\sigma_{n}(z) & :=d^{c} \log \|z\|^{2} \wedge\left(d d^{c} \log \|z\|^{2}\right)^{n-1} \quad \text { on } \mathbb{C}^{n} \backslash\{0\} .
\end{aligned}
$$

2.2. Let F be a nonzero holomorphic function on a domain Ω in \mathbb{C}^{n}. For a sequance $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of nonnegative integers, we set $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ and $\mathcal{D}^{\alpha} F=\partial^{|\alpha|} F / \partial^{\alpha_{1}} z_{1} \cdots \partial^{\alpha_{n}} z_{n}$. We define a map $\nu_{F}: \Omega \rightarrow \mathbb{Z}$ by

$$
\nu_{F}(z):=\max \left\{m: \mathcal{D}^{\alpha} F(z)=0 \text { for all } \alpha \text { with }|\alpha|<m\right\} \quad(z \in \Omega) .
$$

By a divisor on a domain Ω in \mathbb{C}^{n} we mean a map $\nu: \Omega \rightarrow \mathbb{Z}$ such that, for each $a \in \Omega$, there are nonzero holomorphic functions F and G on a connected neighborhood $U \subset \Omega$ of a such that $\nu(z)=\nu_{F}(z)-\nu_{G}(z)$ for each $z \in U$ outside an analytic set of dimension $\leq n-2$. Two divisors are regarded to be the same if they are identical outside an analytic set of dimension $\leq n-2$. For a divisor ν on Ω we set $|\nu|:=\overline{\{z: \nu(z) \neq 0\}}$, which is a purely ($n-1$)-dimensional analytic subset of Ω or empty.

Take a nonzero meromorphic function φ on a domain Ω in \mathbb{C}^{n}. For each $a \in \Omega$, we choose nonzero holomorphic functions F and G on a neighborhood $U \subset \Omega$ such that $\varphi=F / G$ on U and $\operatorname{dim}\left(F^{-1}(0) \cap G^{-1}(0)\right) \leq n-2$, and we define divisors $\nu_{\varphi}, \nu_{\varphi}^{\infty}$ by $\nu_{\varphi}:=\nu_{F}, \nu_{\varphi}^{\infty}:=\nu_{G}$, which are independent of the choices of F and G and so globally well-defined on Ω.
2.3. For a divisor ν on \mathbb{C}^{n} and for a positive integer M or $M=\infty$, we define the counting function of ν by

$$
\nu^{(M)}(z)=\min \{M, \nu(z)\} .
$$

Moreover, we set

$$
n(t)= \begin{cases}\int_{|\nu| \cap B(t)} \nu(z) v_{n-1} & \text { if } n \geq 2, \\ \sum_{|z| \leq t} \nu(z) & \text { if } n=1 .\end{cases}
$$

Similarly, we define $n^{(M)}(t)$.

Set

$$
N(r, \nu)=\int_{1}^{r} \frac{n(t)}{t^{2 n-1}} d t \quad(1<r<\infty)
$$

Similarly, we define $N\left(r, \nu^{(M)}\right)$, which we also denote by $N^{(M)}(r, \nu)$.
Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}$ be a meromorphic function. Define

$$
N_{\varphi}(r)=N\left(r, \nu_{\varphi}\right), \quad N_{\varphi}^{(M)}(r)=N^{(M)}\left(r, \nu_{\varphi}\right)
$$

For brevity we will omit the superscript ${ }^{(M)}$ if $M=\infty$.
2.4. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{P}^{N}(\mathbb{C})$ be a meromorphic mapping. For fixed homogeneous coordinates $\left(w_{0}: \cdots: w_{N}\right)$ on $\mathbb{P}^{N}(\mathbb{C})$, we take a reduced representation $f=\left(f_{0}: \cdots: f_{N}\right)$, which means that each f_{i} is a holomorphic function on \mathbb{C}^{n} and $f(z)=\left(f_{0}(z): \cdots: f_{N}(z)\right)$ outside the analytic set $\left\{f_{0}=\cdots=f_{N}=0\right\}$ of codimension ≥ 2. Set $\|f\|=\left(\left|f_{0}\right|^{2}+\cdots+\left|f_{N}\right|^{2}\right)^{1 / 2}$.

The characteristic function of f is defined by

$$
T_{f}(r)=\int_{S(r)} \log \|f\| \sigma_{n}-\int_{S(1)} \log \|f\| \sigma_{n}
$$

Let a be a meromorphic mapping of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ with reduced representation $a=\left(a_{0}: \cdots: a_{N}\right)$. We define

$$
m_{f, a}(r)=\int_{S(r)} \log \frac{\|f\| \cdot\|a\|}{|(f, a)|} \sigma_{n}-\int_{S(1)} \log \frac{\|f\| \cdot\|a\|}{|(f, a)|} \sigma_{n}
$$

where $\|a\|=\left(\left|a_{0}\right|^{2}+\cdots+\left|a_{N}\right|^{2}\right)^{1 / 2}$.
If $f, a: \mathbb{C}^{n} \rightarrow \mathbb{P}^{N}(\mathbb{C})$ are meromorphic mappings such that $(f, a) \not \equiv 0$, then the first main theorem for moving targets in value distribution theory states that

$$
T_{f}(r)+T_{a}(r)=m_{f, a}(r)+N_{(f, a)}(r)
$$

Let φ be a nonzero meromorphic function on \mathbb{C}^{n}, which is occasionally regarded as a meromorphic map into $\mathbb{P}^{1}(\mathbb{C})$. The proximity function of φ is defined by

$$
m(r, \varphi):=\int_{S(r)} \log \max (|\varphi|, 1) \sigma_{n}
$$

2.5. As usual, the notation " $\| P$ " means the assertion P holds for all $r \in[0, \infty)$ excluding a Borel subset E of the interval $[0, \infty)$ with $\int_{E} d r<\infty$.
2.6. Let V be a complex vector space of dimension $N \geq 1$. For two vectors α and β in V, we write $\alpha \cong \beta$ if they are linearly dependent, and $\alpha \not \approx \beta$ otherwise.
2.7. We will need two theorems:

Theorem 2.1 (Second Main Theorem for moving targets [TQ2, Corollary 1]). Let $f: \mathbb{C}^{n} \rightarrow \mathbb{P}^{N}(\mathbb{C})$ be a meromorphic mapping. Let $\left\{a_{i}\right\}_{i=1}^{q}$ $(q \geq 2 N+1)$ be a set of q small (with respect to f) meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ in general position such that $\left(f, a_{i}\right) \not \equiv 0(1 \leq i \leq q)$. Then

$$
\| \frac{q}{2 N+1} T_{f}(r) \leq \sum_{i=1}^{q} N_{\left(f, a_{i}\right)}^{(N)}(r)+o\left(T_{f}(r)\right) .
$$

Theorem 2.2 (Second Main Theorem for moving targets [TQ1, Lemma 3.1]). Let $f: \mathbb{C}^{n} \rightarrow \mathbb{P}^{N}(\mathbb{C})$ be a meromorphic mapping. Let $\left\{a_{i}\right\}_{i=1}^{q}(q \geq$ $N+2$) be a set of q small (with respect to f) meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ in general position. Assume that f is linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$. Then

$$
\| \frac{q}{N+2} T_{f}(r) \leq \sum_{i=1}^{q} N_{\left(f, a_{i}\right)}^{(N)}(r)+o\left(T_{f}(r)\right) .
$$

3. Proof of Main Theorem. In order to prove the main theorem, we need the following lemmas.

Lemma 3.1. Let f be a meromorphic mapping of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$. Let $\left\{a_{i}\right\}_{i=1}^{q}(q>N(N+2))$ be a set of q small (with respect to f) meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ in general position. Assume that f is linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$. Then each $g \in \mathcal{F}\left(f,\left\{a_{i}\right\}_{i=1}^{q}, 1\right)$ is linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$.

Proof. Assume f, g and $a_{i}(1 \leq i \leq q)$ have reduced representations

$$
\begin{array}{rlrl}
f & =\left(f_{0}: \cdots: f_{N}\right), \quad g=\left(g_{0}: \cdots: g_{N}\right), \\
a_{i} & =\left(a_{i 0}: \cdots: a_{i N}\right) & (1 \leq i \leq q) .
\end{array}
$$

Suppose that g is linearly degenerate over $\mathcal{R}\left\{a_{i}\right\}_{i=1}^{q}$. Then there exist functions $c_{i} \in \mathcal{R}\left\{a_{i}\right\}_{i=1}^{q}(0 \leq i \leq N)$, not all zeros, such that

$$
c_{0} g_{0}+c_{1} g_{1}+\cdots+c_{N} g_{N}=0 .
$$

We consider a meromorphic mapping c with a reduced representation $c=$ $\left(h c_{0}: \cdots: h c_{N}\right)$, where h is a meromorphic function on \mathbb{C}^{n}. It is clear that c is small with respect to f and

$$
(g, c):=\sum_{j=0}^{N} h c_{j} g_{j} \equiv 0 .
$$

Since f is linearly nondegenerate over $\mathcal{R}\left\{a_{i}\right\}_{i=1}^{q}$, we have

$$
(f, c):=\sum_{j=0}^{N} h c_{j} f_{j} \not \equiv 0 .
$$

On the other hand $f(z)=g(z)=0$ for all $z \in \bigcup_{i=1}^{q} \operatorname{Zero}\left(f, a_{i}\right)$, hence $(f, c)(z)=(g, c)(z)=0$ for all $z \in \bigcup_{i=1}^{q} \operatorname{Zero}\left(f, a_{i}\right)$. This implies that

$$
N_{(f, c)}(r) \geq \sum_{i=1}^{q} N_{\left(f, a_{i}\right)}^{(1)}(r)
$$

Consequently,

$$
\begin{aligned}
\| T_{f}(r) & \geq N_{(f, c)}(r) \geq \sum_{i=1}^{q} N_{\left(f, a_{i}\right)}^{(1)}(r) \\
& \geq \sum_{i=1}^{q} \frac{1}{N} N_{\left(f, a_{i}\right)}^{(N)}(r) \geq \frac{q}{N(N+2)} T_{f}(r)+o\left(T_{f}(r)\right) .
\end{aligned}
$$

Letting $r \rightarrow \infty$, we get $q \leq N(N+2)$. This is a contradiction.
Hence g is linearly nondegenerate over $\mathcal{R}\left\{a_{i}\right\}_{i=1}^{q}$.
Lemma 3.2. Let $f: \mathbb{C}^{n} \longrightarrow \mathbb{P}^{N}(\mathbb{C})$ be a meromorphic mapping and let $\left\{a_{i}\right\}_{i=1}^{q}(q \geq 3 N+3)$ be a family of q small (with respect to f) meromorphic mappings of \mathbb{C}^{n} into $\mathbb{P}^{N}(\mathbb{C})$ in general position with

$$
\operatorname{dim} \operatorname{Zero}\left(f, a_{i}\right) \cap \operatorname{Zero}\left(f, a_{j}\right) \leq n-2 \quad(1 \leq i<j \leq q) .
$$

Let $f_{1}, f_{2}, f_{3} \in \mathcal{F}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 1\right)$. Assume that $f_{1} \wedge f_{2} \wedge f_{3} \not \equiv 0$. Then

$$
q \sum_{u=1}^{3} T_{f_{u}}(r) \geq \frac{2 q+3 N-3}{3 N} \sum_{i=1}^{q} N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)+o\left(T_{f}(r)\right) .
$$

Proof. We consider \mathcal{M}^{3} as a vector space over the field \mathcal{M}. For each $i=1, \ldots, q$, we set

$$
v_{i}=\left(\left(f_{1}, a_{i}\right),\left(f_{2}, a_{i}\right),\left(f_{3}, a_{i}\right)\right) \in \mathcal{M}^{3} .
$$

By changing the indices if necessary, we may assume that

$$
\underbrace{v_{1} \cong \cdots \cong v_{k_{1}}}_{\text {group } 1} \not \approx \underbrace{v_{k_{1}+1} \cong \cdots \cong v_{k_{2}}}_{\text {group } 2} \not \approx \cdots \not \approx \underbrace{v_{k_{s-1}+1} \cong \cdots \cong v_{k_{s}}}_{\text {group } s},
$$

where $k_{s}=q$.
For each $1 \leq i \leq q$, we set

$$
I_{i}= \begin{cases}\{i+N, i+N+1, \ldots, i+3 N-1\} & \text { if } i+3 N-1 \leq q \\ \{i+N, \ldots, q, 1,2, \ldots, i+3 N-q-1\} & \text { if } i+N \leq q<i+3 N-1, \\ \{i+N-q, \ldots, i+3 N-q-1\} & \text { if } i+N>q\end{cases}
$$

Since $f_{1} \wedge f_{2} \wedge f_{3} \not \equiv 0$, the number of elements of each group is at most N. Hence v_{i} and v_{j} belong to distinct groups for all $j \in I_{i}$ and $i=1, \ldots, q$. This means that $v_{i} \wedge v_{j} \neq 0\left(j \in I_{i}, 1 \leq i \leq q\right)$.

Claim. For every $1 \leq i \leq q$, we have

$$
\begin{aligned}
\sum_{u=1}^{3} T_{f_{u}}(r) \geq & \sum_{u=1}^{3}\left(\left[N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)-\frac{2 N+1}{3} N_{\left(f_{u}, a_{i}\right)}^{(1)}(r)\right]\right. \\
& \left.+\sum_{j \in I_{i}}\left[\frac{1}{N} N_{\left(f_{u}, a_{j}\right)}^{(N)}(r)-\frac{2 N+1}{3 N} N_{\left(f_{u}, a_{j}\right)}^{(1)}(r)\right]+\frac{2}{3} \sum_{v=1}^{q} N_{\left(f_{u}, a_{v}\right)}^{(1)}(r)\right) \\
& +o\left(T_{f}(r)\right) .
\end{aligned}
$$

We now prove the claim. It suffices to prove it for $i=1$.
For $1 \leq j \leq 2 N$, we set $V_{j}=v_{1} \wedge v_{j+N} \neq 0$. By changing the indices if necessary, we may assume that

$$
\underbrace{V_{1} \cong \ldots \cong V_{l_{1}}}_{\text {group } 1} \not \approx \underbrace{V_{l_{1}+1} \cong \cdots \cong V_{l_{2}}}_{\text {group } 2} \not \approx \cdots \not \approx \underbrace{V_{l_{t-1}+1} \cong \cdots \cong V_{l_{t}}}_{\text {group } t},
$$

where $l_{t}=2 N$.
For each $1 \leq j \leq N$, we set

$$
P_{j}=\operatorname{det}\left(\begin{array}{ccc}
\left(f_{1}, a_{1}\right) & \left(f_{1}, a_{j+N}\right) & \left(f_{1}, a_{j+2 N}\right) \\
\left(f_{2}, a_{1}\right) & \left(f_{2}, a_{j+N}\right) & \left(f_{2}, a_{j+2 N}\right) \\
\left(f_{3}, a_{1}\right) & \left(f_{3}, a_{j+N}\right) & \left(f_{3}, a_{j+2 N}\right)
\end{array}\right) .
$$

Since again $f_{1} \wedge f_{2} \wedge f_{3} \neq 0$, the number of elements of each group is at most N. Hence V_{j} and V_{j+N} belong to distinct groups, so $v_{1}, v_{j+N}, v_{j+2 N}$ are linearly independent over \mathcal{M} for every $j=1, \ldots, N$. This means that $P_{j} \not \equiv 0(1 \leq i \leq N)$.

Fix $1 \leq j \leq N$. For $z \notin \bigcup_{u=1}^{3} I\left(f_{u}\right) \cup \bigcup_{i^{\prime} \neq j^{\prime}}\left(\operatorname{Zero}\left(f, a_{i^{\prime}}\right) \cap \operatorname{Zero}\left(f, a_{j^{\prime}}\right)\right)$, we consider the following four cases:

CASE 1: z is a zero of $\left(f, a_{1}\right)$. We set

$$
m=\min \left\{\nu_{\left(f_{1}, a_{1}\right)}(z), \nu_{\left(f_{2}, a_{1}\right)}(z), \nu_{\left(f_{2}, a_{1}\right)}(z)\right\} .
$$

Then there exist a neighborhood U of z and a holomorphic function h defined on U such that $\operatorname{Zero}(h)=U \cap \operatorname{Zero}\left(f, a_{1}\right)$ and $d h$ has no zero. Moreover we may assume that

$$
U \cap\left(\bigcup_{u=1}^{3} I\left(f_{u}\right) \cup \bigcup_{i^{\prime} \neq j^{\prime}}\left(\operatorname{Zero}\left(f, a_{i^{\prime}}\right) \cap \operatorname{Zero}\left(f, a_{j^{\prime}}\right)\right)\right)=\emptyset
$$

We see that there exist holomorphic functions $\varphi_{1}, \varphi_{2}, \varphi_{3}$ defined on U such that

$$
\left(f_{u}, a_{1}\right)=h^{m} \varphi_{u} \quad \text { on } U \text { for } 1 \leq u \leq 3
$$

On the other hand, since $f_{1}=f_{2}=f_{3}$ on $\operatorname{Zero}\left(f, a_{1}\right)$, we have

$$
\frac{\left(f_{u}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)}=\frac{\left(f_{u}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)} \quad \text { on } \operatorname{Zero}\left(f, a_{1}\right), u=2,3
$$

Therefore, there exist holomorphic functions ψ_{2} and ψ_{3} satisfying

$$
\frac{\left(f_{u}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)}-\frac{\left(f_{u}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)}=h \psi_{u} \quad \text { on } \operatorname{Zero}\left(f, a_{1}\right), u=2,3
$$

We rewrite P_{j} on U as follows:

$$
\begin{aligned}
P_{j} & =h^{m} \operatorname{det}\left(\begin{array}{lll}
\varphi_{1} & \left(f_{1}, a_{j+N}\right) & \left(f_{1}, a_{j+2 N}\right) \\
\varphi_{2} & \left(f_{2}, a_{j+N}\right) & \left(f_{2}, a_{j+2 N}\right) \\
\varphi_{3} & \left(f_{3}, a_{j+N}\right) & \left(f_{3}, a_{j+2 N}\right)
\end{array}\right) \\
& =h^{m}\left(f_{1}, a_{j+N}\right)\left(f_{1}, a_{j+2 N}\right) \operatorname{det}\left(\begin{array}{ccc}
\varphi_{1} & 1 & 1 \\
\varphi_{2} & \frac{\left(f_{2}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)} & \frac{\left(f_{2}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)} \\
\varphi_{3} & \frac{\left(f_{3} a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)} & \frac{\left(f_{3}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)}
\end{array}\right) \\
& =-h^{m+1}\left(f_{1}, a_{j+N}\right)\left(f_{1}, a_{j+2 N}\right) \operatorname{det}\left(\begin{array}{ccc}
\varphi_{1} & 1 & 0 \\
\varphi_{2} & \frac{\left(f_{2}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)} & \psi_{2} \\
\varphi_{3} & \frac{\left(f_{3}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)} & \psi_{3}
\end{array}\right)
\end{aligned}
$$

This yields

$$
\nu_{P_{j}}(z) \geq m+1=\min \left\{\nu_{\left(f_{1}, a_{1}\right)}(z), \nu_{\left(f_{2}, a_{1}\right)}(z), \nu_{\left(f_{2}, a_{1}\right)}(z)\right\}+1
$$

CASE 2: z is a zero of $\left(f, a_{j+N}\right)$. Repeating the same argument as in Case 1, we have

$$
\nu_{P_{j}}(z) \geq \min \left\{\nu_{\left(f_{1}, a_{j+N}\right)}(z), \nu_{\left(f_{2}, a_{j+N}\right)}(z), \nu_{\left(f_{2}, a_{j+N}\right)}(z)\right\}+1
$$

CASE 3: z is a zero of $\left(f, a_{j+2 N}\right)$. Repeating the same argument as in Case 1, we have

$$
\nu_{P_{j}}(z) \geq \min \left\{\nu_{\left(f_{1}, a_{j+2 N}\right)}(z), \nu_{\left(f_{2}, a_{j+2 N}\right)}(z), \nu_{\left(f_{2}, a_{j+2 N}\right)}(z)\right\}+1
$$

CASE 4: z is a zero point of $\left(f, a_{v}\right)$ with $v \notin\{1, j+N, j+2 N\}$. We have

$$
P_{j}=\operatorname{det}\left(\begin{array}{ccc}
\left(f_{1}, a_{1}\right) & \left(f_{1}, a_{j+N}\right) & \left(f_{1}, a_{j+2 N}\right) \tag{3.1}\\
\left(f_{2}, a_{1}\right) & \left(f_{2}, a_{j+N}\right) & \left(f_{2}, a_{j+2 N}\right) \\
\left(f_{3}, a_{1}\right) & \left(f_{3}, a_{j+N}\right) & \left(f_{3}, a_{j+2 N}\right)
\end{array}\right)
$$

$$
\begin{aligned}
& =\prod_{t=1, j+N, j+2 N}\left(f_{1}, a_{t}\right) \operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\frac{\left(f_{2}, a_{1}\right)}{\left(f_{1}, a_{1}\right)} & \frac{\left(f_{2}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)} & \frac{\left(f_{2}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)} \\
\frac{\left(f_{3}, a_{1}\right)}{\left(f_{1}, a_{1}\right)} & \frac{\left(f_{3}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)} & \frac{\left(f_{3}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)}
\end{array}\right) \\
& =\prod_{t=1, j+N, j+2 N}\left(f_{1}, a_{t}\right) \operatorname{det}\left(\begin{array}{ll}
\frac{\left(f_{2}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)}-\frac{\left(f_{2}, a_{1}\right)}{\left(f_{1}, a_{1}\right)} & \frac{\left(f_{2}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)}-\frac{\left(f_{2}, a_{1}\right)}{\left(f_{1}, a_{1}\right)} \\
\frac{\left(f_{3}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)}-\frac{\left(f_{3}, a_{1}\right)}{\left(f_{1}, a_{1}\right)} & \frac{\left(f_{3}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)}-\frac{\left(f_{3}, a_{1}\right)}{\left(f_{1}, a_{1}\right)}
\end{array}\right) .
\end{aligned}
$$

Since $f_{1}(z)=f_{2}(z)=f_{3}(z)$, we have

$$
\begin{aligned}
& \frac{\left(f_{2}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)}(z)-\frac{\left(f_{2}, a_{1}\right)}{\left(f_{1}, a_{1}\right)}(z)=\frac{\left(f_{2}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)}(z)-\frac{\left(f_{2}, a_{1}\right)}{\left(f_{1}, a_{1}\right)}(z)=0 \\
& \frac{\left(f_{3}, a_{j+N}\right)}{\left(f_{1}, a_{j+N}\right)}(z)-\frac{\left(f_{3}, a_{1}\right)}{\left(f_{1}, a_{1}\right)}(z)=\frac{\left(f_{3}, a_{j+2 N}\right)}{\left(f_{1}, a_{j+2 N}\right)}(z)-\frac{\left(f_{3}, a_{1}\right)}{\left(f_{1}, a_{1}\right)}(z)=0 .
\end{aligned}
$$

Therefore, (3.1) implies that z is a zero of P_{j} with multiplicity at least 2 .
Thus, from the above four cases we have

$$
\begin{aligned}
\nu_{P_{j}}(z) \geq & \sum_{v=1, j+N, j+2 N}\left(\min \left\{\nu_{\left(f_{1}, a_{v}\right)}, \nu_{\left(f_{2}, a_{v}\right)}, \nu_{\left(f_{3}, a_{v}\right)}\right\}+1\right) \\
& +2 \sum_{\substack{v=1 \\
v \neq 1, j+N, j+2 N}}^{q} \nu_{\left(f, a_{v}\right), \leq k}^{(1)}(z)
\end{aligned}
$$

for all z outside the analytic set

$$
I\left(f_{1}\right) \cup I\left(f_{2}\right) \cup I\left(f_{3}\right) \cup \bigcup_{i^{\prime} \neq j^{\prime}} f^{-1}\left(a_{i^{\prime}} \cap a_{j^{\prime}}\right)
$$

of codimension two.
Since $\min \{a, b, c\} \geq \min \{a, N\}+\min \{b, N\}+\min \{c, N\}-2 N$ for all positive integers a, b and c, the above inequality implies that

$$
\begin{gathered}
\nu_{P_{j}}(z) \geq \sum_{v=1, j+N, j+2 N}\left(\min \left\{\nu_{\left(f_{1}, a_{v}\right)}(z), N\right\}+\min \left\{\nu_{\left(f_{2}, a_{v}\right)}(z), N\right\}\right. \\
\left.+\min \left\{\nu_{\left(f_{3}, a_{v}\right)}(z), N\right\}-(2 N-1) \min \left\{\nu_{\left(f, a_{v}\right)}(z), 1\right\}\right) \\
+2 \sum_{\substack{v=1 \\
v \neq 1, j+N, j+2 N}}^{q} \nu_{\left(f, a_{v}\right)}^{(1)}(z)
\end{gathered}
$$

for all z outside an analytic subset of codimension two in \mathbb{C}^{n}.

Integrating both sides of the above inequality, we get

$$
\begin{aligned}
N_{P_{j}}(r) \geq & \sum_{v=1, j+N, j+2 N}\left(\sum_{u=1}^{3} N_{\left(f_{u}, a_{v}\right)}^{(N)}(r)-(2 N-1) N_{\left(f, a_{v}\right)}^{(1)}(r)\right) \\
& +2 \sum_{\substack{v=1 \\
v \neq 1, j+N, j+2 N}}^{q} N_{\left(f, a_{v}\right)}^{(1)}(r) .
\end{aligned}
$$

On the other hand, by Jensen's formula and the definition of the characteristic function we have

$$
\begin{aligned}
N_{P_{i}}(r) & =\int_{S(r)} \log \left|P_{i}\right| \eta+O(1) \\
& \leq \sum_{u=1}^{3} \int_{S(r)} \log \left(\left|\left(f_{u}, a_{1}\right)\right|^{2}+\left|\left(f_{u}, a_{j+N}\right)\right|^{2}+\left|\left(f_{u}, a_{j+2 N}\right)\right|\right)^{1 / 2} \eta \\
& \leq \sum_{u=1}^{3} \int_{S(r)} \log \|f\| \eta+O\left(\max _{v=1, j+N, j+2 N} T_{a_{v}}(r)\right)=\sum_{u=1}^{3} T_{f_{u}}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\sum_{u=1}^{3} T_{f_{u}}(r) \geq & \sum_{v=1, j+N, j+2 N}\left(\sum_{u=1}^{3} N_{\left(f_{u}, a_{v}\right)}^{(N)}(r)-(2 N-1) N_{\left(f, a_{v}\right)}^{(1)}(r)\right) \\
& +2 \sum_{\substack{v=1 \\
v \neq 1, j+N, j+2 N}}^{q} N_{\left(f, a_{v}\right)}^{(1)}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

Summing both sides of the above inequality over $j=1, \ldots, N$, we have

$$
\begin{array}{r}
N \sum_{u=1}^{3} T_{f_{u}}(r) \geq \sum_{j=1}^{N}\left(\sum_{v=1, j+N, j+2 N}\left(\sum_{u=1}^{3} N_{\left(f_{u}, a_{v}\right)}^{(N)}(r)-(2 N-1) N_{\left(f, a_{v}\right)}^{(1)}(r)\right)\right. \\
\left.+2 \sum_{\substack{v=1 \\
v \neq 1, j+N, j+2 N}}^{q} N_{\left(f, a_{v}\right)}^{(1)}(r)\right)+o\left(T_{f}(r)\right) \\
\geq \sum_{j=1}^{N}\left(\sum_{v=1, j+N, j+2 N}\left(\sum_{u=1}^{3} N_{\left(f_{u}, a_{v}\right)}^{(N)}(r)-(2 N+1) N_{\left(f, a_{v}\right)}^{(1)}(r)\right)\right. \\
\\
\left.+2 \sum_{v=1}^{q} N_{\left(f, a_{v}\right)}^{(1)}(r)\right)+o\left(T_{f}(r)\right)
\end{array}
$$

$$
\begin{aligned}
= & N\left(\sum_{u=1}^{3} N_{\left(f_{u}, a_{1}\right)}^{(N)}(r)-(2 N+1) N_{\left(f, a_{1}\right)}^{(1)}(r)\right) \\
& +\sum_{j \in I_{1}}\left(\sum_{u=1}^{3} N_{\left(f_{u}, a_{j}\right)}^{(N)}(r)-(2 N+1) N_{\left(f, a_{j}\right)}^{(1)}(r)\right)+2 N \sum_{v=1}^{q} N_{\left(f, a_{v}\right)}^{(1)}(r)+o\left(T_{f}(r)\right) \\
= & \sum_{u=1}^{3}\left(N\left[N_{\left(f_{u}, a_{1}\right)}^{(N)}(r)-\frac{2 N+1}{3} N_{\left(f_{u}, a_{1}\right)}^{(1)}(r)\right]\right. \\
& \left.+\sum_{j \in I_{1}}\left[N_{\left(f_{u}, a_{j}\right)}^{(N)}(r)-\frac{2 N+1}{3} N_{\left(f_{u}, a_{j}\right)}^{(1)}(r)\right]+\frac{2 N}{3} \sum_{v=1}^{q} N_{\left(f_{u}, a_{v}\right)}^{(1)}(r)\right)+o\left(T_{f}(r)\right) .
\end{aligned}
$$

Dividing both sides by N, we get the inequality of the claim.
We continue the proof of the lemma.
By the claim, for every $1 \leq i \leq q$, we have

$$
\begin{aligned}
& \sum_{u=1}^{3} T_{f_{u}}(r) \geq \sum_{u=1}^{3}\left(\left[N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)-\frac{2 N+1}{3} N_{\left(f_{u}, a_{i}\right)}^{(1)}(r)\right]\right. \\
& \left.+\sum_{j \in I_{i}}\left[\frac{1}{N} N_{\left(f_{u}, a_{j}\right)}^{(N)}(r)-\frac{2 N+1}{3 N} N_{\left(f_{u}, a_{j}\right)}^{(1)}(r)\right]+\frac{2}{3} \sum_{v=1}^{q} N_{\left(f_{u}, a_{v}\right)}^{(1)}(r)\right)+o\left(T_{f}(r)\right) .
\end{aligned}
$$

Thus, by summing them up, we have

$$
\begin{equation*}
q \sum_{u=1}^{3} T_{f_{u}}(r) \geq \sum_{u=1}^{3} \sum_{i=1}^{q}\left(3 N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)+(2 q / 3-2 N-1) N_{\left(f_{u}, a_{i}\right)}^{(1)}(r)\right)+o\left(T_{f}(r)\right) \tag{3.2}
\end{equation*}
$$

It is easy to see that

$$
N_{\left(f_{u}, a_{i}\right)}^{(1)}(r) \geq \frac{1}{N} N_{\left(f_{u}, a_{i}\right)}^{(N)}(r), \quad \forall i, u
$$

Therefore, the inequality 3.2 implies that

$$
q \sum_{u=1}^{3} T_{f_{u}}(r) \geq \frac{2 q+3 N-3}{3 N} \sum_{u=1}^{3} \sum_{i=1}^{q} N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)+o\left(T_{f}(r)\right)
$$

The lemma is proved.

Proof of Main Theorem 1.1. With the assumption $q>3 N^{2}+3 / 2$ in (a) or $q>\left(3 N^{2}+3 N+3\right) / 2$ in (b), we have $q \geq 2 N+1$. Then, for each
$f_{u} \in \mathcal{F}\left(f,\left\{a_{j}\right\}_{j=1}^{q}, 1\right)(1 \leq u \leq 3)$ we have

$$
\begin{aligned}
\| \frac{q}{2 N+1} T_{f_{u}}(r) & \leq \sum_{i=1}^{q} N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)+O\left(\max _{1 \leq i \leq q} T_{a_{i}}(r)\right)+o\left(T_{f_{u}}(r)\right) \\
& \leq N \sum_{i=1}^{q} N_{\left(f_{u}, a_{i}\right)}^{(1)}(r)+o\left(T_{f_{u}}(r)\right)+o\left(T_{f}(r)\right) \\
& =N \sum_{i=1}^{q} N_{\left(f, a_{i}\right)}^{(1)}(r)+o\left(T_{f_{u}}(r)\right)+o\left(T_{f}(r)\right) \\
& \leq N q T_{f}(r)++o\left(T_{f_{u}}(r)\right)+o\left(T_{f}(r)\right)
\end{aligned}
$$

This yields $\| T_{f_{u}}(r)=O\left(T_{f}(r)\right)(1 \leq u \leq 3)$. Similarly, we have $\| T_{f}(r)=$ $O\left(T_{f_{u}}(r)\right)(1 \leq u \leq 3)$.

We now prove the two assertions of the theorem.
(a) Suppose that $f_{1} \wedge f_{2} \wedge f_{3} \not \equiv 0$. Then by Lemma 3.2 we have

$$
q \sum_{u=1}^{3} T_{f_{u}}(r) \geq \frac{2 q+3 N-3}{3 N} \sum_{u=1}^{3} \sum_{i=1}^{q} N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)+o\left(T_{f}(r)\right)
$$

By using the Second Main Theorem (Theorem 2.1) for meromorphic mappings with moving targets, we have

$$
\begin{aligned}
\sum_{u=1}^{3} \frac{q}{2 N+1} T_{f_{u}}(r) & \leq \sum_{u=1}^{3} \sum_{i=1}^{q} N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)+o\left(T_{f}(r)\right) \\
& \leq \frac{3 N q}{2 q+3 N-3} \sum_{u=1}^{3} T_{f_{u}}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

Since $\| T_{f}(r)=O\left(T_{f_{u}}(r)\right)(1 \leq u \leq 3)$, letting $r \rightarrow+\infty$, we get $q \leq$ $3 N^{2}+3 / 2$. This is a contradiction. Thus, $f_{1} \wedge f_{2} \wedge f_{3}=0$.
(b) Suppose that $f_{1} \wedge f_{2} \wedge f_{3} \not \equiv 0$. By Lemma 3.1, f_{1}, f_{2}, f_{3} are linearly nondegenerate over $\mathcal{R}\left(\left\{a_{i}\right\}_{i=1}^{q}\right)$.

By the Second Main Theorem (Theorem 2.2) and Lemma 3.1,

$$
\begin{aligned}
\sum_{u=1}^{3} \frac{q}{N+2} T_{f_{u}}(r) & \leq \sum_{u=1}^{3} \sum_{i=1}^{q} N_{\left(f_{u}, a_{i}\right)}^{(N)}(r)+o\left(T_{f}(r)\right) \\
& \leq \frac{3 N q}{2 q+3 N-3} \sum_{u=1}^{3} T_{f_{u}}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

Letting $r \rightarrow+\infty$, we get $q \leq\left(3 N^{2}+3 N+3\right) / 2$. This is a contradiction. Thus, $f_{1} \wedge f_{2} \wedge f_{3}=0$.

Acknowledgements. This work was done during a stay of the author at Mathematisches Forschungsinstitut Oberwolfach. He wishes to express
his gratitude to the institute. This research was supported in part by a NAFOSTED grant of Vietnam (Grant No. 101.01-2011.29).

References

[NO] J. Noguchi and T. Ochiai, Introduction to Geometric Function Theory in Several Complex Variables, Transl. Math. Monogr. 80, Amer. Math. Soc., Providence, RI, 1990.
[PP] V. D. Pham and D. T. Pham, Algebraic dependences of meromorphic mappings in several complex variables, Ukrain. Math. J. 62 (2010), 923-936.
[R] M. Ru, A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc. 129 (2001), 2701-2707.
[RW] M. Ru and J. T.-Y.Wang, Truncated second main theorem with moving targets, Trans. Amer. Math. Soc. 356 (2004), 557-571.
[TQ1] D. D. Thai and S. D. Quang, Uniqueness problem with truncated multiplicities of meromorphic mappings in several compex variables for moving targets, Int. J. Math. 16 (2005), 903-939.
[TQ2] D. D. Thai and S. D. Quang, Second main theorem with truncated counting function in several complex variables for moving targets, Forum Math. 20 (2008), 145-179.

Si Duc Quang
Department of Mathematics
Hanoi National University of Education
136-Xuan Thuy, Cau Giay, Hanoi, Vietnam
E-mail: ducquang.s@gmail.com

Received 19.4.2012
and in final form 27.4.2012

[^0]: 2010 Mathematics Subject Classification: Primary 32H30, 32A22; Secondary 30D35.
 Key words and phrases: algebraic dependence, uniqueness problem, meromorphic mapping, truncated multiplicity.

