A note on composition operators on spaces of real analytic functions

by PAWEŁ DOMAŃSKI (Poznań), MICHAŁ GOLIŃSKI (Poznań) and MICHAEL LANGENBRUCH (Oldenburg)

Abstract. We characterize composition operators on spaces of real analytic functions which are open onto their images. We give an example of a semiproper map φ such that the associated composition operator is not open onto its image.

1. Introduction. Let M and N be real analytic manifolds and let $\varphi : M \to N$ be a real analytic map. We define the *composition operator* $C_{\varphi}(f) := f \circ \varphi$, where $f : N \to \mathbb{C}$. There is an extensive literature on $C_{\varphi} : C^{\infty}(N) \to C^{\infty}(M)$ starting from papers of Whitney [21] and Glaeser [12] and culminating in a characterization when the range of C_{φ} is closed in $C^{\infty}(M)$ (equivalently, when C_{φ} is open onto its image): see [2, Th. 1.13] and [3, Cor. 1.4, 1.5].

This paper is devoted to the real analytic case, i.e., $C_{\varphi} : \mathscr{A}(N) \to \mathscr{A}(M)$, where $\mathscr{A}(N)$ and $\mathscr{A}(M)$ denote the spaces of real analytic functions on Nand M, respectively (equipped with their natural topologies described below, comp. [17]). This case is very different from the smooth case, in particular, having closed image is not the same as being open onto the image [7, Ex. 3.8].

In [7] we characterized when $C_{\varphi} : \mathscr{A}(N) \to \mathscr{A}(M)$ is a topological embedding, obtaining an analogue of the result of Glaeser [12] for the C^{∞} -case. Three conditions are important here:

- 1. φ is semiproper (i.e., for every compact set K in N there is a compact set L in M such that $\varphi(L) = \varphi(M) \cap K$);
- 2. $\varphi(M)$ has the "global extension property";
- 3. $\varphi(M)$ has the "semiglobal extension property".

Key words and phrases: space of real analytic functions, composition operator, semiproper map, closed range map, open map, extension of analytic functions from an analytic set.

²⁰¹⁰ Mathematics Subject Classification: Primary 46E10, 47B33, 32C07; Secondary 26E05, 32D15.

In [8] we showed that if C_{φ} has closed image then condition 2 holds, and in [9] the converse was shown under assumption 1. Moreover, if $\varphi(M)$ is analytic we showed that C_{φ} is open onto its image if and only if conditions 1 and 3 hold.

In the present paper we show that the assumption that $\varphi(M)$ is analytic in the last result is superfluous, so we fully characterize when C_{φ} : $\mathscr{A}(N) \to \mathscr{A}(M)$ is open onto its image without any additional assumption, in that way finishing one direction of research from [7]–[9]. Moreover, we show that if M is compact then C_{φ} is open onto its image if and only if it has a closed image, and that this is equivalent to the conditions that φ is semiproper and $\varphi(M)$ has the global (or, equivalently, semiglobal) extension property.

In [7, Ex. 3.8] we gave an example of a composition operator C_{φ} which was non-open onto its image because the underlying map φ failed to be semiproper. We show here that if the image of φ is \mathbb{C} -analytic of non-pure dimension, then the image of φ does not have the semiglobal extension property, therefore C_{φ} is non-open even though φ can be semiproper.

2. Preliminaries. In this section we will fix the notation and recall some basic facts needed in this paper. Some material presented here is taken from [8] and it is included for the sake of convenience.

Let M, N be real analytic manifolds and let $\varphi : M \to N$ be a real analytic map. Without loss of generality we may assume that any real analytic manifold is a submanifold of \mathbb{R}^d . Thus the following definition makes sense: if $S \subseteq N \subset \mathbb{R}^d \subset \mathbb{C}^d$ is an arbitrary set, then we define $\mathscr{A}(S)$ to be the space of real analytic functions on S, i.e., functions $f : S \to \mathbb{C}$ such that for every $x \in S$ the function f extends to a holomorphic function on some neighbourhood of x in \mathbb{C}^d .

Let us recall that the topology on the space of germs of holomorphic functions over a compact set $K \subseteq M$ (denoted by H(K)) is defined as the inductive limit topology $\operatorname{ind}_{n \in \mathbb{N}} H^{\infty}(U_n)$, where (U_n) is a basis of neighbourhoods of K in the complexification of M, and H^{∞} denotes the Banach space of bounded holomorphic functions. If U is an open subset in a complex analytic manifold then H(U) denotes the space of all holomorphic functions on U equipped with the compact-open topology. The natural topology on $\mathscr{A}(M)$ is defined to be the unique topology such that the restriction maps $H(U) \to \mathscr{A}(M)$ and $\mathscr{A}(M) \to H(K)$ are all continuous whenever U is an arbitrary neighbourhood of M in its complexification and K is an arbitrary compact subset of M (comp. [17, 6]). The space $\mathscr{A}(M)$ with that topology is separable, complete, nuclear, webbed, ultrabornological, and the Closed Graph Theorem holds for operators $T : \mathscr{A}(M) \to \mathscr{A}(N)$ etc.; see [6], [10] and [11]. Surprisingly, $\mathscr{A}(M)$ has no Schauder basis [10]. For basic facts from the general theory of locally convex spaces we refer to [18]. For general information on the spaces of real analytic functions see [6].

A subset S of a real analytic manifold N has the global extension property if every analytic function f on S extends to an analytic function on N. Similarly, we say that a subset S of a real analytic manifold N has the semiglobal extension property if for every relatively compact set $\Omega \subseteq N$ there is an open set Δ , with $\Omega \subseteq \Delta \subseteq N$, such that for every $f \in \mathscr{A}(S \cap \Delta)$ there is $g \in \mathscr{A}(\Omega)$ such that

$$f|_{\Omega \cap S} = g|_{\Omega \cap S}.$$

For the definition of a Nash set see [1, p. 544]. The only fact we will need about them is that all semianalytic sets are Nash but the converse is false (see [1, Prop. 2.3]). Summarizing, we have the following implications for any set S (none of them can be reversed):

global ext. property $\Rightarrow \mathbb{C}$ -analytic \Rightarrow analytic \Rightarrow semianalytic \Rightarrow Nash.

For the definition of subanalytic and semianalytic sets see [16]. For more information on (real or complex) analytic sets see [13], [19], [4] or [5]. For complex analysis of several variables we refer to [14] and [15].

An analytic subset S of a real analytic manifold is called *non-pure*dimensional at a point $a \in S$ if

- the germ S_a is irreducible and dim $S_a = \dim S$;
- for every neighbourhood U of a there is a point $c \in U \cap S$ such that $\dim S_c < \dim S$.

An analytic subset S of a real analytic manifold M is called \mathbb{C} -analytic if S is the common zero set of a finite number of analytic functions defined on M.

3. Main results. We start with the following lemma.

LEMMA 3.1. Every set with the semiglobal extension property is automatically analytic.

Proof. Let N be a real analytic manifold; as usual we assume without loss of generality that $N \subset \mathbb{R}^d$. Let $S \subset N$ be a subset with the semiglobal extension property, i.e.,

 $\forall \Omega \Subset N \exists \Delta \Subset N, \ \Omega \subset \Delta \ \forall f \in \mathscr{A}(S \cap \Delta) \ \exists g \in \mathscr{A}(\Omega) : f|_{\Omega \cap S} = g|_{\Omega \cap S}.$ By [22, p. 154], the intersection of any family of \mathbb{C} -analytic sets is \mathbb{C} -analytic. Assume that S is not analytic. Thus there is an open set $\Omega \Subset N$ such that $\Omega \cap S$ is not \mathbb{C} -analytic in Ω . Hence the intersection R of all \mathbb{C} -analytic subsets of Ω containing $\Omega \cap S$ is strictly bigger than $S \cap \Omega$. Let $x \in R \setminus S$. Clearly the function g defined by the formula

$$g(z) := \frac{1}{|x - z|^2}$$

is analytic on $N \setminus \{x\}$, thus on S. By the semiglobal extension property, it extends to an analytic function $h : \Omega \to \mathbb{C}$. Clearly, h - g vanishes on S and it is defined on an open neighbourhood U of $S \cap \Omega$ in Ω . The zero set Z of h - g is a \mathbb{C} -analytic subset of U. By [20, Lemma 1], the set Z is also \mathbb{C} -analytic in Ω and it contains S but not x. This contradicts the definition of R.

The aim of this note is to prove the following improvement of [9, Thm. 2.3] (where we used the additional assumption that $\varphi(M)$ is Nash).

THEOREM 3.2. Let $\varphi : M \to N$ be a real analytic map between real analytic manifolds. The composition operator $C_{\varphi} : \mathscr{A}(N) \to \mathscr{A}(M)$ is open onto its image if and only if φ is semiproper and $\varphi(M)$ has the semiglobal extension property.

Proof. Necessity: By [9, proof of the necessity part of Thm. 2.3], if C_{φ} is open then $\varphi(M)$ has the semiglobal extension property (Nash property mentioned in the statement is not used in that part of the proof). By [9, Lemma 2.4], φ is also semiproper.

Sufficiency: By Lemma 3.1 above, $\varphi(M)$ is analytic thus Nash. Sufficiency follows from [9, Thm. 2.3].

LEMMA 3.3. A compact set with the semiglobal extension property in a real analytic manifold is \mathbb{C} -analytic.

Proof. We proceed as in the proof of Lemma 3.1 assuming that $S \subset \Omega$, Ω open, and deducing that S is \mathbb{C} -analytic in Ω . By [20, Lemma 1], S is \mathbb{C} -analytic in N.

PROPOSITION 3.4. Any compact set $S \subset N$, N a real analytic manifold, has the global extension property if and only if it has the semiglobal extension property.

Proof. Necessity: Let $S \subset \Omega$ and let $\Omega \Subset \Delta \Subset N$ be open subsets. Let $f \in \mathscr{A}(S \cap \Delta) = \mathscr{A}(S)$. Then by the global extension property f extends to N.

Sufficiency: Let $f \in \mathscr{A}(S) = \mathscr{A}(S \cap \Delta)$. Then, by the semiglobal extension property, f extends to Ω , a neighbourhood of S. By Lemma 3.3, S is \mathbb{C} -analytic, and, by [20, Thm. 1], it has the so-called *weak extension property* (i.e., every function which extends to some neighbourhood extends to the whole space). So f extends to the whole N.

COROLLARY 3.5. Let $\varphi : M \to N$ be a real analytic map between real analytic manifolds, with M compact. The following conditions are equivalent:

- 1. The map $C_{\varphi} : \mathscr{A}(N) \to \mathscr{A}(M)$ has closed range.
- 2. The map $C_{\varphi} : \mathscr{A}(N) \to \mathscr{A}(M)$ is open onto its image.
- 3. φ is semiproper and $\varphi(M)$ has the global extension property.

Proof. $1\Rightarrow2$. The map φ is always semiproper. If C_{φ} has closed image, by [9, Thm. 2.2], it has the global extension property, thus by Proposition 3.4, it has the semiglobal extension property. By Theorem 3.2, C_{φ} is open onto its image

 $2 \Rightarrow 1$. If C_{φ} is open onto its image then, by Theorem 3.2 and Proposition 3.4, $\varphi(M)$ has the global extension property and $\varphi(M)$ is analytic. By [9, Thm. 2.2], C_{φ} has closed image.

 $1\&2 \Leftrightarrow 3$. Use [9, Cor. 2.5] and Proposition 3.4.

PROPOSITION 3.6. If a \mathbb{C} -analytic subset X of an open set Ω in \mathbb{R}^d with dim $X \geq 2$ is non-pure-dimensional at a point $a \in X$, then for every neighbourhood Δ of a in Ω there is an analytic function on X which does not extend to Δ .

Proof. One gets a proof of this by re-reading the proof of [20, Thm. 2]. Only minor changes, indicated below, are necessary. We follow the notation from [20] where possible. All undefined objects are as in [20].

We first assume that X is \mathbb{C} -irreducible.

From the definition of being non-pure-dimensional, we can assume that Δ is such that $K = \Delta \cap X$ is irreducible analytic, so K is \mathbb{C} -irreducible. We take $c \in \Delta \cap T$ with $X_c = T_c$.

We define analytic functions $q, \tilde{q}, g, \tilde{g}, \lambda$ exactly as in [20]. We will show that λ has no extension to Δ .

Assume to the contrary that $\mu : \Delta \to \mathbb{R}$ is real analytic and $\mu|_{\Delta \cap X} = \lambda|_{\Delta \cap X}$. The function μ extends to a holomorphic function on some neighbourhood of Δ in \mathbb{C}^n . Let $\widetilde{\Delta}$ be an open subset of $\widetilde{\Omega}$ such that $\widetilde{\Delta} \cap \mathbb{R}^n = \Delta$, and $\widetilde{\mu} \in H(\widetilde{\Delta})$ be such that $\widetilde{\mu}|_{\Delta} = \mu$.

Now let \widetilde{K} be the smallest complex analytic subset of $\widetilde{\Delta}$ containing K. Certainly $\widetilde{K} \subseteq \widetilde{\Delta} \cap \widetilde{X}$. But dim $\widetilde{K} = \dim \widetilde{\Delta} \cap \widetilde{X}$, so from [5, I.5.3 Cor. 2], \widetilde{K} is an irreducible component of $\widetilde{\Delta} \cap \widetilde{X}$ containing $\Delta \cap X$.

Let

$$\widetilde{P} = \{ z \in \widetilde{K} : \widetilde{q}(z) + \widetilde{g}(z) = 0 \}, \qquad \widetilde{S} = \{ z \in \widetilde{K} : \widetilde{q}(z) = 0 \}$$

We have $c \in \widetilde{P} \cap \widetilde{S}$ and $\widetilde{P} \subsetneq \widetilde{K}$ (because $a \notin \widetilde{P}$). Therefore $(\operatorname{reg} \widetilde{K}) \setminus \widetilde{P}$ is connected by [5, I.5.3 Prop., I.2.2 Prop. 3].

Let $\widetilde{\lambda} : \widetilde{K} \setminus \widetilde{P} \to \mathbb{C}$ be given by the formula

$$\widetilde{\lambda}(z) = rac{\widetilde{q}(z)}{\widetilde{q}(z) + \widetilde{g}(z)}.$$

There is a point $x \in K$ which is regular for both K and \widetilde{K} , so by [20, Remark 1], \widetilde{K}_x is the complexification of K_x . As $a \notin \widetilde{P}$, $\widetilde{\lambda}$ is defined in a neighbourhood of a, so we can assume that it is defined at x. Therefore

 $(\widetilde{\lambda} - \widetilde{\mu})|_{K_x} = 0$. As \widetilde{K}_x is the complexification of K_x , we get

$$(\widetilde{\lambda} - \widetilde{\mu})|_{\widetilde{K}_x} = 0.$$

From connectedness of $(\operatorname{reg} \widetilde{K}) \setminus \widetilde{P}$ and continuity we get $\widetilde{\lambda} = \widetilde{\mu}$ on $\widetilde{K} \setminus \widetilde{P}$.

The germ \widetilde{g}_c does not vanish on the germs \widetilde{S}_c^l , so $\widetilde{S} \cap \widetilde{P}$ is a non-empty proper subset of \widetilde{S} . Thus $\widetilde{S} \setminus \widetilde{P}$ is an open subset of \widetilde{S} with $c \in \overline{\widetilde{S} \setminus \widetilde{P}}$. But on $\widetilde{S} \setminus \widetilde{P}$ we have $\widetilde{\lambda} = \widetilde{\mu}$ and $\widetilde{\lambda} \equiv 0$ from its definition. By continuity $\widetilde{\mu}(c) = 0$, a contradiction because $\mu(c) = \lambda(c) = 1$.

If X is not \mathbb{C} -irreducible, then a lies in exactly one \mathbb{C} -irreducible component. Indeed, assume that $a \in A$ and $a \in B$, where $A, B \subseteq X$ are \mathbb{C} -analytic and \mathbb{C} -irreducible components of X. Let $\widetilde{\Omega}$ be a complex open neighbourhood of Ω and $\widetilde{A}, \widetilde{B} \subseteq \widetilde{\Omega}$ be complex analytic subsets with $A = \widetilde{A} \cap \mathbb{R}^n$, $B = \widetilde{B} \cap \mathbb{R}^n$. By [20, Remark 1(1)] we can assume that $\widetilde{A}, \widetilde{B}$ are irreducible. Since X_a is irreducible, we must have $A_a = B_a = X_a$. It follows that $\widetilde{A}_a = \widetilde{B}_a$. Now from [5, I.5.3 Cor. 2] it follows that $\widetilde{A} = \widetilde{B}$, therefore A = B.

Let X' be the \mathbb{C} -irreducible component containing a. As we can assume that the point c lies only in X', the function λ is defined on the whole of X and does not extend to Δ .

COROLLARY 3.7. If a \mathbb{C} -analytic subset S of a real analytic manifold N is non-pure-dimensional at a point $a \in S$, then for every neighbourhood Ω of a in N there is an analytic function on S which does not extend to Ω .

Proof. By [13, VI.1.3], N can be embedded into \mathbb{R}^n for n large enough. The manifold N is coherent ([13, p. 17]), so by [4, Sect. 7, (2)], analytic functions defining S can be extended to \mathbb{R}^n . Since N is also C-analytic ([19, p. 104]), it follows that S is C-analytic as a subset of \mathbb{R}^n .

Assume that every analytic function on S can be extended to an analytic function on Ω . Let $\widetilde{\Omega}$ be a neighbourhood of a in \mathbb{R}^n such that $\widetilde{\Omega} \cap N \subseteq \Omega$. Clearly, once again by [4, Sect. 7, (2)], every analytic function on Ω extends to $\widetilde{\Omega}$, thus every analytic function on S extends to $\widetilde{\Omega}$, which contradicts Proposition 3.6. \blacksquare

COROLLARY 3.8. If a \mathbb{C} -analytic subset S of a real analytic manifold N with dim $S \geq 2$ is non-pure-dimensional at a certain point $a \in S$, then S does not have the semiglobal extension property.

EXAMPLE 3.9. Consider the mapping ϕ from $\mathbb{R}^2 \times \{0,1\}$ into \mathbb{R}^3 given by

 $(u, v, 0) \mapsto (u, uv, v^2), \quad (u, v, 1) \mapsto (0, 0, u).$

Then ϕ is semiproper, and the image of ϕ is the Whitney umbrella given in \mathbb{R}^3 by the equation $zx^2 = y^2$. Since the Whitney umbrella is irreducible

214

and of non-pure dimension, it follows that the composition operator C_{ϕ} : $\mathscr{A}(\mathbb{R}^3) \to \mathscr{A}(\mathbb{R}^2)^2$ is not open onto its image.

Let us observe that every coherent set has both the global and the semiglobal extension property. On the other hand, by [20, Cor. 3] for normal sets the global extension property implies coherence. Thus if the set $\varphi(M)$ is normal and the operator C_{φ} has closed range, then C_{φ} is open onto its image if and only if φ is semiproper.

Acknowledgements. The research of Domański and Goliński was supported in the years 2007–2010 by Ministry of Science and Higher Education, Poland, grant no. NN201 2740 33.

References

- E. Bierstone and P. D. Milman, Composite differentiable functions, Ann. of Math. 116 (1982), 541–558.
- [2] —, —, Geometric and differential properties of subanalytic sets, ibid. 147 (1998), 731–785.
- E. Bierstone, P. D. Milman and W. Pawłucki, Composite differentiable functions, Duke Math. J. 83 (1996), 607–620.
- [4] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77–99.
- [5] E. M. Chirka, *Complex Analytic Sets*, Kluwer, Dordrecht, 1989.
- [6] P. Domański, Notes on real analytic functions and classical operators, Contemp. Math., to appear.
- [7] P. Domański and M. Langenbruch, Composition operators on spaces of real analytic functions, Math. Nachr. 254-255 (2003), 68–86.
- [8] —, —, Coherent analytic sets and composition of real analytic functions, J. Reine Angew. Math. 582 (2005), 41–59.
- [9] —, —, Composition operators with closed image on spaces of real analytic functions, Bull. London Math. Soc. 38 (2006), 636–646.
- [10] P. Domański and D. Vogt, The space of real-analytic functions has no basis, Studia Math. 142 (2000), 187–200.
- [11] —, —, Linear topological properties of the space of analytic functions on the real line, in: Recent Progress in Functional Analysis (Valencia, 2000), K. D. Bierstedt et al. (eds.), North-Holland Math. Stud. 189, North-Holland, Amsterdam, 2001, 113–132.
- [12] G. Glaeser, Fonctions composées différentiables, Ann. of Math. 77 (1963), 193–209.
- [13] F. Guaraldo, P. Macrì and A. Tancredi, *Topics on Real Analytic Spaces*, Vieweg, Braunschweig, 1986.
- [14] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, NJ, 1965.
- [15] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982.
- [16] S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions, Birkhäuser, Basel, 1992.

P. Domański et al.

- [17] A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann. 163 (1966), 62–88.
- [18] R. Meise and D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
- [19] R. Narasimhan, Introduction to the Theory of Analytic Spaces, Lecture Notes in Math. 25, Springer, Berlin, 1966.
- [20] G. Nardelli and A. Tancredi, A note on the extension of analytic functions off real analytic subsets, Rev. Mat. Univ. Complut. Madrid 9 (1996), 85–97.
- [21] H. Whitney, Differentiable even functions, Duke Math. J. 10 (1943), 159–160.
- [22] H. Whitney et F. Bruhat, Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv. 33 (1959), 132–160.

Paweł Domański	Michael Langenbruch
Institute of Mathematics (Poznań b	ranch) Departament of Mathematics
Delich A sedence of Color of	Lanch) Departament of Mathematics
Polish Academy of Sciences	D actilit Old L
Umultowska 87	D-26111 Oldenburg, Germany
61-614 Poznań, Poland	E-mail: langenbruch@mathematik.uni-oldenburg.de
E-mail: domanski@amu.edu.pl	

Michał Goliński Faculty of Mathematics and Computer Science Adam Mickiewicz University Poznań Umultowska 87 61-614 Poznań, Poland E-mail: golinski@amu.edu.pl

> Received 24.8.2010 and in final form 8.6.2011

(2460)

216