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A note on composition operators
on spaces of real analytic functions

by Paweł Domański (Poznań), Michał Goliński (Poznań)
and Michael Langenbruch (Oldenburg)

Abstract. We characterize composition operators on spaces of real analytic functions
which are open onto their images. We give an example of a semiproper map ϕ such that
the associated composition operator is not open onto its image.

1. Introduction. Let M and N be real analytic manifolds and let
ϕ : M → N be a real analytic map. We define the composition operator
Cϕ(f) := f ◦ ϕ, where f : N → C. There is an extensive literature on
Cϕ : C∞(N) → C∞(M) starting from papers of Whitney [21] and Glaeser
[12] and culminating in a characterization when the range of Cϕ is closed in
C∞(M) (equivalently, when Cϕ is open onto its image): see [2, Th. 1.13] and
[3, Cor. 1.4, 1.5].

This paper is devoted to the real analytic case, i.e., Cϕ : A (N)→ A (M),
where A (N) and A (M) denote the spaces of real analytic functions on N
and M , respectively (equipped with their natural topologies described be-
low, comp. [17]). This case is very different from the smooth case, in partic-
ular, having closed image is not the same as being open onto the image [7,
Ex. 3.8].

In [7] we characterized when Cϕ : A (N) → A (M) is a topological
embedding, obtaining an analogue of the result of Glaeser [12] for the C∞-
case. Three conditions are important here:

1. ϕ is semiproper (i.e., for every compact set K in N there is a compact
set L in M such that ϕ(L) = ϕ(M) ∩K);

2. ϕ(M) has the “global extension property”;
3. ϕ(M) has the “semiglobal extension property”.
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In [8] we showed that if Cϕ has closed image then condition 2 holds, and
in [9] the converse was shown under assumption 1. Moreover, if ϕ(M) is
analytic we showed that Cϕ is open onto its image if and only if conditions
1 and 3 hold.

In the present paper we show that the assumption that ϕ(M) is ana-
lytic in the last result is superfluous, so we fully characterize when Cϕ :
A (N)→ A (M) is open onto its image without any additional assumption,
in that way finishing one direction of research from [7]–[9]. Moreover, we
show that if M is compact then Cϕ is open onto its image if and only if it
has a closed image, and that this is equivalent to the conditions that ϕ is
semiproper and ϕ(M) has the global (or, equivalently, semiglobal) extension
property.

In [7, Ex. 3.8] we gave an example of a composition operator Cϕ which
was non-open onto its image because the underlying map ϕ failed to be
semiproper. We show here that if the image of ϕ is C-analytic of non-pure
dimension, then the image of ϕ does not have the semiglobal extension prop-
erty, therefore Cϕ is non-open even though ϕ can be semiproper.

2. Preliminaries. In this section we will fix the notation and recall
some basic facts needed in this paper. Some material presented here is taken
from [8] and it is included for the sake of convenience.

Let M , N be real analytic manifolds and let ϕ : M → N be a real ana-
lytic map. Without loss of generality we may assume that any real analytic
manifold is a submanifold of Rd. Thus the following definition makes sense:
if S ⊆ N ⊂ Rd ⊂ Cd is an arbitrary set, then we define A (S) to be the
space of real analytic functions on S, i.e., functions f : S → C such that
for every x ∈ S the function f extends to a holomorphic function on some
neighbourhood of x in Cd.

Let us recall that the topology on the space of germs of holomorphic
functions over a compact set K ⊆ M (denoted by H(K)) is defined as the
inductive limit topology indn∈NH

∞(Un), where (Un) is a basis of neighbour-
hoods of K in the complexification ofM , and H∞ denotes the Banach space
of bounded holomorphic functions. If U is an open subset in a complex an-
alytic manifold then H(U) denotes the space of all holomorphic functions
on U equipped with the compact-open topology. The natural topology on
A (M) is defined to be the unique topology such that the restriction maps
H(U) → A (M) and A (M) → H(K) are all continuous whenever U is an
arbitrary neighbourhood of M in its complexification and K is an arbitrary
compact subset of M (comp. [17, 6]). The space A (M) with that topology
is separable, complete, nuclear, webbed, ultrabornological, and the Closed
Graph Theorem holds for operators T : A (M) → A (N) etc.; see [6], [10]
and [11]. Surprisingly, A (M) has no Schauder basis [10]. For basic facts
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from the general theory of locally convex spaces we refer to [18]. For general
information on the spaces of real analytic functions see [6].

A subset S of a real analytic manifold N has the global extension property
if every analytic function f on S extends to an analytic function on N .
Similarly, we say that a subset S of a real analytic manifold N has the
semiglobal extension property if for every relatively compact set Ω b N
there is an open set ∆, with Ω ⊆ ∆ b N , such that for every f ∈ A (S ∩∆)
there is g ∈ A (Ω) such that

f |Ω∩S = g|Ω∩S .
For the definition of a Nash set see [1, p. 544]. The only fact we will need
about them is that all semianalytic sets are Nash but the converse is false
(see [1, Prop. 2.3]). Summarizing, we have the following implications for any
set S (none of them can be reversed):

global ext. property⇒ C-analytic⇒ analytic⇒ semianalytic⇒ Nash.
For the definition of subanalytic and semianalytic sets see [16]. For more
information on (real or complex) analytic sets see [13], [19], [4] or [5]. For
complex analysis of several variables we refer to [14] and [15].

An analytic subset S of a real analytic manifold is called non-pure-
dimensional at a point a ∈ S if

• the germ Sa is irreducible and dimSa = dimS;
• for every neighbourhood U of a there is a point c ∈ U ∩ S such that

dimSc < dimS.

An analytic subset S of a real analytic manifold M is called C-analytic if
S is the common zero set of a finite number of analytic functions defined
on M .

3. Main results. We start with the following lemma.

Lemma 3.1. Every set with the semiglobal extension property is auto-
matically analytic.

Proof. Let N be a real analytic manifold; as usual we assume without
loss of generality that N ⊂ Rd. Let S ⊂ N be a subset with the semiglobal
extension property, i.e.,
∀Ω b N ∃∆ b N, Ω ⊂ ∆ ∀f ∈ A (S ∩∆) ∃g ∈ A (Ω) : f |Ω∩S = g|Ω∩S .
By [22, p. 154], the intersection of any family of C-analytic sets is C-analytic.
Assume that S is not analytic. Thus there is an open set Ω b N such that
Ω ∩ S is not C-analytic in Ω. Hence the intersection R of all C-analytic
subsets of Ω containing Ω ∩ S is strictly bigger than S ∩Ω. Let x ∈ R \ S.
Clearly the function g defined by the formula

g(z) :=
1

|x− z|2
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is analytic on N \ {x}, thus on S. By the semiglobal extension property, it
extends to an analytic function h : Ω → C. Clearly, h − g vanishes on S
and it is defined on an open neighbourhood U of S ∩ Ω in Ω. The zero set
Z of h − g is a C-analytic subset of U . By [20, Lemma 1], the set Z is also
C-analytic in Ω and it contains S but not x. This contradicts the definition
of R.

The aim of this note is to prove the following improvement of [9, Thm. 2.3]
(where we used the additional assumption that ϕ(M) is Nash).

Theorem 3.2. Let ϕ : M → N be a real analytic map between real
analytic manifolds. The composition operator Cϕ : A (N) → A (M) is open
onto its image if and only if ϕ is semiproper and ϕ(M) has the semiglobal
extension property.

Proof. Necessity: By [9, proof of the necessity part of Thm. 2.3], if Cϕ
is open then ϕ(M) has the semiglobal extension property (Nash property
mentioned in the statement is not used in that part of the proof). By [9,
Lemma 2.4], ϕ is also semiproper.

Sufficiency: By Lemma 3.1 above, ϕ(M) is analytic thus Nash. Sufficiency
follows from [9, Thm. 2.3].

Lemma 3.3. A compact set with the semiglobal extension property in a
real analytic manifold is C-analytic.

Proof. We proceed as in the proof of Lemma 3.1 assuming that S ⊂ Ω,
Ω open, and deducing that S is C-analytic in Ω. By [20, Lemma 1], S is
C-analytic in N .

Proposition 3.4. Any compact set S ⊂ N , N a real analytic manifold,
has the global extension property if and only if it has the semiglobal extension
property.

Proof. Necessity: Let S ⊂ Ω and let Ω b ∆ b N be open subsets. Let
f ∈ A (S ∩ ∆) = A (S). Then by the global extension property f extends
to N .

Sufficiency: Let f ∈ A (S) = A (S ∩∆). Then, by the semiglobal exten-
sion property, f extends to Ω, a neighbourhood of S. By Lemma 3.3, S is
C-analytic, and, by [20, Thm. 1], it has the so-called weak extension property
(i.e., every function which extends to some neighbourhood extends to the
whole space). So f extends to the whole N .

Corollary 3.5. Let ϕ : M → N be a real analytic map between real
analytic manifolds, with M compact. The following conditions are equivalent:

1. The map Cϕ : A (N)→ A (M) has closed range.
2. The map Cϕ : A (N)→ A (M) is open onto its image.
3. ϕ is semiproper and ϕ(M) has the global extension property.
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Proof. 1⇒2. The map ϕ is always semiproper. If Cϕ has closed image,
by [9, Thm. 2.2], it has the global extension property, thus by Proposition
3.4, it has the semiglobal extension property. By Theorem 3.2, Cϕ is open
onto its image

2⇒1. If Cϕ is open onto its image then, by Theorem 3.2 and Proposition
3.4, ϕ(M) has the global extension property and ϕ(M) is analytic. By [9,
Thm. 2.2], Cϕ has closed image.

1&2⇔3. Use [9, Cor. 2.5] and Proposition 3.4.

Proposition 3.6. If a C-analytic subset X of an open set Ω in Rd

with dimX ≥ 2 is non-pure-dimensional at a point a ∈ X, then for every
neighbourhood ∆ of a in Ω there is an analytic function on X which does
not extend to ∆.

Proof. One gets a proof of this by re-reading the proof of [20, Thm. 2].
Only minor changes, indicated below, are necessary. We follow the notation
from [20] where possible. All undefined objects are as in [20].

We first assume that X is C-irreducible.
From the definition of being non-pure-dimensional, we can assume that

∆ is such that K = ∆∩X is irreducible analytic, so K is C-irreducible. We
take c ∈ ∆ ∩ T with Xc = Tc.

We define analytic functions q, q̃, g, g̃, λ exactly as in [20]. We will show
that λ has no extension to ∆.

Assume to the contrary that µ : ∆ → R is real analytic and µ|∆∩X =
λ|∆∩X . The function µ extends to a holomorphic function on some neigh-
bourhood of ∆ in Cn. Let ∆̃ be an open subset of Ω̃ such that ∆̃∩Rn = ∆,
and µ̃ ∈ H(∆̃) be such that µ̃|∆ = µ.

Now let K̃ be the smallest complex analytic subset of ∆̃ containing K.
Certainly K̃ ⊆ ∆̃∩ X̃. But dim K̃ = dim ∆̃∩ X̃, so from [5, I.5.3 Cor. 2], K̃
is an irreducible component of ∆̃ ∩ X̃ containing ∆ ∩X.

Let

P̃ = {z ∈ K̃ : q̃(z) + g̃(z) = 0}, S̃ = {z ∈ K̃ : q̃(z) = 0}.

We have c ∈ P̃ ∩ S̃ and P̃ ( K̃ (because a /∈ P̃ ). Therefore (reg K̃) \ P̃ is
connected by [5, I.5.3 Prop., I.2.2 Prop. 3].

Let λ̃ : K̃ \ P̃ → C be given by the formula

λ̃(z) =
q̃(z)

q̃(z) + g̃(z)
.

There is a point x ∈ K which is regular for both K and K̃, so by [20,
Remark 1], K̃x is the complexification of Kx. As a /∈ P̃ , λ̃ is defined in
a neighbourhood of a, so we can assume that it is defined at x. Therefore
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(λ̃− µ̃)|Kx = 0. As K̃x is the complexification of Kx, we get

(λ̃− µ̃)| eKx
= 0.

From connectedness of (reg K̃) \ P̃ and continuity we get λ̃ = µ̃ on K̃ \ P̃ .
The germ g̃c does not vanish on the germs S̃lc, so S̃ ∩ P̃ is a non-empty

proper subset of S̃. Thus S̃ \ P̃ is an open subset of S̃ with c ∈ S̃ \ P̃ . But on
S̃ \ P̃ we have λ̃ = µ̃ and λ̃ ≡ 0 from its definition. By continuity µ̃(c) = 0,
a contradiction because µ(c) = λ(c) = 1.

If X is not C-irreducible, then a lies in exactly one C-irreducible compo-
nent. Indeed, assume that a ∈ A and a ∈ B, where A,B ⊆ X are C-analytic
and C-irreducible components ofX. Let Ω̃ be a complex open neighbourhood
ofΩ and Ã, B̃ ⊆ Ω̃ be complex analytic subsets withA = Ã∩Rn,B = B̃∩Rn.
By [20, Remark 1(1)] we can assume that Ã, B̃ are irreducible. Since Xa is
irreducible, we must have Aa = Ba = Xa. It follows that Ãa = B̃a. Now
from [5, I.5.3 Cor. 2] it follows that Ã = B̃, therefore A = B.

Let X ′ be the C-irreducible component containing a. As we can assume
that the point c lies only in X ′, the function λ is defined on the whole of X
and does not extend to ∆.

Corollary 3.7. If a C-analytic subset S of a real analytic manifold N
is non-pure-dimensional at a point a ∈ S, then for every neighbourhood Ω
of a in N there is an analytic function on S which does not extend to Ω.

Proof. By [13, VI.1.3], N can be embedded into Rn for n large enough.
The manifold N is coherent ([13, p. 17]), so by [4, Sect. 7, (2)], analytic
functions defining S can be extended to Rn. Since N is also C-analytic ([19,
p. 104]), it follows that S is C-analytic as a subset of Rn.

Assume that every analytic function on S can be extended to an analytic
function on Ω. Let Ω̃ be a neighbourhood of a in Rn such that Ω̃ ∩N ⊆ Ω.
Clearly, once again by [4, Sect. 7, (2)], every analytic function on Ω extends
to Ω̃, thus every analytic function on S extends to Ω̃, which contradicts
Proposition 3.6.

Corollary 3.8. If a C-analytic subset S of a real analytic manifold N
with dimS ≥ 2 is non-pure-dimensional at a certain point a ∈ S, then S
does not have the semiglobal extension property.

Example 3.9. Consider the mapping φ from R2 × {0, 1} into R3 given
by

(u, v, 0) 7→ (u, uv, v2), (u, v, 1) 7→ (0, 0, u).

Then φ is semiproper, and the image of φ is the Whitney umbrella given
in R3 by the equation zx2 = y2. Since the Whitney umbrella is irreducible
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and of non-pure dimension, it follows that the composition operator Cφ :
A (R3)→ A (R2)2 is not open onto its image.

Let us observe that every coherent set has both the global and the
semiglobal extension property. On the other hand, by [20, Cor. 3] for normal
sets the global extension property implies coherence. Thus if the set ϕ(M)
is normal and the operator Cϕ has closed range, then Cϕ is open onto its
image if and only if ϕ is semiproper.
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