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Growth and fixed points of meromorphic solutions of
higher order linear differential equations

by Habib Habib and Benharrat Beläıdi (Mostaganem)

Abstract. We investigate the growth and fixed points of meromorphic solutions of
higher order linear differential equations with meromorphic coefficients and their deriva-
tives. Our results extend the previous results due to Peng and Chen.

1. Introduction and statement of results. In this paper, we shall
assume that the reader is familiar with the fundamental results and the
standard notation of the Nevanlinna value distribution theory of meromor-
phic functions (see [H], [YY]). In addition, we will use σ(f), σ2(f) to de-
note respectively the order and the hyper-order of growth of a meromorphic
function f(z), and λ(f), λ(f), τ(f) to denote respectively the exponents of
convergence of the zero-sequence, of the sequence of distinct zeros and of
the sequence of distinct fixed points of f(z). See [H], [YY], [C2], [WY] for
notations and definitions.

Consider the second order linear differential equation

(1.1) f ′′ +A1(z)e
P (z)f ′ +A0(z)e

Q(z)f = 0,

where P (z), Q(z) are nonconstant polynomials and A1(z), A0(z) ( 6≡ 0) are
entire functions such that σ(A1) < degP (z), σ(A0) < degQ(z). Gundersen
[Gu2, p. 419] showed that if degP (z) 6= degQ(z), then every nonconstant
solution of (1.1) is of infinite order. If degP (z) = degQ(z), then (1.1) may
have nonconstant solutions of finite order. For instance f(z) = ez+1 satisfies
f ′′ + ezf ′ − ezf = 0.

In [CS], Chen and Shon have investigated the case when degP (z) =
degQ(z) and proved the following results.

Theorem 1.1 ([CS]). Let Aj(z) ( 6≡ 0) (j = 0, 1) be meromorphic func-
tions with σ(Aj) < 1 (j = 0, 1), a, b be complex numbers such that ab 6= 0
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and arg a 6= arg b or a = cb (0 < c < 1). Then every meromorphic solution
f(z) 6≡ 0 of the equation

(1.2) f ′′ +A1(z)e
azf ′ +A0(z)e

bzf = 0

has infinite order.

In the same paper, Chen and Shon have investigated the fixed points
of solutions, their 1st and 2nd derivatives and differential polynomials, and
proved

Theorem 1.2 ([CS]). Let Aj(z) (j = 0, 1), a, b, c satisfy the additional
hypotheses of Theorem 1.1. Let d0, d1, d2 be complex constants that are not
all zero. If f(z) 6≡ 0 is any meromorphic solution of (1.2), then:

(i) f, f ′, f ′′ all have infinitely many fixed points and satisfy

λ(f − z) = λ(f ′ − z) = λ(f ′′ − z) =∞,
(ii) the differential polynomial

g(z) = d2f
′′ + d1f

′ + d0f

has infinitely many fixed points and satisfies λ(g − z) =∞.

Recently in [PC], Peng and Chen have investigated the order and hyper-
order of solutions of some second order linear differential equations and
proved the following result.

Theorem 1.3 ([PC]). Let Aj(z) ( 6≡ 0) (j = 1, 2) be entire functions with
σ(Aj) < 1, a1, a2 be complex numbers such that a1a2 6= 0, a1 6= a2 (suppose
that |a1| ≤ |a2|). If arg a1 6= π or a1 < −1, then every solution f (6≡ 0) of
the equation

f ′′ + e−zf ′ + (A1e
a1z +A2e

a2z)f = 0

has infinite order and σ2(f) = 1.

The main purpose of this paper is to extend the results of Theorem 1.3 to
some higher order linear differential equations. We will prove the following
results.

Theorem 1.4. Let Aj(z) (6≡ 0) (j = 1, 2), B1(z) (6≡ 0) and Bl(z) (l =
2, . . . , k − 1) be meromorphic functions with

max{σ(Aj) (j = 1, 2), σ(Bl) (l = 1, . . . , k − 1)} < 1,

a1, a2 be complex numbers such that a1a2 6= 0, a1 6= a2 (suppose that |a1| ≤
|a2|). If arg a1 6= π or a1 < −1, then every meromorphic solution f (6≡ 0) of
the equation

(1.3) f (k) +Bk−1f
(k−1) + · · ·+B2f

′′ +B1e
−zf ′ + (A1e

a1z +A2e
a2z)f = 0

satisfies σ(f) =∞.
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Theorem 1.5. Let Aj(z) (j = 1, 2), Bl(z) (l = 1, . . . , k − 1), a1, a2
satisfy the additional hypotheses of Theorem 1.4. If f ( 6≡ 0) is any mero-
morphic solution of (1.3), then f , f ′ f ′′ all have infinitely many fixed points
and

τ(f) = τ(f ′) = τ(f ′′) =∞.

2. Preliminary lemmas. We define the linear measure of a set E ⊂
[0,∞) by m(E) =

	∞
0 χE(t) dt and the logarithmic measure of a set F ⊂

(1,∞) by lm(F ) =
	∞
1 (χF (t)/t) dt, where χH is the characteristic function

of a set H.

Lemma 2.1 ([Gu1]). Let f be a transcendental meromorphic function
with σ(f) = σ < ∞. Let ε > 0 be a given constant, and let k, j be integers
satisfying k > j ≥ 0. Then there exists a set E1 ⊂ [−π/2, 3π/2) of linear
measure zero such that if ψ ∈ [−π/2, 3π/2) \ E1, then there is a constant
R0 = R0(ψ) > 1 such that for all z with arg z = ψ and |z| ≥ R0,

(2.1)

∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).
Lemma 2.2 ([CS], [M]). Consider g(z) = A(z)eaz, where A(z) 6≡ 0 is a

meromorphic function of order σ(A) = α < 1, and a is a complex constant,
a = |a|eiϕ (ϕ ∈ [0, 2π)). Set E2 = {θ ∈ [0, 2π) : cos(ϕ+ θ) = 0}, so E2 is a
finite set. Then for any given ε (0 < ε < 1 − α) there is a set E3 ⊂ [0, 2π)
of linear measure zero such that if z = reiθ, θ ∈ [0, 2π) \ (E2 ∪E3), then for
r sufficiently large we have:

(i) If cos(ϕ+ θ) > 0, then

(2.2) exp{(1− ε)rδ(az, θ)} ≤ |g(z)| ≤ exp{(1 + ε)rδ(az, θ)}.

(ii) If cos(ϕ+ θ) < 0, then

(2.3) exp{(1 + ε)rδ(az, θ)} ≤ |g(z)| ≤ exp{(1− ε)rδ(az, θ)},
where δ(az, θ) = |a| cos(ϕ+ θ).

Lemma 2.3 ([PC]). Let n ≥ 1 be a natural number, and Pj(z) = ajnz
n+

· · · (j = 1, 2) be nonconstant polynomials, where ajq (q = 1, . . . , n) are
complex numbers and a1na2n 6= 0. Set z = reiθ, ajn = |ajn|eiθj , θj ∈
[−π/2, 3π/2), δ(Pj , θ)= |ajn| cos(θj+nθ). Then there is a set E4⊂ [−π/(2n),
3π/(2n)) that has linear measure zero such that if θ1 6= θ2, then there exists
a ray arg z = θ, with θ ∈ (−π/(2n), π/(2n)) \ (E4 ∪ E5), satisfying either

(2.4) δ(P1, θ) > 0, δ(P2, θ) < 0,

or

(2.5) δ(P1, θ) < 0, δ(P2, θ) > 0,
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where E5 = {θ ∈ [−π/(2n), 3π/(2n)) : δ(Pj , θ) = 0} is a finite set, in
particular, it has linear measure zero.

Remark (see [PC]). In Lemma 2.3, we can obtain the same conclusion
if we replace θ ∈ (−π/(2n), π/(2n)) \ (E4 ∪ E5) by θ ∈ (π/(2n), 3π/(2n)) \
(E4 ∪ E5).

Lemma 2.4 ([CS]). Let f(z) be a transcendental meromorphic function
of order ρ(f) = α < ∞. Then for any given ε > 0, there is a set E6 ⊂
[−π/2, 3π/2) that has linear measure zero such that if θ ∈ [−π/2, 3π/2)\E6,
then there is a constant R1 = R1(θ) > 1 such that for all z with arg z = θ
and |z| ≥ R1,

(2.6) exp{−rα+ε} ≤ |f(z)| ≤ exp{rα+ε}.
Lemma 2.5 ([GCC, p. 30]). Let n ≥ 1, and let P1, . . . , Pn be noncon-

stant polynomials of respective degrees d1, . . . , dn. Suppose that when i 6= j,
deg(Pi − Pj) = max{di, dj}. Set A(z) =

∑n
j=1Bj(z)e

Pj(z), where Bj(z)
(6≡ 0) are meromorphic functions satisfying σ(Bj) < dj. Then σ(A) =
max1≤j≤n{dj}.

By induction, we can easily prove the following lemma.

Lemma 2.6. Let f(z) = g(z)/d(z), where g(z) is a transcendental entire
function, and let d(z) be the canonical product (or polynomial) formed with
the nonzero poles of f(z). Then

(2.7) f (n) =
1

d
[g(n) +Dn,n−1g

(n−1) +Dn,n−2g
(n−2) + · · ·+Dn,1g

′ +Dn,0g]

and

(2.8)
f (n)

f
=
g(n)

g
+Dn,n−1

g(n−1)

g
+Dn,n−2

g(n−2)

g
+ · · ·+Dn,1

g′

g
+Dn,0,

where Dn,j is a sum of a finite number of terms of the type∑
(j1,...,jn)

Cjj1···jn

(
d′

d

)j1
· · ·
(
d(n)

d

)jn
,

Cjj1···jn are constants, and j + j1 + 2j2 + · · ·+ njn = n.

Lemma 2.7 ([C1]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order mero-
morphic functions. If f(z) is an infinite order meromorphic solution of the
equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F,

then λ(f) = λ(f) = σ(f) =∞.

The following lemma, due to Gross [Gr], is important in the factorization
and uniqueness theory of meromorphic functions, and plays an important
role in this paper as well.
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Lemma 2.8 ([Gr], [YY]). Suppose that f1(z), . . . , fn(z) (n ≥ 2) are mero-
morphic functions and g1(z), . . . , gn(z) are entire functions satisfying the
following conditions:

(i)
∑n

j=1 fj(z)e
gj(z) ≡ 0.

(ii) gj(z)− gk(z) are not constant for 1 ≤ j < k ≤ n.
(iii) For 1 ≤ j ≤ n and 1 ≤ h < k ≤ n, T (r, fj) = o{T (r, egh(z)−gk(z))}

(r →∞, r /∈ E7), where E7 is a set of finite linear measure.

Then fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.9 ([XY]). Suppose that f1(z), . . . , fn(z) (n ≥ 2) are mero-
morphic functions and g1(z), . . . , gn(z) are entire functions satisfying the
following conditions:

(i)
∑n

j=1 fj(z)e
gj(z) ≡ fn+1.

(ii) If 1 ≤ j ≤ n+ 1 and 1 ≤ k ≤ n, then the order of fj is less than the
order of egk(z). If n ≥ 2, 1 ≤ j ≤ n+ 1 and 1 ≤ h < k ≤ n, then the
order of fj is less than the order of egh−gk .

Then fj(z) ≡ 0 (j = 1, . . . , n+ 1).

3. Proofs of the theorems

Proof of Theorem 1.4. First of all we prove that equation (1.3) cannot
have a meromorphic solution f 6≡ 0 with σ(f) < 1. Assume there is such a
solution f . Rewrite (1.3) as

(3.1) B1f
′e−z +A1fe

a1z +A2fe
a2z = −{f (k) +Bk−1f

(k−1) + · · ·+B2f
′′}.

For a2 6= −1, by (3.1) and Lemma 2.5, we have

1 = σ{B1f
′e−z +A1fe

a1z +A2fe
a2z}

= σ[−{f (k) +Bk−1f
(k−1) + · · ·+B2f

′′}] < 1,

a contradiction. For a2 = −1, by (3.1) and Lemma 2.5, we have:
(i) If B1f

′ +A2f 6≡ 0, then

1 = σ{(B1f
′ +A2f)e−z +A1fe

a1z}
= σ[−{f (k) +Bk−1f

(k−1) + · · ·+B2f
′′}] < 1,

a contradiction.
(ii) If B1f

′ +A2f ≡ 0, then

1 = σ{A1fe
a1z} = σ[−{f (k) +Bk−1f

(k−1) + · · ·+B2f
′′}] < 1,

a contradiction. Consequently, σ(f) ≥ 1.
Now we prove that σ(f) = ∞. Assume that f 6≡ 0 is a meromorphic

solution of (1.3) with 1 ≤ σ(f) = σ <∞. From (1.3), we know that the poles
of f(z) can occur only at the poles of Aj (j = 1, 2) and Bl (l = 1, . . . , k−1).
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Let f = g/d, d be the canonical product formed with the nonzero poles of
f(z), with σ(d) = β ≤ α = max{σ(Aj) (j = 1, 2), σ(Bl) (l = 1, . . . , k − 1)}
< 1, g be an entire function and 1 ≤ σ(g) = σ(f) = σ < ∞. Substituting
f = g/d into (1.3), by Lemma 2.6 we get

(3.2)

g(k)

g
+ [Bk−1 +Dk,k−1]

g(k−1)

g
+ [Bk−2 +Bk−1Dk−1,k−2 +Dk,k−2]

g(k−2)

g

+ · · ·+
[
B2 +Dk,2 +

k−1∑
i=3

BiDi,2

]g′′
g

+
[
B1e

−z +Dk,1 +

k−1∑
i=2

BiDi,1

]g′
g

+B1D1,0e
−z +

k−1∑
i=2

BiDi,0 +Dk,0 +A1e
a1z +A2e

a2z = 0.

By Lemma 2.4, for any given ε (0 < ε < 1 − α), there is a set E6 ⊂
[−π/2, 3π/2) of linear measure zero such that if θ ∈ [−π/2, 3π/2) \E6, then
there is a constant R1 = R1(θ) > 1 such that for all z with arg z = θ and
|z| ≥ R1,

(3.3) |Bl(z)| ≤ exp{rα+ε} (l = 1, . . . , k − 1).

By Lemma 2.1, for 0 < ε < min
{ |a2|−|a1|
|a2|+|a1| , 1 − α

}
, there exists a set E1 ⊂

[−π/2, 3π/2) of linear measure zero such that if θ ∈ [−π/2, 3π/2) \E1, then
there is a constant R0 = R0(θ) > 1 such that for all z with arg z = θ and
|z| = r ≥ R0, ∣∣∣∣g(j)(z)g(z)

∣∣∣∣ ≤ rk(σ−1+ε), j = 1, . . . , k,(3.4) ∣∣∣∣d(j)(z)d(z)

∣∣∣∣ ≤ rk(β−1+ε), j = 1, . . . , k,(3.5)

and

|Dk,j | =
∣∣∣∣ ∑
(j1,...,jk)

Cjj1···jk

(
d′

d

)j1(d′′
d

)j2
· · ·
(
d(k)

d

)jk ∣∣∣∣(3.6)

≤
∑

(j1···jk)

|Cjj1···jk |
∣∣∣∣d′d
∣∣∣∣j1∣∣∣∣d′′d

∣∣∣∣j2 · · · ∣∣∣∣d(k)d
∣∣∣∣jk

≤
∑

(j1···jk)

|Cjj1···jk |r
j1(β−1+ε)r2j2(β−1+ε) · · · rkjk(β−1+ε)

=
∑

(j1···jk)

|Cjj1···jk |r
(j1+2j2+···+kjk)(β−1+ε).
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From j1 + · · ·+ kjk = k − j ≤ k and (3.6), we have

(3.7) |Dk,j | ≤Mrk(β−1+ε),

where M > 0 is some constant. Let z = reiθ, a1 = |a1|eiθ1 , a2 = |a2|eiθ2 ,
θ1, θ2 ∈ [−π/2, 3π/2).

Case 1: arg a1 6= π, that is, θ1 6= π.
(i) Assume that θ1 6= θ2. By Lemmas 2.2 and 2.3, for the above ε, there

is a ray arg z = θ such that θ ∈ (−π/2, π/2) \ (E1∪E4∪E5∪E6) (where E4

and E5 are defined as in Lemma 2.3, E1 ∪E4 ∪E5 ∪E6 is of linear measure
zero), and either

δ(a1z, θ) > 0, δ(a2z, θ) < 0,
or

δ(a1z, θ) < 0, δ(a2z, θ) > 0.

When δ(a1z, θ) > 0 and δ(a2z, θ) < 0, for sufficiently large r we get

|A1e
a1z| ≥ exp{(1− ε)δ(a1z, θ)r},(3.8)

|A2e
a2z| ≤ exp{(1− ε)δ(a2z, θ)r} < 1.(3.9)

By (3.8) and (3.9) we have

(3.10) |A1e
a1z +A2e

a2z| ≥ |A1e
a1z| − |A2e

a2z| ≥ exp{(1− ε)δ(a1z, θ)r} − 1

≥ (1− o(1)) exp{(1− ε)δ(a1z, θ)r}.
By (3.2), we get

(3.11) |A1e
a1z +A2e

a2z| ≤
∣∣∣∣g(k)g

∣∣∣∣+ |Bk−1 +Dk,k−1|
∣∣∣∣g(k−1)g

∣∣∣∣
+ |Bk−2 +Bk−1Dk−1,k−2 +Dk,k−2|

∣∣∣∣g(k−2)g

∣∣∣∣
+ · · ·+

∣∣∣B2 +Dk,2 +

k−1∑
i=3

BiDi,2

∣∣∣∣∣∣∣g′′g
∣∣∣∣+ [|B1| |e−z|+

∣∣∣Dk,1 +

k−1∑
i=2

BiDi,1

∣∣∣]∣∣∣∣g′g
∣∣∣∣

+ |B1D1,0| |e−z|+
k−1∑
i=2

|BiDi,0|+ |Dk,0|.

Since θ ∈ (−π/2, π/2), it follows that |e−z| = e−r cos θ < 1. Substituting
(3.3), (3.4), (3.7) and (3.10) into (3.11), we obtain

(3.12) (1− o(1)) exp{(1− ε)δ(a1z, θ)r} ≤M1r
M2 exp{rα+ε},

where M1,M2 > 0 are some constants. As δ(a1z, θ) > 0 and α + ε < 1 we
see that (3.12) is a contradiction. When δ(a1z, θ) < 0 and δ(a2z, θ) > 0, a
similar proof also yields a contradiction.

(ii) Assume that θ1 = θ2. By Lemma 2.3, for the above ε, there is a ray
arg z = θ such that θ ∈ (−π/2, π/2) \ (E1 ∪E4 ∪E5 ∪E6) and δ(a1z, θ) > 0.
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Since |a1| ≤ |a2|, a1 6= a2 and θ1 = θ2, it follows that |a1| < |a2|, thus
δ(a2z, θ) > δ(a1z, θ) > 0. For sufficiently large r, we have, by Lemma 2.2,

|A1e
a1z| ≤ exp{(1 + ε)δ(a1z, θ)r},(3.13)

|A2e
a2z| ≥ exp{(1− ε)δ(a2z, θ)r}.(3.14)

By (3.13) and (3.14) we get

(3.15) |A1e
a1z +A2e

a2z| ≥ |A2e
a2z| − |A1e

a1z|
≥ exp{(1− ε)δ(a2z, θ)r} − exp{(1 + ε)δ(a1z, θ)r}
= exp{(1 + ε)δ(a1z, θ)r}[exp{ηr} − 1],

where

η = (1− ε)δ(a2z, θ)− (1 + ε)δ(a1z, θ).

Since 0 < ε < |a2|−|a1|
|a2|+|a1| , it follows that

η = (1− ε)|a2| cos(θ2 + θ)− (1 + ε)|a1| cos(θ1 + θ)

= (1− ε)|a2| cos(θ1 + θ)− (1 + ε)|a1| cos(θ1 + θ)

= [(1− ε)|a2| − (1 + ε)|a1|] cos(θ1 + θ)

= [|a2| − |a1| − ε(|a2|+ |a1|)] cos(θ1 + θ) > 0.

Then, from (3.15), we get

(3.16) |A1e
a1z +A2e

a2z| ≥ (1− o(1)) exp{[(1 + ε)δ(a1z, θ) + η]r}.

Since θ ∈ (−π/2, π/2), it follows that |e−z| = e−r cos θ < 1. Substituting
(3.3), (3.4), (3.7) and (3.16) into (3.11), we obtain

(3.17) (1− o(1)) exp{[(1 + ε)δ(a1z, θ) + η]r} ≤M1r
M2 exp{rα+ε}.

As δ(a1z, θ) > 0, η > 0 and α+ ε < 1 we see that (3.17) is a contradiction.

Case 2: a1 < −1, that is, θ1 = π.

(i) Assume that θ1 6= θ2; then θ2 6= π. By Lemma 2.3, for the above ε,
there is a ray arg z = θ such that θ ∈ (−π/2, π/2) \ (E1 ∪ E4 ∪ E5 ∪ E6)
and δ(a2z, θ) > 0. Because cos θ > 0, we have δ(a1z, θ) = |a1| cos(θ1 + θ) =
−|a1| cos θ < 0. For sufficiently large r, Lemma 2.2 gives

|A1e
a1z| ≤ exp{(1− ε)δ(a1z, θ)r} < 1,(3.18)

|A2e
a2z| ≥ exp{(1− ε)δ(a2z, θ)r}.(3.19)

By (3.18) and (3.19) we obtain

(3.20)

|A1e
a1z +A2e

a2z| ≥ |A2e
a2z| − |A1e

a1z| ≥ exp{(1− ε)δ(a2z, θ)r} − 1

≥ (1− o(1)) exp{(1− ε)δ(a2z, θ)r}.
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Since θ ∈ (−π/2, π/2), it follows that |e−z| = e−r cos θ < 1. Substituting
(3.3), (3.4), (3.7) and (3.20) into (3.11), we obtain

(3.21) (1− o(1)) exp{(1− ε)δ(a2z, θ)r} ≤M1r
M2 exp{rα+ε}.

As δ(a2z, θ) > 0 and α+ ε < 1 we see that (3.21) is a contradiction.
(ii) Assume that θ1 = θ2; then θ1 = θ2 = π. By Lemma 2.3, for the

above ε, there is a ray arg z = θ such that θ ∈ (π/2, 3π/2)\(E1∪E4∪E5∪E6).
Then cos θ < 0, δ(a1z, θ) = |a1| cos(θ1 + θ) = −|a1| cos θ > 0, δ(a2z, θ) =
|a2| cos(θ2 + θ) = −|a2| cos θ > 0. Since |a1| ≤ |a2|, a1 6= a2 and θ1 = θ2,
it follows that |a1| < |a2|, thus δ(a2z, θ) > δ(a1z, θ), and for sufficiently
large r, we get (3.13), (3.14) and (3.16). Since θ ∈ (π/2, 3π/2), it follows
that |e−z| = e−r cos θ > 1. Substituting (3.3), (3.4), (3.7) and (3.16) into
(3.11), we obtain

(3.22) (1− o(1)) exp{[(1 + ε)δ(a1z, θ) + η]r} ≤M1r
M2 exp{rα+ε}e−r cos θ.

Thus

(3.23) (1− o(1)) exp{γr} ≤M1r
M2 exp{rα+ε},

where γ = (1 + ε)δ(a1z, θ) + η + cos θ. Since η > 0, cos θ < 0, δ(a1z, θ) =
−|a1| cos θ, a1 < −1, it follows that

γ = −(1 + ε)|a1| cos θ + cos θ + η = −[(1 + ε)|a1| − 1] cos θ + η

> −[(1 + ε)− 1] cos θ + η = −ε cos θ + η > 0.

As α + ε < 1, we see that (3.23) is a contradiction. Concluding the above
proof, we obtain σ(f) = σ(g) =∞.

Proof of Theorem 1.5. Assume f (6≡ 0) is a meromorphic solution of
(1.3); then σ(f) = ∞ by Theorem 1.4. Set g0(z) = f(z) − z. Then z is a
fixed point of f(z) if and only if g0(z) = 0. Now, g0(z) is a meromorphic
function and σ(g0) = σ(f) =∞. Substituting f = g0 + z into (1.3), we have

(3.24) g
(k)
0 +Bk−1g

(k−1)
0 + · · ·+B2g

′′
0 +B1e

−zg′0 + (A1e
a1z +A2e

a2z)g0

= −[B1e
−z + zA1e

a1z + zA2e
a2z].

We can rewrite (3.24) in the form

(3.25) g
(k)
0 + h0,k−1g

(k−1)
0 + · · ·+ h0,2g

′′
0 + h0,1g

′
0 + h0,0g0 = h0,

where

h0 = −[h0,1 + zh0,0] = −B1e
−z − zA1e

a1z − zA2e
a2z.

We claim h0 6≡ 0. Suppose that −B1e
−z − zA1e

a1z − zA2e
a2z = 0; then

zA1e
(a1+1)z + zA2e

(a2+1)z = −B1. Hence, by Lemma 2.9, we have A1 ≡ 0,
A2 ≡ 0 and B1 ≡ 0, a contradiction. Here we just consider the meromorphic
solutions of infinite order satisfying g0(z) = f(z)− z, and by Lemma 2.7 we
conclude that λ(g0) = τ(f) =∞.
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Now we consider the fixed points of f ′(z). Set g1(z) = f ′(z)− z. Then z
is a fixed point of f ′(z) if and only if g1(z) = 0. Now, g1(z) is a meromorphic
function and σ(g1) = σ(f ′) = σ(f) =∞. Set R(z) = A1e

a1z +A2e
a2z. Then

R′ = (A′1 + a1A1)e
a1z + (A′2 + a2A2)e

a2z. Differentiating both sides of (1.3),
we have

(3.26) f (k+1) +Bk−1f
(k) + (B′k−1 +Bk−2)f

(k−1) + (B′k−2 +Bk−3)f
(k−2)

+ · · ·+ (B′3 +B2)f
′′′ + (B′2 +B1e

−z)f ′′ + [(B1e
−z)′ +R]f ′ +R′f = 0.

By (1.3),

(3.27) f = − 1

R
[f (k) +Bk−1f

(k−1) + · · ·+B2f
′′ +B1e

−zf ′].

Substituting (3.27) into (3.26), we have

(3.28) f (k+1) +

(
Bk−1 −

R′

R

)
f (k) +

(
B′k−1 +Bk−2 −Bk−1

R′

R

)
f (k−1)

+

(
B′k−2 +Bk−3 −Bk−2

R′

R

)
f (k−2) + · · ·+

(
B′3 +B2 −B3

R′

R

)
f ′′′

+

(
B′2 +B1e

−z −B2
R′

R

)
f ′′ +

[
(B1e

−z)′ +R−B1e
−zR

′

R

]
f ′ = 0.

We can write (3.28) in the form

(3.29) f (k+1)+h1,k−1f
(k)+h1,k−2f

(k−1)+ · · ·+h1,2f ′′′+h1,1f ′′+h1,0f ′ = 0,

where h1,j (j = 0, 1, . . . , k−1) are meromorphic functions defined by (3.28).

Substituting f ′ = g1+z, f ′′ = g′1+1, f (j+1) = g
(j)
1 (j = 2, . . . , k) into (3.29),

we get

(3.30) g
(k)
1 +h1,k−1g

(k−1)
1 +h1,k−2g

(k−2)
1 + · · ·+h1,2g

′′
1 +h1,1g

′
1 +h1,0g1 = h1,

where

h1 = −(h1,1 + zh1,0)

= −
[
B′2 +B1e

−z −B2
R′

R
+ z(B1e

−z)′ + zR− zB1e
−zR

′

R

]
= − 1

R
{B′2R−B2R

′ + zR2 + [B1R+ z(B′1 −B1)R− zB1R
′]e−z}.

We claim h1 6≡ 0. Suppose that h1 ≡ 0; then

(3.31) [B1A1 + z(B′1 −B1)A1 − zB1(A
′
1 + a1A1)]e

(a1−1)z

+ [B1A2 + z(B′1 −B1)A2 − zB1(A
′
2 + a2A2)]e

(a2−1)z

+ [B′2A1 −B2(A
′
1 + a1A1)]e

a1z + [B′2A2 −B2(A
′
2 + a2A2)]e

a2z

+ 2zA1A2e
(a1+a2)z + zA2

1e
2a1z + zA2

2e
2a2z = 0.

By a1a2 6= 0, a1 6= a2, a1 < −1, |a1| ≤ |a2|, we see that:
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(i) 2a1 6= β ∈ {a1 − 1, a2 − 1, a1, a2, a1 + a2, 2a2} = I1, hence we write
(3.31) in the form

(3.32) zA2
1e

2a1z +
∑
β∈Γ1

αβe
βz = 0,

where Γ1 ⊆ I1. By Lemmas 2.8 and 2.9, we get A1 ≡ 0, a contradiction.
(ii) If 2a1 = a2 − 1, then 2a2 6= β ∈ {a1 − 1, a1, a2, a1 + a2, 2a1} = I2,

hence we write (3.31) in the form

(3.33) zA2
2e

2a2z +
∑
β∈Γ2

αβe
βz = 0,

where Γ2 ⊆ I2. By Lemmas 2.8 and 2.9, we get A2 ≡ 0, a contradiction.
(iii) If 2a1 = a2, then 2a2 6= β ∈ {a1 − 1, a2 − 1, a1, a1 + a2, 2a1} = I3,

hence we write (3.31) in the form

(3.34) zA2
2e

2a2z +
∑
β∈Γ3

αβe
βz = 0,

where Γ3 ⊆ I3. By Lemmas 2.8 and 2.9, we get A2 ≡ 0, a contradiction. By
(3.30) and Lemma 2.7 we know that λ(g1) = λ(f ′ − z) = τ(f ′) = σ(g1) =
σ(f) =∞.

Now we consider the fixed points of f ′′(z). Set g2(z) = f ′′(z)−z. Then z
is a fixed point of f ′′(z) if and only if g2(z) = 0. Now, g2(z) is a meromorphic
function and σ(g2) = σ(f ′′) = σ(f) =∞. Set G(z) = B1e

−z. Differentiating
both sides of (3.26), we have

(3.35)

f (k+2) +Bk−1f
(k+1) + (2B′k−1 +Bk−2)f

(k) + (B′′k−1 + 2B′k−2 +Bk−3)f
(k−1)

+ (B′′k−2 + 2B′k−3 +Bk−4)f
(k−2) + · · ·+ (B′′4 + 2B′3 +B2)f

(4)

+ (B′′3 + 2B′2 +G)f ′′′ + (B′′2 + 2G′ +R)f ′′ + (G′′ + 2R′)f ′ +R′′f = 0.

By (3.27) and (3.35), we have

(3.36) f (k+2) +Bk−1f
(k+1) +

(
2B′k−1 +Bk−2 −

R′′

R

)
f (k)

+

(
B′′k−1 + 2B′k−2 +Bk−3 −Bk−1

R′′

R

)
f (k−1) + · · ·

+

(
B′′4 + 2B′3 +B2 −B4

R′′

R

)
f (4) +

(
B′′3 + 2B′2 +G−B3

R′′

R

)
f ′′′

+

(
B′′2 + 2G′ +R−B2

R′′

R

)
f ′′ +

(
G′′ + 2R′ −GR

′′

R

)
f ′ = 0.

Now we prove that G′ + R − GR′/R 6≡ 0. Suppose G′ + R − GR′/R ≡ 0;
then
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(3.37) f1e
(a1−1)z + f2e

(a2−1)z + 2A1A2e
(a1+a2)z +A2

1e
2a1z +A2

2e
2a2z = 0,

where fj (j = 1, 2) are meromorphic functions with σ(fj) < 1. Set K =
{a1−1, a2−1, a1+a2, 2a1, 2a2}. By the conditions of Theorem 1.4 (a1a2 6= 0,
a1 6= a2, a1 < −1), it is clear that 2a1 6= a1 − 1, a1 + a2, 2a2.

(i) If 2a1 6= a2 − 1, then we write (3.37) in the form

A2
1e

2a1z +
∑
β∈Γ1

αβe
βz = 0,

where Γ1 ⊆ K \ {2a1}. By Lemmas 2.8 and 2.9, we get A1 ≡ 0, a contradic-
tion.

(ii) If 2a1 = a2 − 1, then 2a2 6= a1 − 1, a2 − 1, a1 + a2, 2a1. Hence, we
write (3.37) in the form

A2
2e

2a2z +
∑
β∈Γ2

αβe
βz = 0,

where Γ2 ⊆ K \ {2a2}. By Lemmas 2.8 and 2.9, we get A2 ≡ 0, a contradic-
tion.

Hence, G′ +R−GR′/R 6≡ 0 is proved. Set

(3.38) ψ(z) = G′R+R2 −GR′ and φ(z) = G′′R+ 2R′R−GR′′.
By (3.28) and (3.38), we get

(3.39)

f ′ =
−R
ψ(z)

{
f (k+1) +

(
Bk−1 −

R′

R

)
f (k) +

(
B′k−1 +Bk−2 −Bk−1

R′

R

)
f (k−1)

+

(
B′k−2 +Bk−3 −Bk−2

R′

R

)
f (k−2) + · · ·+

(
B′3 +B2 −B3

R′

R

)
f ′′′

+

(
B′2 +G−B2

R′

R

)
f ′′
}
.

Substituting (3.38) and (3.39) into (3.36), we obtain

(3.40)

f (k+2) +

[
Bk−1 −

φ

ψ

]
f (k+1) +

[
2B′k−1 +Bk−2 −

R′′

R
− φ

ψ

(
Bk−1 −

R′

R

)]
f (k)

+

[
B′′k−1 + 2B′k−2 +Bk−3 −Bk−1

R′′

R
− φ

ψ

(
B′k−1 +Bk−2 −Bk−1

R′

R

)]
f (k−1)

+ · · ·+
[
B′′4 + 2B′3 +B2 −B4

R′′

R
− φ

ψ

(
B′4 +B3 −B4

R′

R

)]
f (4)

+

[
B′′3 + 2B′2 +G−B3

R′′

R
− φ

ψ

(
B′3 +B2 −B3

R′

R

)]
f ′′′

+

[
B′′2 + 2G′ +R−B2

R′′

R
− φ

ψ

(
B′2 +G−B2

R′

R

)]
f ′′ = 0.
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We can write (3.40) in the form

(3.41) f (k+2) + h2,k−1f
(k+1) + h2,k−2f

(k) + · · ·+ h2,1f
′′′ + h2,0f

′′ = 0,

where h2,j (j = 0, 1, . . . , k−1) are meromorphic functions defined by (3.40).

Substituting f ′′ = g2 + z, f ′′′ = g′2 + 1, f (j+2) = g
(j)
2 (j = 2, . . . , k) into

(3.41) we get

(3.42) g
(k)
2 + h2,k−1g

(k−1)
2 + h2,k−2g

(k−2)
2 + · · ·+ h2,1g

′
2 + h2,0g2 = h2,

where

−h2 = h2,1 + zh2,0,

h2,0 = B′′2 + 2G′ +R−B2
R′′

R
− φ(z)

ψ(z)

(
B′2 +G−B2

R′

R

)
,

h2,1 = B′′3 + 2B′2 +G−B3
R′′

R
− φ(z)

ψ(z)

(
B′3 +B2 −B3

R′

R

)
.

Set D1 = B′′3 + 2B′2 and D2 = B′3 + B2. Obviously, Dj (j = 1, 2) are
meromorphic functions with σ(Dj) < 1. We get

h2,1 =
L1(z)

ψ(z)
, h2,0 =

L0(z)

ψ(z)
,(3.43)

−h2
z

=
1

z
h2,1 + h2,0,(3.44)

where

L1(z) = D1G
′R+D1R

2 −D1GR
′ +G′GR+GR2 −G2R′ −B3G

′R′′

(3.45)

−B3R
′′R−D2G

′′R+B3G
′′R′ − 2D2R

′R+ 2B3R
′2 +D2GR

′′,

L0(z) = B′′2G
′R+B′′2R

2 −B′′2GR′ + 2G′2R+ 3G′R2 − 2GG′R′ +R3

(3.46)

− 3GR′R−B2G
′R′′ −B2R

′′R−B′2G′′R−G′′GR+B2G
′′R′

− 2B′2R
′R+ 2B2R

′2 +B′2GR
′′ +G2R′′.

Therefore, by (3.43) and (3.44), we have

(3.47)
−h2
z

=
1

ψ(z)

[
1

z
L1(z) + L0(z)

]
.

Now we prove that h2 6≡ 0. In fact, if h2 ≡ 0, then by (3.47) we have

(3.48)
1

z
L1(z) + L0(z) = 0.
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By (3.45) and (3.46), we can rewrite (3.48) in the form

(3.49)

f1e
(a1−1)z+f2e

(a2−1)z+f3e
(a1−2)z+f4e

(a2−2)z+f5e
2a1z+f6e

2a2z+f7e
(a1+a2)z

+ f8e
(2a1−1)z + f9e

(2a2−1)z + f10e
(a1+a2−1)z +A3

1e
3a1z +A3

2e
3a2z

+ 3A2
1A2e

(2a1+a2)z + 3A1A
2
2e

(a1+2a2)z = 0,

where fj (j = 1, . . . , 10) are meromorphic functions with σ(fj) < 1. Set
J = {a1−1, a2−1, a1−2, a2−2, 2a1, 2a2, a1+a2, 2a1−1, 2a2−1, a1+a2−1,
3a1, 3a2, 2a1 + a2, a1 + 2a2}. By the conditions of Theorem 1.4 (a1a2 6= 0,
a1 6= a2, a1 < −1), it is clear that 3a1 6= a1 − 1, a1 − 2, 2a1, 2a1 − 1, 3a2,
2a1 + a2, a1 + 2a2 and 3a2 6= 2a2, 3a1, 2a1 + a2, a1 + 2a2.

(i) If 3a1 6= a2− 1, a2− 2, 2a2, a1 + a2, 2a2− 1, a1 + a2− 1, then we write
(3.49) in the form

A3
1e

3a1z +
∑
β∈Γ1

αβe
βz = 0,

where Γ1 ⊆ J \ {3a1}. By Lemmas 2.8 and 2.9, we get A1 ≡ 0, a contradic-
tion.

(ii) If 3a1 = γ such that γ ∈{a2 − 1, a2 − 2, 2a2, a1 + a2, 2a2 − 1,
a1 + a2 − 1}, then 3a2 6= β for all β ∈ J \ {3a2}. Hence, we write (3.49) in
the form

A3
2e

3a2z +
∑
β∈Γ2

αβe
βz = 0,

where Γ2 ⊆ J \ {3a2}. By Lemmas 2.8 and 2.9, we get A2 ≡ 0, a contradic-
tion.

Hence, h2 6≡ 0 is proved. By Lemma 2.7 and (3.42), we have λ(g2) =
λ(f ′′ − z) = τ(f ′′) = σ(g2) = σ(f) = ∞. The proof of Theorem 1.5 is
complete.
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