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Projectively flat Finsler metrics with orthogonal invariance

by Libing Huang (Tianjin) and Xiaohuan Mo (Beijing)

Abstract. We study Finsler metrics with orthogonal invariance. By determining an
expression of these Finsler metrics we find a PDE equivalent to these metrics being locally
projectively flat. After investigating this PDE we manufacture projectively flat Finsler
metrics with orthogonal invariance in terms of error functions.

1. Introduction. It is Hilbert’s Fourth Problem in the smooth case
to study and characterize the projectively flat Finsler metrics on an open
domain in Rn. Beltrami’s theorem tells us that a Riemannian metric is
locally projectively flat if and only if it is of constant sectional curvature.
However the situation is much more complicated for Finsler metrics. In fact,
there are lots of projectively flat Finsler metrics which are not of constant
flag curvature [15]. Conversely, there are infinitely many non-projectively
flat Finsler metrics with constant flag curvature [9, 4, 19, 16, 3]. The flag
curvature is the most important Riemannian quantity in Finsler geometry
because it is an analogue of sectional curvature in Riemannian geometry [2].

Below are three important examples.

(a) Consider the following Randers metric defined near the origin in Rn:

F :=

√
|y|2 − (|xQ|2|y|2 − 〈y, xQ〉2)

1− |xQ|2
− 〈y, xQ〉

1− |xQ|2

where Q = (qij) is an anti-symmetric matrix. When Q 6= 0, F is not projec-
tively flat with zero flag curvature.

(b) Let F =
√√

A+B be a generalized fourth root metric on Bn ⊂ Rn
defined by [11]

A :=
|y|4 + (|x|2|y|2 − 〈x, y〉2)2

4(1 + |x|4)2
, B :=

(1 + |x|4)|x|2|y|2 + (1− |x|4)〈x, y〉2

2(1 + |x|4)2
.

2010 Mathematics Subject Classification: Primary 53B40; Secondary 58E20.
Key words and phrases: Finsler metric, projectively flat, error function, orthogonal invari-
ance.

DOI: 10.4064/ap107-3-3 [259] c© Instytut Matematyczny PAN, 2013



260 L. B. Huang and X. H. Mo

Then F is projectively flat Finsler metric with scalar flag curvature

K =
6
√
A〈x, y〉2

F 4(1 + |x|4)2
− 2(
√
A− 2B)

F 2
.

Hence F is not of constant flag curvature.
(c) Let ε be an arbitrary number with |ε| < 1. Let

Fε :=
1

Ψ

{√
Ψ

[
1

2
(
√
Φ2 + (1− ε2)|y|4 + Φ)

]
+
√

1− ε2〈x, y〉
}

where

Φ := ε|y|2 + |x|2|y|2 − 〈x, y〉2, Ψ := 1 + 2ε|x|2 + |x|4.
One can verify that Fε is a projectively flat Finsler metric with constant
flag curvature K = 1 [5, 14, 21]. Note that if ε = 1, then F1 is the spherical
metric on Rn.

Thus locally projectively flat Finsler metrics form a rich class of Finsler
metrics. On the other hand, all Finsler metrics we mentioned above satisfy

(1.1) F (Ax,Ay) = F (x, y)

for all A ∈ O(n). These three examples inspire us to study projectively
flat Finsler metrics which satisfy (1.1). A Finsler metric F is said to be
orthogonally invariant if F satisfies (1.1) for all A ∈ O(n), equivalently, the
orthogonal group O(n) acts as isometries of F .

The aim of this paper is to study and characterize projectively flat or-
thogonally invariant Finsler metrics. First, we give a characterization of
orthogonally invariant Finsler metrics (see Proposition 3.1). In particular,
we show that all such metrics are general (α, β)-metrics.

Recall that general (α, β)-metrics are Finsler metrics of the form F =
αφ(‖β‖α, β/α) where α is a Riemannian metric and β is a 1-form (for exact
definition, see Section 2) [14, 21, 8]. In this paper, we obtain a second-order
PDE for φ equivalent to the general (α, β)-metric F = αφ(‖β‖α, β/α) being
locally projectively flat where α has constant sectional curvature and β is
closed and conformal with respect to α. The sufficiency of our condition has
been shown in [21]. In particular, we have the following

Theorem 1.1. Let F = |y|φ(|x|, 〈x, y〉/|y|) be an orthogonally invariant
Finsler metric on Bn(r). Then F = F (x, y) is projectively flat if and only if
φ = φ(b, s) satisfies

(1.2) sφbs + bφss − φb = 0.

In the special case of φ = ε + bµf(s/b), our criterion has been obtained
in [8].

The error function (also called the Gauss error function or probability
integral) is a special (non-elementary) function of sigmoid shape [1, 12].
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It has numerous applications in probability, statistics and partial differen-
tial equations [1]. In Section 5, we find the general solution φ of (1.2) (see
Proposition 5.1). Then we give a lot of new projectively flat Finsler metrics
in terms of error functions (see Theorem 5.2). In particular, we have the
following

Theorem 1.2. Let φ(b, s) be a function defined by

φ(b, s) = sg(b) + eλb
2
[e−λs

2
+
√
λπ s erf(

√
λ s)]

where λ > 0, erf( , ) denotes the error function and g is any function. Then
the orthogonally invariant Finsler metric

F = |y|φ(|x|, 〈x, y〉/|y|)
on an open subset in Rn is projectively flat.

2. Preliminaries. A Finsler metric on a manifold is a family of Min-
kowski norms on the tangent spaces. By definition, a Minkowski norm on a
vector space V is a nonnegative function F : V → [0,∞) with the following
properties:

(i) F is positively y-homogeneous of degree one, i.e., for any y ∈ V and
any λ > 0,

F (λy) = λF (y).

(ii) F is C∞ on V \ {0} and for any tangent vector y ∈ V \ {0}, the
following bilinear symmetric form gy : V ×V → R is positive definite:

gy(u, v) :=
1

2

∂2

∂s∂t
[F 2(y + su+ tv)]s=t=0.

Let M be a manifold. Let TM =
⋃
x∈M TxM be the tangent bundle of

M , where TxM is the tangent space at x ∈ M . We set TMo := TM \ {0}
where {0} stands for {(x, 0) | x ∈ M, 0 ∈ TxM}. A Finsler metric on M is
a function F : TM → [0,∞) with the following properties:

(a) F is C∞ on TMo.
(b) At each point x ∈ M , the restriction Fx := F |TxM is a Minkowski

norm on TxM .

For instance, let φ = φ(y) be a Minkowski norm on RN . Define

Φ(x, y) := φ(y), y ∈ TxRN ∼= RN .
Then Φ = Φ(x, y) is a Finsler metric. We call Φ the Minkowski metric
on RN [7, 18].

Riemannian metrics are a special case of Finsler metrics: they are Finsler
metrics with the quadratic restriction [7].

A Finsler metric is said to be locally projectively flat if at any point there
is a local coordinate system in which the geodesics are straight lines as point
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sets. It is known that every locally projectively flat Finsler metric is of scalar
curvature [6,7]. Similar results on projectively flat Finsler metrics have been
discussed by Bryant, Shen, Li, Yu, Yıldırım, Chen and Mo in [5, 6, 18, 10,
13, 15, 17, 20].

Definition 2.1. Let F be a Finsler metric on Bn(r). F is said to be
orthogonally invariant if it satisfies

F (Ax,Ay) = F (x, y)

for all x ∈ Bn(r), y ∈ TxBn(r) and A ∈ O(n).

A Finsler metric on a manifold M is said to be of general (α, β) type if

F = αφ(b, β/α)

where α is a Riemannian metric, β is a 1-form on M , b = ‖β‖α and φ(b, s)
is a C∞ function satisfying (see [21, 8, 14])

φ(s)− sφs(s) > 0, φ(s)− sφs(s) + (b2 − s2)φss(s) > 0, |s| ≤ b < bo

when n ≥ 3, and

φ(s)− sφs(s) + (b2 − s2)φss(s) > 0, |s| ≤ b < bo

when n = 2 [21]. The reader should note that the general (α, β)-metric as
defined here differs from those of Yu–Zhu and Mo [21, 14], defined by

F = αφ(b2, β/α).

A 1-form is said to be a conformal (resp. Killing) form with respect to a
Riemannian metric α if its dual vector field with respect to α is of conformal
(resp. Killing) type.

3. Finsler metrics with orthogonal invariance. In this section, we
determine an expression of orthogonally invariant Finsler metrics. Let | · |
and 〈 , 〉 be the standard Euclidean norm and inner product on Rn.

Proposition 3.1. A Finsler metric F on Bn(r) is orthogonally invari-
ant if and only if there is a function φ : [0, r)× R→ R such that

(3.1) F (x, y) = |y|φ(|x|, 〈x, y〉/|y|)
where (x, y) ∈ TBn(r)\{0}. In particular, all orthogonally invariant Finsler
metrics are general (α, β)-metrics.

Proof. Assume that F (x, y) = |y|φ(|x|, 〈x, y〉/|y|) for some φ : [0, r)× R
→ R. It is easy to see

〈Ax,Ay〉 = 〈x,A>Ay〉 = 〈x, y〉
for x, y ∈ Rn and A ∈ O(n). In particular, |Ax| = |x| for x ∈ Rn. Hence

F (Ax,Ay) = |Ay|φ
(
|Ax|, 〈Ax,Ay〉

|Ay|

)
= |y|φ

(
|x|, 〈x, y〉

|y|

)
= F (x, y).
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Conversely, suppose that F is orthogonally invariant. Denote by e1, . . . , en
the standard orthonormal basis of Rn, where

(3.2) ej = (0, . . . , 0, 1
j
, 0, . . . , 0), j = 1, . . . , n.

Put

(3.3) ε1 =
x

|x|
, ε2 =

y − 〈y,x〉|x|2 x∣∣y − 〈y,x〉|x|2 x∣∣ .
Then ε1 and ε2 are orthonormal vectors in Rn. It follows that there exists
an A ∈ O(n) such that

(3.4) Aε1 = e1, Aε2 = e2.

A simple calculation gives

(3.5)

∣∣∣∣y − 〈y, x〉|x|2
x

∣∣∣∣2 = |y|2 − 〈x, y〉
2

|x|2
.

By using the first formula of (3.3) and the first formula of (3.4) we obtain

(3.6) Ax = A(|x|ε1) = |x|Aε1 = |x|e1.
Together with (3.5), the second formula of (3.3) and the second formula of
(3.4) we get

(3.7) Ay = A

(∣∣∣∣y − 〈y, x〉|x|2
x

∣∣∣∣ε2 +
〈y, x〉
|x|2

x

)
= A

(
〈x, y〉
|x|2

x+

√
|x|2|y|2 − 〈x, y〉2

|x|
ε2

)
=
〈x, y〉
|x|2

Ax+

√
|x|2|y|2 − 〈x, y〉2

|x|
Aε2 =

〈x, y〉
|x|

e1 +

√
|x|2|y|2 − 〈x, y〉2

|x|
e2.

Applying the orthogonal invariance of F we obtain

F (x, y) = F (Ax,Ay) = F

(
|x|e1,

〈x, y〉
|x|

e1 +

√
|x|2|y|2 − 〈x, y〉2

|x|
e2

)
(3.8)

= F

(
|x|, 0, . . . , 0;

〈x, y〉
|x|

,

√
|x|2|y|2 − 〈x, y〉2

|x|
, 0, . . . , 0

)
= ψ(|x|, 〈x, y〉, |y|)

where ψ : [0, r)×R2 → R and we have used (3.2), (3.6) and (3.7). Note that
F is homogeneous of degree one with respect to y. Hence

λψ(|x|, 〈x, y〉, |y|) = λF (x, y) = F (x, λy)

= ψ(|x|, 〈x, λy〉, |λy|) = ψ(|x|, λ〈x, y〉, λ|y|)
for λ ∈ [0,∞). In particular,

1

|y|
ψ(|x|, 〈x, y〉, |y|) = ψ

(
|x|, 〈x, y〉

|y|
, 1

)
:= φ

(
|x|, 〈x, y〉

|y|

)
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where y ∈ TxBn(r) \ {0} and φ : [0, r) × R → R. Plugging this into (3.8)
yields (3.1).

In [8] we have studied a class of orthogonally invariant Finsler metrics. In
particular, we produced such metrics in terms of hypergeometric functions.

4. Reducible differential equation. In this section, for a class of
Finsler metrics, we find a partial differential equation equivalent to the met-
ric being locally projectively flat (see Theorem 4.2 below).

If U ⊂M is a coordinate neighborhood, a function ξ defined on TU can
be expressed as ξ(x1, . . . , xn; y1, . . . , yn). We use the notation

ξ0 =
∂ξ

∂xi
yi.

It is easy to show the following (cf. [8, 7]):

Lemma 4.1. A Finsler metric F = F (x, y) on a manifold M is locally
projectively flat if and only if it satisfies the system of equations

(4.1) (F0)yi = 2Fxi .

Theorem 4.2. Let F = αφ(‖β‖α, β/α) be a general (α, β)-metric on an
n-dimensional manifold M where α =

√
aij(x)yiyj has constant sectional

curvature and β = bi(x)yi. Suppose that β is conformal with respect to α
and satisfies dβ = 0. Then:

(i) If φ satisfies

(4.2) sφbs + bφss − φb = 0

where b := ‖β‖α and s = β/α then F is locally projectively flat.
(ii) If β is not a Killing form and F is locally projectively flat then φ

satisfies (4.2).

Proof. Let ∇β = bi|jdx
i ⊗ dxj denote the covariant derivative of β with

respect to α and b =
√
aijbibj the length of β where (aij) = (aij)

−1. Since
β is conformal with respect to α, there is a scalar function λ = λ(x) such
that

bi|j + bj|i = 1
2λ(x)aij .

Noticing that β is closed, we have bi|j = bj|i. It follows that

(4.3) bi|j = λ(x)aij

where α =
√
aij(x)yiyj . Since α is locally projectively flat, we have

(4.4) (α0)yi = 2αxi

where we have used Lemma 4.1. Denote the geodesic coefficients of α by Gi.
Then the local projective flatness of α also implies that [7]

(4.5) Gi = Pyi
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where P is the projective factor of α. Furthermore, P is given by

(4.6) P =
α0

2α
.

A simple calculation gives

(4.7) βxi = (bj|i + Γ kjibk)y
j

where Γ kji are the Christoffel symbols of the Levi-Civita connection of α.

The connection coefficients N i
j satisfy [7, (2.6) and (2.18)]

(4.8) N i
j = Γ ijky

k =
∂Gi

∂yj
.

Using (4.3) we get

(4.9) bj|iy
j = λ(x)yi

where yi := ajiy
j . Plugging (4.5) into (4.8) yields

(4.10) N i
j = Pyjy

i + Pδij .

Together with (4.8) we have

(4.11) Γ kjibky
j = Nk

i bk = (Pyiy
k + Pδki )bk = Pyiβ + Pbi.

Substituting (4.9) and (4.11) into (4.7) yields

(4.12) βxi = λ(x)yi + Pyiβ + Pbi.

Using (4.4) and (4.6), we obtain

Pyi =
1

2

(
α0

α

)
yi

=
1

2

(α0)yiα− α0αyi

α2
(4.13)

=
αxi

α
− α0

2α

αyi

α
=

1

α
(αxi − Pαyi).

Plugging (4.13) into (4.12) yields

(4.14) βxi = λ(x)yi + s(αxi − Pαyi) + Pbi.

It follows that

sxi =

(
β

α

)
xi

=
1

α
(βxi − sαxi)(4.15)

=
1

α
[λ(x)yi + s(αxi − Pαyi) + Pbi − sαxi ]

=
1

α
[λ(x)yi + P (bi − sαyi)].

By direct calculations one obtains

(4.16) αyi =
yi
α
, βyi = bi(x).
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Thus

(4.17) syi =

(
β

α

)
yi

=
bi − sαyi

α
.

Combining this with (4.15) and the first equation of (4.16) we have

(4.18) sxi = λ(x)αyi + Psyi .

By a direct calculation we have (see [13, Lemma 3.1])

2bbxi = (b2)xi = 2λ(x)bi

where we have used (4.3). It follows that

(4.19) bxi =
λ

b
bi =

λ

b
(αsyi + sαyi)

where we have made use of (4.17). Combining (4.19) with (4.18) we obtain

Fxi = [αφ(b, s)]xi = φαxi + α(φbbxi + φssxi)(4.20)

= φαxi + α

[
φb
λ

b
(αsyi + sαyi) + φs(λαyi + Psyi)

]
= φαxi + α

[(
φb
λ

b
α+ φsP

)
syi + λ

(
φb
s

b
+ φs

)
αyi

]
.

Note that s and α are positively homogeneous of degree 0 and 1 respectively.
Hence

(4.21) syiy
i = 0, αyiy

i = α.

Contracting (4.20) with yi and using (4.21), we get

(4.22) F0 = φα0 + λα2

(
φb
s

b
+ φs

)
.

It follows that

(4.23) (F0)yi = φyiα0 +φ(α0)yi +λ(α2)yi

(
φb
s

b
+φs

)
+λα2

(
φb
s

b
+φs

)
yi
.

Since byi = 0, one obtains

φyi = φssyi ,(4.24) (
φb
s

b
+ φs

)
yi

=
1

b
(sφbs + bφss + φb)syi .(4.25)

Plugging (4.4), (4.24) and (4.25) into (4.23) yields

(F0)yi = 2φαxi + 2λα

(
φb
s

b
+ φs

)
αyi(4.26)

+

[
φsα0 +

λα2

b
(sφbs + bφss + φb)

]
syi .
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By (4.20), (4.26) and Lemma 4.1, F = F (x, y) is locally projectively flat if
and only if

(4.27)

[
φsα0 +

λα2

b
(sφbs + bφss + φb)

]
syi = 2α

(
φb
λ

b
α+ φsP

)
syi .

By (4.8), (4.27) holds if and only if

(4.28)
λ

b
(sφbs + bφss − φb)syi = 0.

Contracting (4.28) with bi and using (4.16) and (4.17) we have

λ

αb
(sφbs + bφss − φb)(b2 − s2) = 0.

Taking |s| < b we obtain

λ(sφbs + bφss − φb) = 0.

Thus we have proved Theorem 4.2.

It is worth mentioning the recent result by Yu and Zhu that for any
general (α, β)-metric F = αφ(‖β‖α, β/α) where α is locally projectively
flat and β is conformal with respect to α and satisfies dβ = 0, the metric
F = F (x, y) is locally projectively flat if φ = φ(b, s) satisfies (4.2) [21].

Proof of Theorem 1.1. Let us take a look at a special case: when α = |y|,
β = 〈x, y〉,

‖β‖α = |x|.
Then α is projectively flat and

dβ = d
(∑

i

xidxi
)

= 0.

Furthermore, β is a non-Killing conformal form with respect to α. Now
Theorem 1.1 is an immediate consequence of Theorem 4.2.

Taking φ(b, s) = ε+ bµf(s/b) in Theorem 1.1 we have the following (see
[8, Theorem 3.2]):

Corollary 4.3. Let F (x, y) := |y|
{
ε+|x|µf

( 〈x,y〉
|x||y|

)}
be a general (α, β)-

metric on an open subset U ⊂ Rn. Then F = F (x, y) is projectively flat if
and only if

(λ2 − 1)f ′′ − µλf ′ + µf = 0

where λ = 〈x, y〉/(|x| |y|).

5. Projectively flat Finsler metrics in terms of error functions.
In this section we are going to find the general solution φ of (4.2). Then we
give a lot of new projectively flat general (α, β)-metrics in terms of error
functions.
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Proposition 5.1. For s > 0, the general solution φ of (4.2) is given by

(5.1) φ(b, s) = sg(b)− s
s�

s0

t−2f(b2 − t2) dt

where s0 ∈ (0, s].

Proof. Note that s > 0. We see that (4.2) is equivalent to

(5.2) szb + bzs = 0

where

(5.3) z := φ− sφs.
The characteristic equation of the quasi-linear PDE (5.2) is

(5.4)
db

s
=
ds

b
=
dz

0
.

It follows that
b2 − s2 = c1, z = c2

are independent integrals of (5.4). Hence the solution of (5.2) is

(5.5) z = f(b2 − s2)
where f is any continuously differentiable function. Hence

(5.6) φ− sφs = f(b2 − s2).
It follows that every solution of (4.2) satisfies (5.6). Conversely, suppose
that (5.6) holds. Then we obtain (5.2) and (5.3). Thus φ satisfies (4.2). We
conclude that (5.6) and (4.2) are equivalent.

Now we consider s ∈ [s0,∞) where s0 > 0. Put

(5.7) φ = sψ.

It follows that φs = ψ + sψs. Together with (5.6) this yields

f(b2 − s2) = sψ − s(ψ + sψs) = −s2ψs.
Thus

ψ = g(b)−
s�

s0

t−2f(b2 − t2) dt.

Plugging this into (5.7) yields (5.1).

Remark. Similarly, we can obtain the general solution of (4.2) for s < 0.

The error function is a (non-elementary) special function of sigmoid
shape which occurs in probability, statistics and partial differential equa-
tions [1, 12]. It is defined by erf(x) := (2/

√
π)

	x
0 e
−t2 dt.

Now we manufacture projectively flat general (α, β)-metrics in terms of
the error function.
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Taking f(u) = eλu in (5.1) where λ ∈ R+ we have�
t−2f(b2 − t2) dt =

�
t−2eλ(b

2−t2) dt = eλb
2
�
t−2e−λt

2
dt

= eλb
2
(
−
�
e−λt

2
dt−1

)
= eλb

2
( �

t−1de−λt
2 − t−1e−λt2

)
= −eλb2

(
t−1e−λt

2
+ 2λ

�
e−λt

2
dt
)
.

Combining this with (5.1) we have

φ(b, s) = sg(b) + seλb
2
(
t−1e−λt

2 |ss0 + 2λ

s�

s0

e−λt
2
dt
)

(5.8)

= sg1(b) + eλb
2
(
e−λs

2
+ 2λs

s�

s0

e−λt
2
dt
)
.

On the other hand,
r�

0

e−λt
2
dt =

1√
λ

√
λr�

0

e−λx
2
dx =

√
π

2
√
λ

erf(
√
λ r).

Substituting this into (5.8) yields

φ(b, s) = sg1(b) + eλb
2{e−λs2 +

√
λπ[erf(

√
λ s)− erf(

√
λ s0)]s}(5.9)

= sg2(b) + eλb
2
[e−λs

2
+
√
λπ s erf(

√
λ s)].

Together with Theorem 4.2 and Proposition 5.1 we obtain (see [14, 21])

Theorem 5.2. Define

α :=

√
|y|2 + µ(|x|2|y|2 − 〈x, y〉2)

1 + µ|x|2
,

β :=
〈a, y〉√

1 + µ|x|2
+

c− µ〈a, x〉
(
√

1 + µ|x|)3
〈x, y〉

where c, µ are constants and a ∈ Rn is a constant vector. Let φ(b, s) be a
function defined in (5.9). Then the general (α, β)-metric F = αφ(‖β‖α, β/α)
on an open subset U ⊆ Rn is projectively flat.
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