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Concerning the energy class &, for 0 <p <1

by PER AHAG (Sundsvall), RAFAL Czy7 (Krakow)
and PuHAM HOANG Hiftp (Hanoi)

Abstract. The energy class &, is studied for 0 < p < 1. A characterization of cer-
tain bounded plurisubharmonic functions in terms of F, and its pluricomplex p-energy is
proved.

1. Introduction. Let 2 C C” be a bounded hyperconvex domain, i.e.,
there exists a bounded plurisubharmonic function ¢ : 2 — (—o00,0) such
that the closure of the set {z € 2 : ¢(2) < ¢} is compact in 2 for every
¢ € (—00,0). In this article our class of test functions will be the convex cone
Eo (= &0(£2)) consisting of all bounded plurisubharmonic functions ¢ defined
on {2 such that lim,_¢ ¢(z) = 0 for every £ € 012, and {,(dd°p)™ < oo, where
(dd®-)™ is the complex Monge—Ampére operator.

Assume that w is a plurisubharmonic function defined on {2 and [gpj];?‘;l,
@; € &, is a decreasing sequence which converges pointwise to u on {2 as
j — oo. If there can be no misinterpretation a sequence | - ];";1 will be denoted
by [-]. For p > 0 fixed, consider the following assertions:

(1) sup § (—p )P (ddp,)" < o,
)
(2) sup S(ddcgoj)" < 0.
70
If the sequence [p;] can be chosen such that (1) holds, then we say that u
belongs to &,, and if (2) holds, then u belongs to F. Finally, if both (1) and
(2) are satisfied, then u € F,. For p = 0, we say by convention that u € F.
The energy classes F,, and &, are two of the so called Cegrell classes. For
p > 1, the classes F, and &, were introduced and extensively studied in [4]
and here we will study them for 0 < p < 1. For further information about the
Cegrell classes see e.g. [4, 6, 7] and the references therein. It follows from [4]
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that any function in &, is in £ and hence by [6] the operator (dd®-)" is well
defined on &,, p > 0 (see [6] for the definition of £).
Now, let e,(u) be defined by

ep(u) = | (—u)? (dd°w)"
Q
for p > 0. The integral ey,(u) is the pluricomplex p-energy of the function
u. As in [4, 11] the pluricomplex p-energy will be used to study &,. In [11],
Persson proved that if p > 1 and ug, uy,...,u, € &, then

S <_u0)pddcu1/\ . /\ddcun S Dn7p€p(u0)p/(p+n)ep(u1)1/(p+n) ct ep(un)l/(p+n)
9}

(see also [8]), where D, , is a constant depending only on n and p. This
Holder type inequality is a fundamental tool in [4]. In Section 2, we will
extend this estimate to p > 0; as a direct consequence, it follows that 7,
and &, are convex cones (Corollary 2.4). The aim of this article is to prove
the following characterization of the Dirichlet problem: Let n > 1, p > 0,
and p a non-negative measure (not necessarily of finite total mass). Then
there exists a unique function u € &, such that (dd“uw)" = p if, and only if,
there exists a constant A > 0 such that

(=) dis < Acy ()0
2

for every ¢ € & (Theorem 3.6). For p > 1 this was proved in [4]. A related
Dirichlet problem for the case p = 0 was considered in [6].

In Section 4, we will prove, as an application of the framework induced
by the energy classes, that u € & if, and only if,

(1) u € F, for every p > 0,
(2) liné u(z) = 0 for every £ € 012,
z—
(3) sup ep(u)l/p < 00.
p>0
We end this article by constructing two examples which motivate this char-

acterization.

The authors would like to thank Urban Cegrell, Nguyen Van Khue, Sta-
womir Kolodziej and Ahmed Zeriahi for valuable help with this manuscript.

2. A Holder type inequality. We will proceed as in [11] by using
Lemma 2.1 below as a counterpart of Lemma 5.1 in [11].

LEMMA 2.1. Let u,v € PSH(£2)NL>*(§2), lim,_¢ u(z) =lim, ¢ v(z) =0
for every & € 002 and T be a positive closed current of bidegree (n—1,n—1).
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For 0 <p<1,

| (-urddvnT <7 (§(-urddunT) o (§(~vypaavn) &
[0 0 )

Proof. Let 0 < p < 1 and w = —(—v)P. Then w € PSH(§2) N L>(£2)
and lim,_¢ w(z) = 0 for every & € 92. We have

21) [ (—wPddv AT = = {(—w)P(dd*(—w)P) AT

(0] (0]
= L {(cuP(cw) P ldd (—w) A T
p 2
= L P () 2 (—w) A d(—w) AT
p 2
1 1/p—1 7 3¢ 1 l c
< = (~wP(—w)/P 1 ddw AT = = | (—u Pddw A T.
p 02 p (7

Holder’s inequality yields

—_

(22) {(—wPddv AT < = | (—u)ddw A T}p [§(—v)ddcw A T] o
02
)d

3

» o o e :

p

[(g} w)ddev A T}

(—v)Pddu A T}p [g v)Pddv A T}
2

(—w dCuAT}

1
p
1:
p
By combining inequalities (2.1) and (2.2) we get

0 )
P2

P e W Pddu p(1-p)
[(Sz( w)Pdd AT} [é( YPdd /\T]
1—
x [é(—v) dd v/\T]

[ (—upddov AT < = [ )PddCu A T} [g (—v)Pdd°v A T] B
1

S

Thus, the desired inequality is achieved. =

THEOREM 2.2. Let ug,u1,...,u, € & and p > 0. Assume that X is a
non-empty set, n > 1 an integer and that F : X"t! — R is a function which
is symmetric in the last n variables. If there exists a constant C > 0 such
that

p_ 1
F(ug,ug, ... up) < CF(ug,ug, ug, ..., up) P L F(ug, w1, ug, ..., Uy) P+,
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then

F(ug,uy, ..., up)
1 1

< Ca(n’p)F(an"'auo)#F(ula"'aul)ﬁ "'F(un)"'vun)p L,
where a(n,p) is given by
a(l,p) =1,

a(n,p) = a(n - 1ap) +

(p+1(+n-1) (1 a(n — l,p)>
+ =),
p(p +n) p+1

Moreover, if C > 1, then

n—1
ann) =+ 2 (PE) = )

Proof. Cf. Theorem 4.1 in [11]. =

Let p > 0. The mutual pluricomplex p-energy (uo, ..., un)p is defined by
(U0, -y Un)p = S (—up)Pdduy A -+ A dduy,.
0

For p > 1, Theorem 2.3 below was proved in [11]. If p = 0, then (2.3) can be
interpreted as Corollary 5.6 in [6].

THEOREM 2.3. Let p > 0 and ug,uq,...,un € &. Then
(2.3) (g, .- un)p < Dypep(uo)?/ PTMe, (ug) VP e (u,) Y )]
where

p—a(nyp)/(l_P) if 0<p<l,
Dn,p =41 if p=1,
pP(p)/(=1) if oy > 1

and a(n,p) = (p + 2)(1%1)n_1 —(p+1).

Proof. Let 0 < p <1 and (ug,u1,...,un)p = F(ug,u1,...,u,) in Theo-
rem 2.2. The proof then follows from Lemma 2.1 and Theorem 2.2. =

COROLLARY 2.4. For anyp > 0, the classes F), and &, are convex cones.

Proof. This follows as in [4] by using Theorem 2.3. u

If ¢ > p >0, then 7, C F,, by Holder’s inequality. We will end this
section by explaining why a similar result for &, is not possible. Let ¢ > p > 0
be fixed. Then it follows from Example 2.3 in [5] that &, \ &, is non-empty.

Example 2.6 below shows that £, \ &, is non-empty as well. First note that
if uy,...,ur € &, then

(2.4) ep(ur + -+ +up) =Y ep(uy).
j=1
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We will also need the following lemma.
LEMMA 2.5. Let p>0 and u,v€&. Then ep(u+v) — ey(u) asey(v) — 0.

Proof. Let 0 < p < 1. Holder’s inequality together with (2.3) and the
fact that (—u — v)P < (—u)P + (—v)? yields

-
(2.5) ep(u) < ep(u+v) <ep(u)+ C’Z ep(u P+" ep pp+ﬂj

and the case 0 < p < 1 is proved. Assume now that p > 1. Using Minkowski’s
inequality we get

(2.6) ep(u+ v)/P < [S (—uw)P(dd(u + v))"} v + H (—v)P(dd®(u + v))"}
Q Q
Employing (2.3) to estimate
S(—u)p(ddcu)”_j A (ddv)!  forj=1,...,n
2

1/p

and
| (—v)P(ddu)"~ A (dd°v)?  for j=0,...,n
2

together with (2.6) completes this proof. =

REMARK. It follows from the estimate (2.5) and Example 3.11 in [4] that
(Mps0&p) \ F # 0.

EXAMPLE 2.6. Let ¢ > p > 0 and g = g(z,29) be the pluricomplex
Green function with pole zy € 2. Define v; = jPmax(g,1/57™") € &.
Then e,(v;) = (27)" and e4(vj) = (2m)"j"P~9 | hence lim; .o, e4(v;) = 0.
Therefore, Lemma 2.5 implies that there exist integers s; such that the
decreasing sequence defined by uy = vs, + - - -+ v,, converges pointwise to a
function u € £,. Inequality (2.4) implies that e,(uy) > k(2m)". Thus, u ¢ &,.

3. The Dirichlet problem

LEMMA 3.1. Let p > 0 and K € {F},,&E}. If u € K and v € PSH(S2),
v <0, then max(u,v) € K.

Proof. For the case p =0 cf. [6] and for the case p > 1 see [4]. Let 0 < p
< 1 and u € &,. Then by definition there exists a decreasing sequence [u;],
uj € &, which converges pointwise to u as j — oo, and sup; e,(u;) < oo.
Set w; = max(uj,v). Then [w;], w; € &, is a decreasing sequence which
converges pointwise to max(u,v) as j — oo, and sup, ep(w;) < sup; e,(u;)
< 00, hence max(u,v) € &,. If u € F, then we additionally need to prove
that sup, {,(dd“w;)"™ < co. But u; < wj, which implies that sup; {, (dd®w;)"
< sup; §, (dd®u;)" < co. m
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For p > 1, Lemma 3.2 below was proved in [4]. By using Theorem 2.3
together with Lemma 3.1 the proof of Lemma 5.4 in [4] is also valid for the
case 0 < p < 1.

LEMMA 3.2. Letp > 0. If¢p € PSH(2)NC(2), ¢ <0, and u € &, then
xa(dd®u)" = xa(dd®max(u,¢))",
where x 4 is the characteristic function of the set A= {z € 2 :u > }.
LEMMA 3.3. Letp > 0. If u,v € &, are such that u < v, then

J(—o)(ddv)" < | (—¢)(dd°u)"
2 2

for every ¢ € PSH(§2) with ¢ < 0.

Proof. First assume that ¢ € &. Then integration by parts (see [6])
implies that

(3.1) § (=) (ddu)" = | (—u)(dd°p) A (ddu)" ",
9] N

but —u > —v by assumption and therefore

(3.2) [ (—u)(ddp) A (ddu)"~" > | (—v)(ddp) A (ddu)""".
n N

By using integration by parts once again we get

(3.3) | (—v)(dd°p) A (dd°u)" " = | (=) (dd°v) A (dd°u)" !
2 [0

and therefore {,(—¢)(dd°u)" > {,(—p)(ddv) A (dd“u)"~* by (3.1)=(3.3).
Continuing in a similar manner using integration by parts and the assump-
tion u < v yields the desired inequality when ¢ € &. The general case then
follows from Theorem 2.1 in [6] together with the monotone convergence
theorem. m

For p = 0, Theorem 3.4 below was proved in [6] (Theorem 5.15) and for
p > 1 it follows from the proof of Theorem 6.2 in [4]. Here we will use the
method of [4] to achieve the result for 0 < p < 1.

THEOREM 3.4. Letp > 0. If u € £ and v € &, are such that (ddv)™ <
(dd“u)™, then u < v.

Proof. Assume that 0 < p < 1 and let h € & N C(§2), not identically 0.
For each m > 1, Lemmas 3.1 and 3.2 imply that

(dd® max (v, mh))" = X{v>mh}(ddcv)n + X{vgmh}(ddc max(v, mh))".

Kotlodziej’s theorem (see [10], and also Proposition 6.1 in [4]) implies that
there exists g, € & such that (dd°gm)" = X{v<mn}(dd®max(v, mh))".
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Thus, (dd(u + gm))™ > (dd° max(v, mh))™. Theorem 5.15 in [6] shows that
max (v, mh) > u + g, hence
(3.4) v = limsup max(v, mh) > u + lim sup gy,

m—0o0 m—0o0
Let wy, = sup;s,, g;. Then wy, € &, where w* denotes the upper semicon-
tinuous regularization of the function w. Moreover, [w,,] is a decreasing se-
quence which converges pointwise to limsup,,,_,., gm as m — oo. Fix m > 1
and let j > m. Lemma 3.3 and the fact that max(v,jh) < g; < wj, imply
that

(dd°w})™ < mP \(=h)P(dd°g;)"
2

mp

) (=h
= (;) é(—jh)pqum(dd“maX(v,jh))"
< (?)pgg ep(max(v, jh)) < 0o

and therefore w), = 0. Hence, limsup,,,_,o gm = liMy— oo Wy = 0 almost
everywhere and by inequality (3.4) it follows that v > u. m

The next corollary was proved in [1] for p > 1 and p = 0. Using exactly
the same methods together with Theorem 3.4 yields the first statement. The
second statement follows from Example 3.7 in [1].

COROLLARY 3.5. If u € UJy>o&p, then limsup, cu(z) = 0 for every
& € 092. Moreover, for each p > 0 there exists a function v € £, such that
liminf, ¢ v(2) = —oo for every £ € 012.

We now prove a characterization of the Dirichlet problem in &, for p > 0.
For p > 1 this was proved in [4, Theorem 6.2].

THEOREM 3.6. Let p > 0 and p a non-negative measure. Then there
exists a unique function u € &, such that (dd“uw)™ = p if , and only if , there
exists a constant A > 0 such that

(3.5) J(—pdu < Aey ()77
9]

for every ¢ € &.

Proof. Let 0 < p < 1. Assume that there exists a unique u € &, such that
(dd°u)™ = p. There exists a sequence [u;], u; € &, which converges pointwise
on {2 to u as j — oo, and lim;j . ep(u;) = ep(u) < oo (Lemma 2.1 in [7]).
Let ¢ € &. Then Theorem 2.3 implies that there exists a constant C' > 0
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such that §,(—p)(ddu;)™ < Cep(p)P/ P+Me,(u;)Y/ P+7) and therefore

J(—@)Pdu < liminf | (=)P(dd°uj)" < Cep(u)/PHey(p)?/ )
) T 0
< Aep(sp)p/(nﬂ?)'

For the converse assume that there exists a constant A > 0 such that (3.5)
holds. In particular this assumption implies that p vanishes on pluripolar
sets and so Theorem 5.11 in [6] shows that there exist functions ¢ € & and
0 < f e Ll .((dd°¢)") such that u = f(dd°¢)". Kolodziej’s theorem (see [10],

[4, Proposition 6.1]) implies that there exist u; € & such that (ddu;)" =

min(f, j)(dd°¢)". Hence, sup; e,(u;) < At0)/P < 56 and therefore there
exists u € &, such that (dd“u)™ = p. Uniqueness follows from Theorem 3.4. m

Using Theorem 3.6 together with the methods of [2] we obtain

COROLLARY 3.7. Letn > 1 and ¢ € PSH({2) with lim, ¢ (z) =0 for
every £ € 912, and ¢ € LI((dd¥)™), ¢ > 0, 1 < q < oo. Then there exists
a unique function u € &y, 41y such that (ddu)" = ¢(dd“p)". Moreover, if
§o(ddo)™ < oo, then u € Fpq—1).

4. A characterization of bounded plurisubharmonic functions.
The following well-known lemma is an elementary exercise in LP-theory.

LEMMA 4.1. Let q > 1 and assume that u in &, is not identically 0. Then

lim ep(u)l/p = inf{a eR: H x{_u>a}(ddcu)”} = 0}.
2

p—00

Proof. Set M = inf{a € R : {, x{_u>qa}(dd°u)” = 0}. Without loss of
generality we can assume that M > 0. Take 0 < M<MIfA= {z e n:
lu(z)| > M} and Cy = §, xa(dd“u)", then Cy > 0 and

00 > Cy = [(—u)¥(dd°u)" > {(—u)?(dd“u)" > MC).
2 A

For p > g, it then follows that e,(u)/? > (§,(—u)P(ddu)™)/P > MCll/p.
Thus

(4.1) lim inf e, (u)'/? > M,

p—0o0

since 0 < M < M was chosen arbitrarily. Moreover, for p > ¢ we have

ep(w)/? = (§(-wp(-up-2(aaeuy)
9]

P < C;/PMl—q/p.
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Hence

(4.2) lim sup e, (u) /P < M.

p—00
Inequalities (4.1) and (4.2) complete the proof. =
THEOREM 4.2. A function u belongs to & if, and only if,

(1) w e F, for everyp >0,

(2) lirré u(z) =0 for every £ € 012,
Z—

(3) sup ep(u)l/p < 00.
p>0

Proof. Without loss of generality assume that u(z) < 0 for each z € (2.
Let u € &. Then properties (1) and (2) follow from the definition of &
and F,. The function u is bounded by assumption and therefore e,(u)'/? <
Cl(gg(ddcu)”)l/p, where C1 > 0 is a constant. Thus, sup,- ep(u)/P < oo,
since limy, o0 ({,, (ddu)™) /P = 1.

For the converse, assume that u is a function satisfying (1)—(3). Let M
be as in Lemma 4.1. Then M < oo by (3). Moreover M > 0, since u < 0 by
assumption. Let A = {z € 2 : u(z) < —M}. The set A is open, since u is
upper semicontinuous, § ,(dd“u)"” =0 and —u < M on 2\ A.

Now assume that u is unbounded, and let € > 0 be such that £|z|?> < M
on £2. Set v(z) = max(u(z),e|z|?> — 2M). Then v € F, N L>®(£2) for each
p > 0. As u is unbounded, the set {u < v} = {u < ¢|z|> — 2M} is non-empty
and open. Lemma 4.4 in [4] implies that S{u<v}(dd6v)” < S{u<v}(ddcu)n <
§ 4(dd°u)™ =0, since {u < v} C A, but

| (ddv)m= | (dd°(elz|* — 2M)" = CA({u < v}) > 0,
{u<v} {u<v}
where A is the Lebesgue measure and C' is a constant depending only on

n and e. This is a contradiction, which implies that « is bounded. Thus
u€&. m

EXAMPLE 4.3. Let B = B(0, 1) be the unit ball in C" and [a] a sequence
in B such that a; — ¢ for some ¢ € 9B. Let T;, = T}, be the automorphism
of B which maps a; to 0, i.e.,

To(2) = T, (2) 1 /1 — a2 ((z, ar)ar — |ag]?z) + ar(lag)® — (2, ax))

B |ak|2 11— <Z,CLk> ’

where (z,y) = >>'_, x;7; is the usual inner product in C". The real Jacobian
of T, at z € B is given by
F(Zv ak)

T/ 2 —
| k(Z)’ 17— <z,ak>|4"7
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where F' is a bounded function. Moreover for all compact subsets K we
have max,ecr |Th(2)|?> < C1, where Cy is a constant not depending on k.
Define ¢;(z) = 277 max(log|Tj(z)|,—1). Then ¢; € PSH(B) N L*(B),
lim, ¢ ¢;(2) = 0 for every { € 0B, and

c n c 1 n
B B
1 C
= o S dd® max(log |Tj|, _23))
B
1 C
= Zm S |T7|? (dd® max(log |z|, —27))™
B
1 2
< — n <
= 2in (2m) BE(I)IE:XU T} | Cy — 5

where Cs is a constant not depending on j. Set

k

w(2) = max (3 5 og 1) -1 )

=1

Then uy, € PSH(B) N L*(B), lim,_.¢ ux(z) = 0 for every £ € 0B and uy, >
Z?:l ¢;. The comparison principle (see e.g. [3]|) together with Lemma 2.5
in [9] shows that u; € &. The function u defined by

o0

() = max( 3 55 0w 15 4) 1

j=1

belongs to F N L*°(B) and therefore to F, for all p > 0. But u ¢ &, since
liminf, - u(z) <limj_ou(aj) = —1. =

EXAMPLE 4.4. Let B = B(0,1) C C? and let [a;] and [b;], 0 < a;,b; < 1,
be decreasing sequences which converge to 0 as j — oo. For each j € N,
define ¢; : B — R U {—o00} by ¢;(2) = a;max(log|z|,logb;). Then ¢; €
PSH(B) N L*>®(B) and lim,_.¢ ¢;(z) = 0 for every £ € B. Moreover

dd°p; A dd (2m)*a}don, itj =k,

i Pk = (277)2ajakdamax(bj7bk) otherwise,
where do, is the normalized Lebesgue measure on 0B(0,7), hence ¢; € &
and therefore the function u; : B — R defined by u; = Z§:1 pj is in &.
The functions wuy are radially symmetric, i.e., ux(|z|) = ug(z), and
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B B

k
(43)  §u)pddu)? = §(upr (Y o))’
j=1

k

S —ug)Pddp; AN ddp; = Z (—up(max(bj, b)))P(27)a;a
1B 7,l=1

i

k
(—ur (b)) (2m)2aza = (2m)2 (3 (—u(v;))"2a )2.

7j=1
Let z € B be such that |z| = b;. Then

{aklogbk if k<7,

onl(2) = aylogb; otherwise

and therefore > 72 | pi(2) = Zf;:l ak log b +logb; 372 .y ap = cj. Assume
now that the sequences [a;] and [b;] are chosen such that

o)

(1) Zaj < 00,
j=1

2) Zajlogbj = —
j=1

3) i(—cj)p/Qaj < 00.

j=1

Let u: B — RU{—0c0} be defined by u = limj_, ug. Then u is plurisub-
harmonic, since it is the limit of a decreasing sequence of plurisubharmonic
functions and u(1/2,0) > —oc. Assumption (1) implies that §,(dd“u)? < oo
and from inequality (4.3) and assumption (3) it follows that

sup S(—uk)p(ddcuk)2 < 00.
kB
Hence u € F, for each p > 0. But assumption (2) yields u(0) = —ooc. Let now
the sequences [a;] and [b;] be defined by a; = 1/2/ and b; = e~2'/7. These
sequences decrease to 0 as j — 0o, and by straightforward calculations, they
satisfy assumptions (1)-(3). Hence, the function defined on B by

[e.9]

1 Coifin | e 1 1
u(z) = Y 55 max(log|z|,loge /) = ZmaXGlogrzy, —;)
j=1

7j=1

belongs to F, for every p > 0, and lim, ¢ u(z) = 0 for every { € 0B. But
u & &, since u is unbounded. =
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