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Random polynomials and (pluri)potential theory

by Thomas Bloom (Toronto)

Abstract. For certain ensembles of random polynomials we give the expected value
of the zero distribution (in one variable) and the expected value of the distribution of
common zeros of m polynomials (in m variables).

Introduction. It is a classical result of Hammersley that the zeros of
random Kac polynomials concentrate on the unit circle as the degrees of
the polynomials increase. Some recent papers ([SZ2], [B2], [BS]) show that
the zeros of certain ensembles of random polynomials concentrate on sets
described by potential and pluripotential theory, specifically, sets given by
the support of the Monge–Ampère operator on pluricomplex Green functions
(or, in one variable, by the Laplacian on a Green function). In this paper
we will extend the results of the cited papers in the following manner:

In [B2] and [SZ2] the zeros of certain ensembles of random polynomials
in one variable with i.i.d. Gaussian coefficients of mean zero and variance
one are shown to concentrate at the equilibrium measure of compact sets.
In Section 1 we extend the results of [B2] and [SZ2] to ensembles with coef-
ficients random variables which are not necessarily Gaussian (Theorem 1.1).
We show how the approach via potential theory can give the results for the
disc similar to those of Schmerling–Hochberg [SH] and Hughes–Nikeghbali
[HN] (where a result of Erdős–Turán is used (Example 1.2)). We show how
the connectivity of C \ K affects the results (Example 1.1).

In [BS] the common zeros of m random polynomials in C
m with Gaussian

coefficients of mean zero and variance one were shown to concentrate at the
equilibrium measure (as given in pluripotential theory) of compact sets. In
Section 2 we extend the results of [BS] to ensembles where the coefficients are
Gaussian but the inner product on polynomials of degree ≤ N is with respect
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to w2Ndµ for a “weight” function w ≥ 0. We give (Theorem 2.1) the weak
limit of the expectation of the normalized counting measure of the common
zeros of m random polynomials on C

m in the form (2π)−m(ddcVK,Q)m, where
VK,Q is a weighted pluricomplex Green function. In the case m = 1 this
result is used to answer a question of Shiffman and Zelditch [SZ2] on the
concentration of zeros of certain ensembles of polynomials on curves in the
plane (see Example 2.1).

Recent papers of R. Berman ([Be1], [Be2]) study common zeros of sec-
tions of certain holomorphic line bundles. There is some similarity between
those results and the results of Section 2 of this paper.

1. Random polynomials. We let PN denote the vector space of poly-
nomials (in one complex variable) of degree ≤ N . An element of PN may
be uniquely written in the form

f(z) =
N∑

j=0

bjz
j with bj ∈ C.(1.1)

If PN is endowed with a probability measure the elements of PN are referred
to as random polynomials. For example, considering the bj ’s as independent
identically distributed (i.i.d.) complex Gaussian random variables with mean

0 and variance 1 (i.e. each bj has distribution function π−1e−|ξ|2dλ for ξ ∈ C

and dλ Lebesgue measure on C) puts a probability measure on PN . In this
case the polynomials are often referred to as Kac polynomials.

For f ∈ PN we let

Zf :=
∑

f(z)=0

δ(z)(1.2)

be the counting measure of the zeros of f and

Z̃f :=
1

deg(f)

∑

f(z)=0

δ(z)(1.3)

be the normalized counting measure of the zeros of f .

We are interested in asymptotic properties of Z̃f . To this end we consider
the product probability space

P :=
∞∏

N=1

PN .(1.4)

We will consider ensembles of random polynomials, generalizing the Kac
polynomials, which were introduced by Shiffman and Zelditch [SZ2] as fol-
lows: Let K be a regular (in the sense of potential theory, i.e. regular for the
exterior Dirichlet problem) compact set ⊂ C and µ a finite Borel measure
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with supp(µ) = K. Applying the Gram–Schmidt orthogonalization proce-
dure on the monomials we obtain orthonormal polynomials

pN (z) =
N∑

j=0

cN
j zj .(1.5)

For convenience, we assume the total mass of µ is 1 so p0(z) ≡ 1.
Given f ∈ PN we can write it uniquely as

f =

N∑

j=0

aN
j pj(z).(1.6)

We consider the aN
j to be complex random variables. For example, the Kac

polynomials can be obtained with K = {z | |z| = 1}, dµ = dθ/2π and the
aN

j i.i.d. Gaussians.
To state the results we will use the following concepts from potential

theory. We let VK denote the Green function of the unbounded component
of C \ K with logarithmic pole at ∞. We assume VK is defined on C by
setting VK = 0 on the bounded components of C \ K and on K. Then,
assuming K is regular, VK is continuous on C and the equilibrium measure
of K is

dµeq(K) :=
1

2π
ddcVK .(1.7)

Here dc = i(∂−∂) so ddc is the Laplacian in the underlying real coordinates
of C. We let cap(K) denote the logarithmic capacity of K.

We also assume that (K, µ) satisfies the Bernstein–Markov (BM) in-
equality. That is, given ε > 0 there is a constant C = C(ε) > 0 such that
for all f ∈ PN we have

‖f‖K ≤ C(1 + ε)N‖f‖L2(µ).(1.8)

It is known (for example [B2, Proposition 3.4]) that, as a consequence
of (1.8),

lim
N→∞

1

N
log |cN

N | = − log(cap(K)).(1.9)

Theorem 1.1 below generalizes a result of Shiffman and Zelditch [SZ2] and
was proved in [B2, Theorem 4.3] assuming the aN

j are i.i.d. complex Gaus-
sians of mean 0 and variance 1. Below we show the result is valid under
less stringent assumptions on the aN

j , namely that they have continuous

distribution functions ϕN
j satisfying the uniform estimates

(1.10) (i) |ϕN
j | ≤ T1, (ii)

\
|z|≥R

ϕN
j dλ ≤ T2

R2
,

where T1, T2 are constants independent of N, j.
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Theorem 1.1. Let K be a regular compact set ⊂ C and µ a measure

on K such that (K, µ) satisfies the BM inequality. Suppose the random

variables aN
j satisfy (1.10). Then, with probability one in P, we have, for

ensembles defined by (1.6),

lim
N

Z̃fN
= dµeq(K) weak∗ on C ∪ {∞}.

The proof of Theorem 1.1 is deduced from the following “deterministic”
result (see [BSS], also [B2, Theorem 4.2]).

Theorem 1.2 (Blatt, Saff, Simkani). Let (K, µ) be as in Theorem 1.1

and let fN (z) =
∑N

j=0 bN
j zj be a sequence of polynomials satisfying

(i) limN ‖fN‖1/N
K ≤ 1,

(ii) limN→∞ N−1 log |bN
N | = − log(cap(K)),

(iii) for each bounded connected component in C \ K there is a point z0

such that limN |fN (z0)|1/N = 1.

Then limN Z̃fN
= dµeq(K) weak∗ on C ∪ {∞}.

Proof of Theorem 1.1. We will deduce Theorem 1.1 from Theorem 1.2
by showing that each of the conditions (i)–(iii) holds with probability one
in P.

We first note that (i) and (ii) imply that limN ‖fN‖1/N
K = 1.

We will use the Borel–Cantelli lemma in the following form: Let YN ⊂ PN

be a measurable subset for N = 1, 2, . . . and let Y := {{fN} ∈ P | fN ∈ YN

for all but finitely many N}. Then, letting G denote the probability on P
and GN on PN , we have

G(Y ) = 1 if
∞∑

N=1

GN (Y c
N ) < ∞.(1.11)

Now, for condition (i) in Theorem 1.2 we set

(1.12) V1 := {{fN} ∈ P | lim ‖fN‖1/N
K ≤ 1,

(1.13) V ′
1 := {{fN} ∈ P | ‖fN‖L2(µ) ≤ N2(N + 1)

for all but finitely many N}.
Then

(1.14) GN ({fN ∈ PN | ‖fN‖L2(µ) ≥ N2(N + 1)})

= Prob
(( N∑

k=0

|aN
k |2

)1/2
≥ N2(N + 1)

)

≤ Prob(aN
k ≥ N2 for some 0 ≤ k ≤ N) ≤ T2

N + 1

N4

using (1.10)(ii). Thus G(V ′
1) = 1 and since V ′

1 ⊂ V1 we have G(V1) = 1.
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For condition (ii) in Theorem 1.2 we set

V2 := {{fN} ∈ P | lim
N

|aN
N |1/N = 1 for fN in the form (1.6)}.(1.15)

Note that by (1.9), {fN} ∈ V2 if and only if {fN} satisfies (ii).
Let

V ′
2 := {{fN} ∈ P | 1/N ≤ |aN

N | ≤ N for all but finitely many N}.(1.16)

Then

GN ({fN ∈ PN | |aN
N | ≤ 1/N or |aN

N | ≥ N}) ≤ πT1 + T2

N2
(1.17)

by (1.10). Hence using (1.11) we have G(V ′
2) = 1 and since V ′

2 ⊂ V2 we
conclude that G(V2) = 1.

For condition (iii) in Theorem 1.2 we take a point z0 in a bounded com-
ponent of C \ K and let

V3 := {{fN} ∈ P | lim
N

|fN (z0)|1/N = 1},(1.18)

V ′
3 := {{fN} ∈ P | 1/N ≤ |fN (z0)| for all but finitely many N}.(1.19)

Then

(1.20) GN ({fN ∈ PN | |fN (z0)| ≤ 1/N})
=

\
|aN

0
+aN

1
p1(z0)+···+aN

N
pN (z0)|≤1/N

ϕ(aN
0 ) · · ·ϕ(aN

N ) dλ0 · · · dλN

where dλj (0 ≤ j ≤ N) is Lebesgue measure on a copy of C determined by
aN

j .
Using Fubini’s theorem and first integrating over the copy of C deter-

mined by aN
0 turns the integral into one over a disc of radius ≤ 1/N so by

(1.10)(ii) the value of the integral is ≤ πT1/N
2. Thus, by (1.11), G(V ′

3) = 1.
But V3 ⊃ V1 ∩ V ′

3 so G(V3) = 1.
This concludes the proof of Theorem 1.1.

Example 1.1. Let K = [−1, 1] and dµ = dx/2. It is well-known that

dµeq(K) =
1

π

dx√
1 − x2

.

Random polynomials (given by (1.6)) are of the form

N∑

J=0

aN
j Lj(z)

where the Lj(z) are Legendre polynomials normalized to have norm 1 in
L2(dx/2) so their leading coefficients satisfy (1.9).

Condition (iii) in Theorem 1.2 is vacuous so Theorem 1.1 holds if each of
(i) and (ii) hold with probability one. That is (instead of (1.10)) Theorem 1.1
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holds if we have, in the space of sequences of random variables,

Prob(lim
N

|aN
N |1/N = 1) = 1(1.21)

and

Prob(lim
N

( max
0≤k≤N

|aN
k |)1/N = 1) = 1.(1.22)

Example 1.2. Let K = {z | |z| = 1} and dµ = dθ/2π. It is well-known
that dµeq(K) = dθ/2π. The monomials are the orthonormal polynomials
and we obtain the ensemble of Kac polynomials. To verify condition (iii) of
Theorem 1.2 we use the point z0 = 0 and then since pj(z0) = 0 for j =
1, 2, . . . we find that limN |fN (z0)|1/N = 1 if and only if limN |aN

0 |1/N = 1.
Thus the conclusion of Theorem 1.1 holds if (1.21), (1.22) hold and

Prob(lim
N

|aN
0 |1/N = 1) = 1.(1.23)

Note that conditions (1.21), (1.22) and (1.23) are similar to conditions
occurring in the papers [SH] and [HN].

We also remark that in the case of the unit circle, it is a straightforward
exercise to see that the condition on weak∗ convergence in Theorem 1.1 is
equivalent to a condition used in [SH] and [HN], namely:

lim
N

Z̃fN
=

dθ

2π
weak∗ on C ∪ {∞}

if and only if for all δ > 0 and all 0 ≤ θ1 < θ2 ≤ 2π,

lim
n→∞

1

N
card(ZfN

∩ {1 − δ ≤ |z| ≤ 1 + δ, θ1 ≤ arg(z) ≤ θ2}) =
θ2 − θ1

2π
.

2. The weighted case. We will give the expected distribution of the
common zeros of m polynomials in C

m in certain ensembles (defined below).
The case m = 1 will be used to answer a question of Shiffman and Zelditch
([SZ2, p. 32]) concerning the distribution of zeros of certain ensembles on
curves in the plane (see Example 2.1).

We let PN (Cm) denote the vector space of polynomials on C
m of total

degree ≤ N . For f ∈ PN (Cm) we can write

f =
∑

|α|≤N

bαzα(2.1)

where bα ∈ C and α is a multiindex. The space PN (Cm) is of dimension
d(N) :=

(n+m
m

)
.

We will study the following ensemble of random polynomials on C
m, that

is, we will put a probability measure on PN (Cm) as follows:

Let K be a locally regular (in the sense of pluripotential theory—see [Si]
for the definition) compact set in C

m. Let w ≥ 0 be a continuous function
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on K (called the weight function) with the property that {z ∈ K | w > 0} is
non-pluripolar (such weights are called admissible—see [SaT, Appendix B]).
Let µ be a finite positive Borel measure on K with supp(µ) = K.

For each N ∈ N, the monomials are linearly independent in L2(w2Nµ).
We order the monomials via the lexicographic ordering of their exponents
and apply the Gram–Schmidt orthogonalization procedure. For each multi-
index α ∈ N

m we obtain a polynomial pN
α (z). These polynomials are of the

form

pN
α (z) = cN

α zα + (monomials of lower lexicographic order).(2.2)

They are orthonormal, that is, they satisfy\
Cm

pN
α (z)pN

β (z)w2Ndµ = δα,β(2.3)

for all multiindices α, β.

Any f ∈ PN (Cm) may be written uniquely as

f(z) =
∑

|α|≤N

aN
α pN

α (z).(2.4)

We obtain an ensemble of random polynomials by considering the aN
α to

be random variables. Note that in (2.4), the expansion depends on N , so a
fixed polynomial f has different expansions, depending on N .

The aN
α will, in fact, be assumed to be i.i.d. complex Gaussians with mean

zero and variance one. Given m such random polynomials F = (f1, . . . , fm),
their common zero set is, with probability one, a discrete subset of C

m con-
sisting of Nm points. This is because, by Bertini’s theorem [GH], a generic
F has isolated common zeros and by Bézout’s theorem [GH] the common
zero set must consist of precisely Nm points. We let

ZF :=
∑

F (z)=0

δ(z)(2.5)

be the counting measure of the zeros and

Z̃F :=
1

Nm
ZF(2.6)

be the normalized counting measure of the zeros. We will give results on
the asymptotics of Z̃F but first we need some concepts from pluripotential
theory (see [K], [Si], [SaT, Appendix B]). We let

Q := − log w(2.7)

and define the weighted pluricomplex Green function by

VK,Q(z) := sup{u(z) | u ≤ Q on K and u ∈ L}(2.8)
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where L is the Lelong class of plurisubharmonic (p.s.h.) functions

L = {u | u is p.s.h. on C
m and u ≤ log+(z) + C}.(2.9)

It is known that, under the assumptions that K is locally regular and w
is continuous,

(2.10) (i) VK,Q is continuous,
(ii) VK,Q is a locally bounded p.s.h. function,

(iii) (ddcVK,Q)m is a Borel measure with support in K and total
mass (2π)m.

Here (ddc)m denotes the Monge–Ampère operator.
We also assume that the triple (K, w, µ) satisfies the weighted Bernstein–

Markov inequality (see [B3] for conditions that this inequality hold). That
is, for all ε > 0 there exists a constant C = C(ε) > 0 such that for all
f ∈ PN (Cm) we have

‖wNf‖K ≤ C(1 + ε)N‖wNf‖L2(dµ).(2.11)

Then we have, letting EN denote expectation over PN (Cm):

Theorem 2.1.

lim
N

EN (Z̃F ) =

(
1

2π

)m

(ddcVK,Q)m weak∗.

Proof. The proof is analogous to that of Theorem 3.1 in [BS]. We will
therefore only give the details to the proof of Lemma 2.2 below. Theorem 2.1
will follow from Lemmas 2.1–2.3.

Lemma 2.1. Let

φN (z) = sup{|f(z)| | f ∈ PN , ‖wNf‖K ≤ 1}.(2.12)

Then limN N−1 log φN (z) = VK,Q uniformly on compact subsets of C
m.

Lemma 2.2. Let

SN (z, ξ) :=
∑

|α|≤N

pN
α (z) pN

α (ξ).(2.13)

Then for all ε > 0 there is a constant C = C(ε) > 0 such that

1

d(N)
≤ SN (z, z)

φN (z)2
≤ C2(1 + ε)2Nd(N).(2.14)

Proof of Lemma 2.2. Let f ∈ PN (Cm) with ‖wNf‖K ≤ 1. Then

|wNf(z)| =
∣∣∣
\
K

SN (z, ξ)f(ξ)w(ξ)2N dµ(ξ)
∣∣∣(2.15)

≤
\
K

|SN (z, ξ)|w(ξ)N dµ(ξ)
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≤
\
K

SN (z, z)1/2SN (ξ, ξ)1/2w(ξ)N dµ(ξ)

= SN (z, z)1/2
\
K

SN (ξ, ξ)1/2w(ξ)N dµ(ξ)

≤ SN (z, z)1/2‖1‖L2(µ)‖SN (ξ, ξ)‖L2(w2N dµ)

≤ SN (z, z)1/2 d(N)1/2

where the total mass of µ is normalized to be one. Taking the sup over
f ∈ PN with ‖wNf‖K ≤ 1 we obtain the left inequality in (2.14).

By the weighted BM inequality we have

‖wNpN
α ‖K ≤ C(1 + ε)N .(2.16)

But pN
α /‖wNpN

α ‖K is in the family of functions defining φN (see (2.12)), so

|pN
α (z)|

‖wNpN
α ‖K

≤ φN (z)(2.17)

and so

|pN
α (z)| ≤ C(1 + ε)NφN (z).(2.18)

Thus

SN (z, z) =
∑

|α|≤N

|pN
α (z)|2 ≤ C2(1 + ε)2NφN (z)2d(N),(2.19)

which gives the right inequality in (2.14).

Lemma 2.3. We have

lim
N

1

2N
log SN (z, z) = VK,Q(z)

uniformly on compact subsets of C
m.

Proof of Theorem 2.1. We use the probabilistic Poincaré–Lelong formula
(see [BS]), which in this situation gives

EN (Z̃F ) =

(
1

4πN
ddc log SN (z, z)

)m

.(2.20)

Theorem 2.1 now follows from Lemma 2.3 and the fact that the Monge–
Ampère operator is continuous under uniform limits.

Example 2.1. Let K = ∂Ω be the boundary of an open set Ω ⊂ C. We
assume ∂Ω is of class C1. Then K is locally regular. The measure dµ = |dz|
satisfies the BM inequality (condition Λ∗ in [StT, Theorem 4.2.3] is satisfied
which is sufficient for the BM inequality—in [StT] the term “Bernstein–
Markov inequality” is not used). Also supp(µ) = K. Thus by [StT, Theo-
rem 3.2.1(vi)] the weighted BM inequality is satisfied with w2 = ̺ where ̺
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is a continuous positive function on ∂Ω. Thus, by Theorem 2.1,

lim
N

EN (Z̃f ) =
1

2π
ddcVK,Q weak∗.(2.21)

By (2.10)(iii) we have supp(ddcVK,Q) ⊂ K. In other words, the zeros
concentrate on ∂Ω. (This question was raised in [SZ2, p. 32].)

Specific information on ddcVK,Q, in particular conditions under which it
is absolutely continuous with respect to |dz|, may be found in [SaT, Sec-
tion IV 2].
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