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Cegrell classes on compact Kahler manifolds

by SeAwOMIR DINEW (Krakéw)

Abstract. We study Cegrell classes on compact K&hler manifolds. Our results gen-
eralize some theorems of Guedj and Zeriahi (from the setting of surfaces to arbitrary
manifolds) and answer some open questions posed by them.

1. Introduction. Since the cornerstone results of Bedford and Taylor
(IBT1] and [BT?2]) pluripotential theory in domains of C" has become a
subject of very intensive studies.

Recently, in [K1], [GZ1] and [GZ2] pluripotential theory in the setting
of compact Kahler manifolds has been developed. Such a theory has inter-
esting applications in complex dynamics, differential and algebraic geometry
and also in problems in “flat” theory (by flat we mean pluripotential the-
ory in hyperconvex domains in C"). We refer to [GZ1], where some inter-
actions between plurisubharmonic functions in C" with logarithmic growth
and the PSH(P", wrg) functions on the complex projective space P" equipped
with the Fubini-Study metric wrg are shown. In [GZ2] the authors defined
the Monge—Ampére operator and proved various results concerning it. They
claimed that their results still hold in arbitrary dimension, but they restricted
themselves to the surface case, since the definition is much simpler in that
case.

Here in Section 2 we give the general definition of the Monge—Ampére
operator on a compact Kéhler manifold and specify its domain of definition.
Next we introduce Cegrell classes of PSH(X,w) functions and prove several
properties generalizing some results in [GZ2|. Some proofs from this section
rely heavily on their flat analogues (Propositions 2.1 and 2.9, Theorem 2.4).
We shall also often refer to [GZ2] when an “n-dimensional” result follows
directly from the surface case, and shall focus only on those points where
analogies are less clear.

The results from this section will be used to prove our main theorem.
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180 S. Dinew

THEOREM 1.1 (Main result). Every PSH(X,w) function ¢ with bounded
p-energy is a limit of a decreasing sequence of functions ¢; which belong to
L>(X) N PSH(X,w) and whose p-energies tend to the p-energy of ¢ (Sec-
tion 3).

Note that an analogous result is true in flat theory (see [Cel]), but the
proof relies on several rather nontrivial results (i.e. Cegrell decomposition,
existence results for the Dirichlet problem and a “global” comparison prin-
ciple). That proof cannot be repeated in the Kéahler manifold setting, mainly
because there is no analogue of the global comparison principle (since all
Monge-Ampére measures are probability measures in the Kahler case). Our
proof, however, can be applied in both situations, so that as a byproduct we
obtain a different proof of this result in the flat case (more technical but not
requiring heavy machinery).

In Section 4 we generalize the (local) comparison principle from [K1] to
Cegrell classes.

We refer to [GZ1] and [GZ2] for all notions used in this paper. More
background in pluripotential theory can be found in [Kli|, [K2].

2. Definitions. Let X be a compact n-dimensional K&hler manifold
equipped with a fundamental K&hler form w given in local coordinates by

. n
_ ! dF A ds
w—2 ngjdz ANdz’.

k,j=1
We assume that the metric is normalized so that
S W =1.
X

Recall that

PSH(X,w) := {¢ € L}(X,w) : dd°¢ > —w, ¢ € C1(X)}
where as usual d = 0 + 9, d° = 5=(9 — 0) and C!(X) denotes the space
of upper semicontinuous functions. We call the functions that belong to
PSH(X,w) w-plurisubharmonic (w-psh for short).

Throughout the paper we shall assume that all the functions ¢ we con-
sider satisfy the extra condition

(2.1) sup ¢ < —1.
X

This condition is not restrictive, since if we add a constant to a function in
a certain Cegrell class, the new function also belongs to that class. Never-
theless, (2.1) will often be very helpful for our purposes.

We would like to define the Monge-Ampére operator

(wy)" = (w + ddu)"
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acting on w-psh functions. It is well known that this cannot be done for all
w-psh functions (for counterexamples in dimension 2 see [GZ2]). Therefore
one should restrict oneself to a smaller class of w-psh functions. We denote
the maximal class of w-psh functions for which the Monge-Ampeére operator
is well defined by £(X,w) or just by £ for simplicity. In the flat theory we
have a complete description of this class due to Blocki (see [Bl]). Using his
ideas one can also describe the class £ on Kéhler manifolds.
Let us first recall some constructions for bounded w-psh functions:

PROPOSITION 2.1. Let u be a bounded w-psh function. Then one can
define the (positive) currents

wk-:(w+ddcu)/\~-'/\(u}+ddcu)7 k=1,...,n.

u

ktimes

Moreover w]} is a probability measure for every bounded w-psh function u.

Proof. 1t is enough to define the currents locally, i.e. in coordinate charts
where we have a continuous potential for w (a function v such that ddv = w).
But then u+ v is simply a plurisubharmonic function. Hence one can use the
classical results from [BT2]| to define our currents. Note that the definition
is coherent in an intersection of two charts.

The last assertion of the proposition follows from the fact that we can
decompose

n n & n! c, \k n—k
W, =W +k2m(ddu) N\ w
=1

where the latter term happens to be a closed current. m

For more details we refer to [GZ1] and [GZ2]| (the latter in the case n = 2).

A natural question is under what kind of convergence this operator is
continuous. To study continuity results one can define the capacity cap, by
setting

cap,(4) = sup{ S wy tu € PSH(X,w), 0 <u < 1}
A

where A is an arbitrary Borel subset of X (for more details see [K1]).

Recall that a sequence u; converges to u with respect to capacity if

Vt>0  lim cap,({|uj —u| >t})=0.
j—oo
PROPOSITION 2.2. The Monge—Ampére operator defined above is contin-

uous on decreasing sequences in PSH(X,w) N L>®(X). It is also continuous
with respect to convergence in capacity cap,,.

Proof. See [K2]. =
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Having in mind these results one can ask whether it is possible to de-
fine the Monge—Ampére operator also for unbounded functions. We would
of course like to keep its basic properties, i.e. continuity on decreasing se-
quences. So we make the following definition:

DEFINITION 2.3. Let v € PSH(X,w). If for every sequence of w-psh
functions u; € PSH(U,w) N L*°(U) decreasing to u on some open subset U
of X the associated sequence wy, is weakly convergent (on U) and the limit
measure M (u) is independent of the sequence, we define w]! := M (u) on the
set U where the convergence holds.

Here PSH(U, w) denotes the set of germs of w-psh functions defined on U.
The definition is coherent on intersections. The class of functions u as in
Definition 2.3 is the maximal class of w-psh functions for which one can
define the Monge—Ampére operator, which we have denoted by &.

REMARK. Of course one can use a sequence that converges to u every-
where on X. We choose the local definition not only in order to use con-
nections with flat theory, but also because global approximation e.g. with
smooth w-psh functions is a very delicate matter and often requires restric-
tions on the form w and the underlying manifold. In the local context we
can approximate easily, using for example convolutions with smooth ker-
nel.

Of course Definition 2.3 is of very small practical use (we have to check
all convergent sequences). The following result makes this definition more
manageable:

THEOREM 2.4. Let u € PSH(X,w). The following conditions are equiv-
alent:

l.uef.
2. For every x € X there exists a neighbourhood U, such that for every
sequence u; € PSH(Uy,w) N L™ with uj \, u the sequences
(—uj)" P 2duj A douj A (wy,))P AW"PTH 0 pef0,...,n—2},
are weakly bounded.
3. For every x € X there exists a neighbourhood U, such that there exists
a sequence u; € PSH(U,,w)NL*™ with u; \, u such that the sequences
(—u;)" P 2du; A dCu; A (wu, )P A P71 pedf0,...,n—2},
are weakly bounded.
Proof. Since the result is local, one can use the argument from Proposi-

tion 1.1 once more. If v is a local potential then u; +v ™\, u + v. Now the
result follows from Blocki’s theorem in the flat case (see [Bl]). =
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Using analogous arguments one can prove that most local results from
the flat theory remain true in the K&hler manifold setting. In particular we
have the following corollary:

COROLLARY 2.5. Ifu € £ and w € PSH(X,w) with u < w, then w € £.

Now following [Cel] and [GZ1]| we are ready to introduce the so called
Cegrell classes:

DEFINITION 2.6. Let £P denote the class of u € PSH(X,w) such that
there exist u; € PSH(X,w) N L>(X,w) with u; \, u such that

sup S (—uj)Pwy, < oo
I X
(in this paper for simplicity we assume p > 1, although the definition makes
sense for every p > 0).

REMARK. In the flat setting one also considers classes with the additional
property
supS (ddu)" < oo.
J

This is obviously satisfied in our setting since all integrals | (W)™ are equal
to 1.

Of course bounded functions belong to £P, but £P contains many un-
bounded functions. These, however, cannot be very singular, which will fol-
low from the results below (most of them are generalizations of the analogous
results in [GZ2]).

PROPOSITION 2.7. Let u € EP. Then u+ c € EP for any constant c.

REMARK. When we do not a priori assume that all functions considered
are negative, the condition in the definition of Cegrell classes has to be
modified slightly (as in [GZ2]), namely instead of (—u;)? we integrate |u;|P.

Proof of Proposition 2.7. This rather simple observation justifies our ini-
tial assumption (2.1). Indeed, if u; is a sequence from the definition of £?
(for a function u), then u; + ¢ is such a sequence for u + c. One just has to
use the Minkowski inequality, which is justified, since wy, . are all positive
measures. m

PROPOSITION 2.8. Ifuy,...,up € € then wy, A---Awy,, s a well defined
probability measure.

Proof. Basically we repeat the arguments from Proposition 1.3 of [GZ2].
It suffices to define the (positive) current

—URWyy N AN Wy -
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Since we can write
Wy A= Ay = wyy A Awy, , Aw + dd(ugwy, A A wy, )

it is enough to check that

k—1)

S —UpWyy A Awy, | N W ( < 0.

X
When k = 1 this of course holds for all v € PSH(X,w).
To check that —usw,, is well defined, it is enough to use the same calcu-
lations as in [GZ2]|. One has to check that

X dui A dui Aw™ < oo, i=1,2,

X
Observe that { du; ANdu; AW < SX(—ui)”_Qdui/\dCui/\w”_l < 00, where
we have used the definition for the second inequality and the condition (2.1)

for the first. Now we can proceed by induction. Indeed, using again an idea
from [GZ2] we have

S —UpWyy A AWy, A wn—(k—l) = S —Upwyy A AWy, A wn—(k—Q)
X X
+ S dug N dcuk_l Awyy A Awyy_y A wn—(k—l)
X
< S —UpWy, A A Wago_y A wn—(k—2)
X
n—k+1) 1/2

+( dUk;/\chk/\wul/\/\wuk_Q/\w
X

X
1/2
( S dug—1 AN dUp—1 ANwyy A= Awy, , A w”_kH) )
X

The first integral on the right hand side is bounded by induction (we have
k — 1 functions). For each of the integrals in the product we proceed in the
following way:

S dug N dup Nwy, A Awy, , N W= (k=1)
X
—upddug Awyy, A ANwy, 5 A W (k=1)

X

= S —UpWyy, A\ Wyy Ao AWy, N W (k=1)
X
+

S UpWyy A= Awy, 5 A W (k=2)

X
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since we add and subtract a bounded integral. We notice that we have got rid
of ug_1 in the first term and of u; in the second. This implies that integrals
involving k distinct functions are controlled by integrals with £ — 1 functions
(the integrated function also appears in the wedge product). Our goal will be
to estimate these integrals by integrals where the integrated function appears
in the wedge product at least twice and so on. In the end we get integrals of

the type

k n—k
S —UjWy; ANw )

X
which are finite by definition.

Before we proceed further we make slight adjustments. Instead of the
functions w1, ..., u; we take their bounded approximants, namely u,;, =
max{us, —js}. We do so in order to ensure that all integrals are finite and
then we show that the estimates are uniform. We drop the indices j; in what
follows. Using the same idea as before we get

S —UpWyy, A\ Wy A Awy,_, A W~ (k=1)
X

< [ S —ukwﬁk ANwyy N Awy, 5 A wn— (k=1

1/2
+ S UpWyy, A Wuy A= AWy, g A w"_(k_g)}

X

X [ S —Uk—2Wyy o N Wy A Wyy Ao AWy, 5 A o= (k=1)

X
1/2
+ S Up—2Wyy AWy A= AWy, o A w"_(k_g)}
X
X n—(k-2)
X

+ \ Uy, AWy N ANwy, 3 Aw

Now if we denote by M; = max{{ _uilwful Nwuygy N- - Aw, Awn—(k=1) .

ij € {1,...,k}, i1 # ij, j # 1} the maximum over all integrals such that
the function we integrate appears in the wedge product [ times, the last
inequality can be read as

M, < C+ (M +C)YV?(My + C)Y/?

for some constant C independent of M7 and Ms. If My and Ms are finite
(this is the point where we need the approximants!), we get uniform con-
trol of Mj in terms of Ms. Proceeding analogously we get M; controlled by
M, 1. Putting these results together we conclude that the initial integral is
bounded, thus proving our claim. =



186 S. Dinew

We note that using the above argument one can get the following propo-
sition:

PROPOSITION 2.9. Ifuy,...,u, € EY, then ' C LN X, wy, A+ Awy,,).

Proof (cf. [GZ2, Proposition 3.2]). Indeed, from Proposition 2.8 it follows

that £ and £' are convex sets (one can decompose w(y4)/2 into L(wutwy) in
each term and use the results for mixed terms). But then for every u, 1 € £,

1 Uy + -+ Upyl
S —Unp1Wyy A AWy, < (n + 1)n+ S - n+1 = 21+"‘+“n+1 )

X X n+1

which is finite. =

PROPOSITION 2.10. Let u € PSH(X,w). Then —(—u)® € EP for small
e > 0.

Proof. An elementary computation shows that —(—u)® € PSH(X,w) for
e < 1 (we use the initial condition (2.1)!). Now the result follows from its
flat analogue (see [Ce3]). Indeed, —(—u — v)* € PSH (v is as usual a local
potential for w). Now —(—u—v)® < —(—u)®+v if we take a negative potential
(which is possible, since we can add a constant to the potential), and the
result follows from the stability of £ under taking maximums. =

COROLLARY 2.11. The measures
Wyy N+ ANwy,
put no mass on pluripolar sets for uy, ..., u, € E'.

Proof. Indeed, Propositions 2.9 and 2.10 tell us that —(—wu)*® is integrable
with respect to such a measure for small positive €. But any pluripolar set
is contained in {u = —oo} for some u € PSH(X,w) (see [GZ1]), hence the
measure cannot put any mass on that set. m

REMARK. A similar result also holds for the measures

duy A dup Awyy A=+ A wy, .

3. Main result. In [GZ2| the authors posed the following

PROBLEM. Let ¢ be a PSH(X,w) function such that SX(—d))pwg is finite
(for some p > 1). Does there exist a sequence ¢; € PSH(X,w) N L>(X)
decreasing to ¢ such that sup, SX(—géj)png < o00?

We prove that this is the case. We show moreover that we can choose
¢;’s in such a way that lim;_,, SX(—qﬁj)png = {x(—=9)Pwy.

REMARK. As in the surface case, the problem is when p > 1. For p =1
calculations similar to those in [GZ2] (cf. also Theorem 3.2 below) give us
the result. We mention this, because using (2.1) and L? integrability we get
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L' integrability. This yields ¢ € £ and we can use all the machinery needed
from Section 2.

We start with a technical lemma that gives us the main tool for our later
study, “integration by parts”.

LEMMA 3.1. Let ¢ be as before and ¢; := max{¢p,—j}. Then for all
currents T of the form wg; Aws A wg_ —mes,

(am) the numbers §(—@)Pwy AT, §(—=¢)Pw AT and §(—¢)P~do A
d°¢ N'T are bounded by a constant independent of j,
(bm) §x(=@)Pdd°hj NT = [ ¢jdd*(=¢)P AT
Proof. We shall use induction on m. We shall prove (ag) and (a,,)= (b, ),
(am )& (b )= (am1).
Proof of (ap). From the Stokes theorem we have
V(o) (ws —w) AT =p | (=¢)P'dp Nd°GNT > 0.
X X

So it is enough to check the boundedness of the numbers { (—¢)Pwy A T
In this special case these numbers are independent of j. Using the above
inequality we have

f(—opuk nwr™ < < [(=9)P(w)" < oo
X X
Proof of (am)=(bym). We have
[ (—o)rdd°g; AT = lim | (—¢y)Pdd°p; AT
X ok

(dd°¢; N'T need not be a positive measure, but can be written as a dif-
ference of two positive probability measures, hence we can use monotone
convergence). So we have

{(=gr)Pddee; AT = | ¢;dd°(—¢p)? AT
X X
(when both functions are bounded, integration by parts is legitimate). So

| sdde ()P AT — §(~o)Pddo; NT
X X

= lim | | ¢dd*(=9)" — (~o)) A T|

¢<—k

ghmsup(( { —jddc(—qb)p/\T‘+‘ { —jddc(—gbk)p/\TD
k—oo k b<—k

=: limsup(Ay + Bx).

k—o00
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Now we shall estimate A (the case of By is similar) using the Holder in-
equality:

A< lip | (moptadco T +]j | plo - 1)(=0)"2do ndGAT

¢<—k b<—k
= jp(‘ S (—)Ptwy AT | + ‘ S ()P 1w /\TD
o<~k oo
+ ‘j | pp—1)(=¢)P2dp Add A T’
$<—k
< jp( ¢<S_k(—¢)pw¢ A T) i ( ¢<§_k we A T) v
i _ (r-1)/p 1/p
+ jp< ¢<§_k( 6)Pw A T) (¢<S_kw A T)
+ipp =D ( | oy tdpndo A T) - (] donaon T)l/(p_l).
¢<—k bk

In each term the second factor tends to zero (since all these measures vanish
on pluripolar sets and we integrate over sets that decrease to {¢ = —o0}).
The first factors are bounded by (a,,), so we obtain limsup;_,., Ar = 0.
Analogously B, — 0 and we are done.

Proof of (am)&(bm)=>(am+1). Write T as T'= wg, A S. As in the proof
of (ag), it is enough to estimate the numbers {, (—¢)Pwy A T. We have

[ (—0pws AT = §(~¢)Pwy, Aws A S

X X
= [ (~@)Pw A wy A S + [ (~¢)Pddo; Aws A S.
X X

Now by (as,) the first term is bounded. It is easy to check that it is bounded
by § (—=#)P(wg)". Also by (b,,) we can integrate by parts in the second term
to obtain
V(=¢)rdd°g; nws A S = | ¢jdd(—¢)P Aws A S
X X
=p {(=¢;)(—0)" 'dd°p Awy A\ S
X
+p(p—1) | ¢j(—0)P2dp Ad°¢ Nwy A S.
X

But —¢; < ¢ and ¢; < 0, so the second term is nonpositive, and the first
can be estimated by
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pY(=0)(=0)" " dd°p Awy NS < p [ (=9)"wE A S,
X X
which according to (a,,) can be bounded by a constant independent of j.
Now it follows from our estimates that we can bound all the initial numbers

by (p+1)" §x (=¢)"(wy)". w

REMARK. Note that in the proof we used some special features of ¢;. We
conjecture that “integration by parts” holds in a much more general situation
(as in the flat case, see [Ce2]). In particular, it seems that integration by parts
is legitimate whenever one of the integrals is finite.

Now we are ready to prove that ¢; is a sequence solving our problem:

THEOREM 3.2.
sup | (—¢;)Pwp, < oc.
J X
Proof. Fix j. We have
[ (—orey < ((—p)Puwy,
X X

but by Lemma 3.1(a,) the last term is estimated by (p+1)" { (=@)P(we)",
which is finite by assumption. m

This argument is in fact the same as in Lemma 4.2 of [GZ2]. To prove
our next result we need more delicate estimates. We first prove

LEMMA 3.3. Let u be an w-psh function which belongs to £. Then
w + dd° max(u, —j) > X{u>—j}(w + dd“u)
in the sense of currents.

Proof. Analogous results for bounded functions are well known and can
be found in [BT2|, [K2]. Here we use similar arguments. Let S be a positive
form of bidegree (n — 1,n — 1). We have to prove that

(w+dduj) NS > Xqus—ji(w + ddu) AS.

It is enough to have this estimate on compact subsets K of {u > —j}. Fix
£ > 0. Using quasicontinuity of PSH(X, w) functions (see [GZ1]) one can find
an open set U with cap,,(U) < € and u = up on X \U for some continuous ug.
Let u® \, u as s — o0, u® € PSH(X,w)NC(X), and V; := {—j < up + t}
(t > 0). We have {—j < u® + t} on V;\U. Take any open V such that
K cV cV,UU. Then

| (w+ddu)n s
K
<liminf | (w+ddw’)AS <liminf | (w+dd°u®) A S+ 2jCe

§—00 §—00

VuU V\U
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for some constant C' (depending on S but not on j), which follows from the
CLN inequalities (see [CLN]). Indeed, it is enough to prove the inequality
for small compacts contained in coordinate charts and then apply classical
CLN inequalities. Now

lim inf S (w4 ddu’) NS +2jCe
§—00 W
<liminf | (w+ dd°max{u’ +t,—j}) A S +2jCe.
s—00 N
Let V X\, K to get
S(w +ddu) NS < S(w + dd°max{u +t,—j}) NS+ 2jCk,
K K
then let £ X\, 0 to end up with
S(w +ddu) NS < S(w + dd°max{u, —j}) NS + 2jCe.
K K

Now since ¢ is arbitrary and C depends only on .S but not on € we get the
desired conclusion. =

THEOREM 3.4. Let ¢ € ENLP(X,wg) and ¢; := max(¢, —j). Then
; —b VP = \ ()P
jlgélOS( ;) We; = S( ) Wep -
X
Proof. 1t follows from standard measure-theoretic arguments that
liminf \ (—¢;)Pw} > \ (—¢)Pw?,
m i )S(( ¢j)Pwg, = )S(( ¢)Pwg
so we have to prove that
limsup | (=¢;)Pwf < | (=¢)Pwp.
I x X
The proof will be inductive. We shall prove that
lim sup S (—qu)png Awh A wgfkfl < S (—gb)pwgfl AWt
J=ee x X
For k =n and [ = 0 we get the desired result. Let us start with £k =1 and [
arbitrary:

: l —k—1 l —k
lim sup S (=) Pwg; Aw' A wg < S(—¢)pw Awg .
Perhaps much simpler arguments would do, since the function is constant

and we have continuity results for decreasing sequences in £'. We neverthe-
less perform here some calculations since the main proof also uses similar
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estimates:
lim sup X(—¢)pw¢j AWt A w;“lfl = S(_¢)pw NN wg—lﬂ
j—oo I
+limsup | ¢;dd* ()P Ao Awp !
j—oo
= S (—p)Pw Aw! A wg_l_l
X
+ liﬁgp (}S{p(p — )i (—@)P *do N dp nw! AwfTH!

+ § p(=g)(—gpdd g Al Ay,
X

Now by monotone convergence (which is justified as in Lemma 3.1) this is
equal to

—p(p—1) Pldp Adp AW NG 4 p [ (—g)Pddg AWt AW
X

J (-0
X
+ S(_¢)pwl+l /\wg—l—l
X
( _

p—1) \(—¢)ddp ne' Nwli T +p {(—g)Pddop et Awl T

X X

+ § (0P AW = [ (—opwt AW,
X X
which was to be proved.

Assume the result holds for £ — 1 and arbitrary [. We shall prove it for &:
liin_)sup S (—(bj)pw(’;j Awh A wgfkfl

<X

< limsup S ¢idd(—p)P A wZ;l Awh A wgfkfl)
Jj—o0 X

X
< limsup [p(p -1) S bi(—P)P~2dp A d°p A wgfl Awh A wgfkfl
Jj—o0 X ’
—p S ¢j(_¢)p—1dd0¢ A w(’;j_l AWt A wg_k_l
X
+ §(oPug T Al AWy
X
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< limsup [p(p — 1) | 65(=6)" 2o A do Al nwl Awy !
J]—00 X

+p S di(—p)Prw A ng_l Awh A wg_k_l

1 k=1, 1 —k—l+1 k=1 ,  I+1 k1
$i(—oPP T AW Awp TR [ (—gpPuf Tt AW AWy ]
X

Now we can use Lemma 3.3 to bound from above the first two terms on the
right with x,~_;} times measures independent of j. Indeed,

p(p—1) | dj(=9)P2do A d°p AW AW AwpTH!

X
+p 50w A AWt AWy
X
S p(p — 1) S ¢j(—¢)p_2)({u>_j}d¢ A dc¢ A wg_l A\ wl A\ wg—k—l
X
+p | i (=P Xpus—jpw Awh T AW AW TR
X

Then we can use monotone convergence (for those terms), and induction
hypothesis for the next two. What we get reads

—p(p—1) [ (=¢)P g Ad°p AW AwpT T 4 p [ (0Pl Awp

X X
—(p—1) X(_¢)pwl+1 A wz—l—l
X
=p (ot nwp = (p—1) [ (o)t Al = (=)l AwlT,
X X X

which finishes the proof. =

We finish this section with an analogous result in the flat theory. Let us
recall some terminology. A domain {2 in C" is called hyperconvez if it admits
a negative exhaustion function, i.e a PSH function f such that {z € 2 |
f(z) < —c} cC 2 for all ¢ > 0. Let & be the set of bounded exhaustion
functions and £ the set of PSH functions for which one can define their
Monge-Ampére mass in such a way that the Monge-Ampére operator is
still continuous on decreasing sequences (see [Ce2]). Let FP be the subclass
of £ consisting of those functions g for which there exists a sequence g; € &
decreasing to g such that

(3.1) sup S(—gj)p(ddcgj)” < oo, sup S(ddcgj)" < 00.
7 0 I 0
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Finally, let F be the subclass of £ consisting of those functions g for which
there exists a sequence g; € & decreasing to g such that

sup S(ddcgj)" < 00
I 0
(for more details concerning these topics we refer to [Cel], [Ce2]).
One can prove the following result:

THEOREM 3.5. Let h € F be a function such that
\ (=n)P(dd°h)" < oc.
02
Then h € &EP| i.e. there exists a sequence of functions decreasing to h and
satisfying (3.1) and their p-energies tend to §,(—h)P(dd°h)".

Proof. Let hj := max{h,—j}. These functions need not belong to &
(they need not tend to 0 on the boundary, but of course they belong to
F), but if we take any w € & then w; := max{h;, mw} € & for any
positive m;. Now w; \, h; as m; — oo (but we keep j fixed!), we can fix m;
so large that wj;1 < wj and | §,((—w;)P(ddw;)"™ — (—h;)P(dd°hj)™)| < 1/j
(here we use the continuity of the Monge—Ampére operator on decreasing
sequences). Therefore we can restrict ourselves to the sequence h;:

J(=hj)P(ddhy)" < §(=h)P(dd°hy)" = | hjdd(~h)"(ddh;)" "
n 02 02
=p | (=hy) (=R~ (dd°hy)"
9]

+p(p— 1) | hj(—=h)P~2dh A d°h A (dd°hy)"!

02
< p {(=h)Pdd°h A (dd°h;)"
2
+p(p — 1) | hj(=R)P X (hs—jydh A d°h A (ddh)" !
02

where we have used the “flat” variant of Lemma 3.3 and integration by parts,
which is legitimate in F (see [Cel] and [Ce2|). Hence

limsup | (—h;)P(dd°h;)" < limsupp | (—h)Pdd°h A (dd°h;)™""
j—o0 ) Jj—00 0

—p(p—1) {(=h)P~dh A d°h A (dd°h)™!
2

3

< <Y PP —1) (=P dh A doR(ddh)" T + p* | (—h)P(dd )"
k=1 2 2
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= —p(p" -1 S(—h)pfldh A dh A (dd°R)™ 1 + p" S(—h)p(ddch)"
2 19

= — (" — 1) {(=n)P(dd°h)" + p™ \ (—=h)P(dd°n)" = | (—R)P(dd°h)".
(9] (9} (9}

4. Local comparison theorem. In [K1| the author proved the follow-
ing result:

THEOREM 4.1. Let u,v be PSH(X,w) N C(X) functions on a compact
n-dimensional Kdhler manifold. Then

S wy < S wy,.
{u<v} {u<v}

In that paper the author analyzed only continuous PSH(X,w) functions,
nevertheless it was claimed (see the remark after Theorem 2.1 in [K1]) that
the continuity assumption is redundant. It was also suggested that the gen-
eral case of bounded PSH(X,w) functions could be proved by using a qua-
sicontinuity argument. This can also be done by using a recent result from
[BK], namely one can approximate any bounded PSH(X,w) function by a
decreasing sequence of continuous w-plurisubharmonic functions.

Here we prove that this result still holds when u, v € EP for all p > 1. The
proof repeats arguments of [Cel| from the flat context. We shall concentrate
only on those points where slight adjustments are made.

LEMMA 4.2. Let ¢ € EP and ¢; = max{¢p, —j}. Then

S wggli}ggf S ng.
{u<v} {u<v}

Proof. Note that ¢; is a sequence as in the definition of £? for ¢ (due to

results in Section 3). Now one has to repeat the proof of Lemma 4.3 (first
part) in [Cel]. m

THEOREM 4.3. Let u,v € EP be functions on a compact n-dimensional
Kahler manifold. Then

X wy < X wy,.

{u<v} {u<v}

Proof. Let vj,u; be defined as above. Then

S w, < liminf lim S wy < liminf lim sup S Wy
j—oo k—oo J J—0 koo J
{u<v} {up<v} {ur<v;}
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Now Theorem 4.1 yields

lim inf lim sup S Wy, < limsup limsup S Way,
J—00 k—o00 Jj—00 k—o0

{ur<wv;} {u<wv;}
< limsup S wy = S Wy
J—oe {u<w;} {u<wv}

where we have used monotone convergence for the last equality. =
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