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Abstract. We extend the concept of r-order connections on fibred manifolds to the
one of (r,s,q)-order projectable connections on fibred-fibred manifolds, where r, s, q are
arbitrary non-negative integers with s > r < ¢. Similarly to the fibred manifold case,
given a bundle functor F of order r on (m1, msa, n1, n2)-dimensional fibred-fibred manifolds
Y — M, we construct a general connection F(I',A) : FY — J'FY on FY — M from a
projectable general (i.e. (1,1,1)-order) connection I : Y — J"''Y on Y — M by means
of an (r,r,r)-order projectable linear connection A : TM — J"""T'M on M.

In particular, for F = JY'! we construct a general connection Jl’l’l(F, V)
JHBY — JLgbbly on JUBY — M from a projectable general connection I on' Y — M
by means of a torsion-free projectable classical linear connection V on M. Next, we ob-
serve that the curvature of I' can be considered as Rr : J*V'Y — T"M @ VJVLY.
The main result is that if m1 > 2 and na > 1, then all general connections D(I,V) :
Jhly — Jgtgbbly on JYY'Y — M canonically depending on I' and V form the
one-parameter family J'"* (I, V) + tRpr, t € R. A similar classification of all general
connections D(I, V) : J'Y — J'J'Y on J'Y — M from (I, V) is presented.

1. Introduction. Higher order jets in the sense of C. Ehresmann
(see |[E2]) constitute a powerful tool in differential geometry and in many
areas of mathematical physics. They globalize the theory of differential sys-
tems and play an important role in the calculus of variations (see [S], [V]).
Higher order connections were first introduced on groupoids by C. Ehres-
mann (see [E1]) and next on arbitrary fibred manifolds by I. Kolar (see [KIJ).
Roughly speaking, higher order connections are sections of bundles of higher
order jets. Higher order connections play an important role in the theory of
higher order absolute differentiation (see [K1J). The theory of jets and con-
nections is closely related to the theory of natural operations in differential

2010 Mathematics Subject Classification: Primary 58 A20; Secondary 58A32.
Key words and phrases: fibred-fibred manifold, the (r, s, ¢)-jet prolongation, (r, s, g)-order
projectable connection, projectable general connection, natural operator.

DOI: 10.4064/ap101-3-4 [237] © Instytut Matematyczny PAN, 2011



238 J. Kurek and W. M. Mikulski

geometry (see [KMS]). The theory of jets and (principal) connections con-
stitutes the geometrical background for field theories and theoretical physics
(see [LR], [MM]).

In the present paper, an r-order connection on a fibred manifold
Y — M is a section @ : Y — J"Y of the r-jet prolongation J"Y — Y of
Y — M. For r = 1, we obtain the concept of general connectionsonY — M.
A general connection I' : Y — J'Y on Y — M can be equivalently defined
as the corresponding lifting map I' : Y X3y TM — TY. An r-order linear
connection on a vector bundle Y — M is an r-order connection on Y — M
which is additionally a vector bundle morphism © : Y — J"Y covering the
identity map idys of M. An r-order linear connection on a manifold M is an
r-order linear connection on the tangent bundle TM — M of M. A classical
linear connection on M is a first order linear connection on M. A classical
linear connection V : TM — JYT'M on M can be equivalently defined as
the corresponding covariant derivative V : X(M) x X (M) — X (M). A more
detailed notion of connection can be found in the fundamental monograph
[KMS].

In [K3] (see also [KMS| Section 45.1]), given a bundle functor F' of or-
der 7 on (m,n)-dimensional fibred manifolds Y — M, I. Kolar constructed
a general connection F(I',A) : FY — J'FY on FY — M from a general
connection I' : Y — J'Y on Y — M by means of an r-order linear con-
nection on M. In particular, for F = J' he obtained a general connection
JH,Y) 2 JY — JYJY on J'Y — M from a general connection I" on
Y — M by means of a torsion-free classical linear connection V on M. In
[KMS|, Sections 45.7-8], the authors presented another general connection
P(I,V) : J'YY — J'JY on J'Y — M and deduced that all general con-
nections D(I,V) : J'Y — J'J'Y on J'Y — M canonically depending on
I' and V form the one-parameter family t7'(I, V) + (1 —t)P(I', V), t € R,
where the first jet prolongation J'Z — Z of a fibred manifold Z — M (in
particular of Z = J'Y — M) is always endowed with the well-known affine
bundle structure with the corresponding vector bundle T*"M ® V Z.

In Section 2 of the present paper we observe that the curvature tensor
Rr:Y — /\2 T*M®VY of I' can be interpreted as the corresponding fibred
map Rr : J'Y — T*M ® VJ'Y covering the identity map of J'Y. So, all
general connections D(I,V) : JY — JYJY on J'Y — M canonically
depending on I' and V form the one-parameter family J'(I',V) + tRr,
teR.

In |[M1], the second author defined a fibred-fibred manifold to be a fibred
surjective submersion ¥ — M between fibred manifolds Y and M such
that the restrictions of it to fibres are submersions. Moreover, he defined
the so-called (r,s,q)-jet prolongation J"*?Y — Y of ¥ — M. In [K2],
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I. Kolaf observed that a fibred-fibred manifold can be defined as a fibred
square in the sense of J. Pradines (see [P]), and generalized the concept of
general connections on fibred manifolds to the one of (1,1, 1)-order square
connections on fibred squares. He also defined linear square connections of
order (r,s,q) on fibred manifolds.

In Section 3 of the present paper, we extend the concept of (1,1,1)-
order square connections to the one of (r, s, ¢)-order projectable connections
©:Y — J"%Y on fibred-fibred manifolds (also called (r, s, ¢)-order square
connections on fibred squares), where r, s, q are arbitrary non-negative inte-
gers with s > r < q. Next, we generalize the above-mentioned “construction”
F(I,V). Namely, given a bundle functor F' of order r on (mj,ma,ni,ng)-
dimensional fibred-fibred manifolds Y — M, we construct a general con-
nection F(I',A) : FY — J'FY on FY — M from a projectable general
(i.e. (1,1,1)-order square) connection I : Y — JUMY on Y — M by
means of an (r, r, r)-order projectable linear connection A : TM — J"""T M
on M (i.e. linear square connection of order (r,r,r) on the fibred man-
ifold M). In particular, for F = J“b! we obtain a general connection
Jghhirv) o Jgbkblty — Jgtgbbly on JHLY — M from a projectable
general connection I" on Y — M by means of a torsion-free projectable clas-
sical linear connection V on M. Moreover, we observe that the curvature
tensor Rp : Y — /\2 T*M ® VY can be interpreted as the corresponding
fibred map Ry : JYMY — T*M ® VJLLY covering the identity map of
J171»1Y,

In Section 4, we formulate and prove the main result of the present
paper saying that if m; > 2 and no > 1 then all general connections
D(I,V) : Jbbly — Jtgbbly on JULY — M canonically depending
on a projectable general connection I' : Y — JU5Y on an (my, ma, ny, na)-
dimensional fibred-fibred manifold ¥ — M and a torsion-free projectable
classical linear connection V on the fibred manifold M form the one-para-
meter family JV (I, V) +tRr, t € R. A similar classification of all general
connections D(I,V) : J'Y — J'J'Y on J'Y — M canonically depending
onI':Y — JLLY and V is also presented.

All manifolds and maps in the present paper are assumed to be of
class C*°.

2. On constructions on connections on fibred manifolds. Let I":
Y — J'Y be a general connection on a fibred manifold p : Y — M and V be
a torsion-free classical linear connection on M. Let J1(I',V) : J'Y — JLJY
be the induced general connection on J'Y — M (see Introduction). Using
JYI, V) one can produce the following family of general connections on
JY — M.
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EXAMPLE 2.1. It is well-known that p! : J'Y — Y (the target jet
projection) is (canonically) an affine bundle with the corresponding vec-
tor bundle T*M ® VY. Then p' : JLJ'Y — JY is (canonically) an affine
bundle with the corresponding vector bundle 7*M ® VJ'Y. The curvature
tensor Rp : Y — N2T*M @ VY of I' : Y — JY can be (in an obvi-
ous way) considered as a fibred map Ry : J'Y — T"M @ T*M @ VY C
T*M ® VJ'Y covering the identity map id iy, where the inclusion is in-
duced by the injection T*M ® VY — VJY from the known exact sen-
tence 0 — T*M ®@ VY — VJY — VY — 0 of vector bundles over
JY (the obvious pull-backs are not indicated). So, for any ¢t € R we have
the general connection Dy(I,V) := JYI,V) +tRp : J'Y — JLJY on
JY — M.

REMARK 2.2. The most general concept of natural operators can be
found in [KMS]. In particular, an FM,, ,-natural operator D : J' x Q(B)
~ JYJ' — B) transforming general connections I' on fibred manifolds
Y — M and torsion-free classical linear connections V on M into general
connections D(I', V) : J'Y — JLJY on J'Y — M is a family of FM,, -
invariant regular operators

D :Con(Y — M) x Q.(M) — Con(J'Y — M)

for all F M,,, ,-objects Y — M, where Con(Y — M) is the set of all general
connections on Y — M and Q, (M) is the set of all torsion-free classical
linear connections on M. The FM,, ,-invariance means that D(I", A) is Jf-
related to D(Ih,Ay) for any I' € Con(Y — M), It € Con(Y; — M),
V € Q-(M) and Vi € Q(M;) such that I' is f-related to I'y by an F M, ,,-
map f :Y — Yj covering f : M — M (ie. Jif oI’ = I o f) and V is
f-related (or more precisely T f-related) to Vi (i.e. J'TfoV = Vi oTf).
The regularity means that D transforms smoothly parametrized families of
connections into smoothly parametrized ones.

Thus (because of the canonical character of the construction of D¢(I', V)
in Example 2.1) we have the corresponding FM,, ,-natural operator D, :
J' X Q(B) ~ JY(J' — B) for any t € R.

We see that the classification result [KMS| Proposition 45.8] mentioned
in Introduction can be immediately reformulated as follows.

PROPOSITION 2.3. All F M, n-natural operators D : J' x Q.(B) ~
JYJY — B) form the one-parameter family Dy :== J' +tR, t € R.

3. On constructions on connections on fibred-fibred manifolds.

In this section we extend the results presented in the previous section to
fibred-fibred manifolds instead of fibred manifolds.
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A fibred-fibred manifold is a fibred surjective submersion p = (p,p) :
(py : Y =Y)— (pym : M — M) between fibred manifolds py : Y — Y and
py M — M covering p : Y — M such that the restrictions of p to the fi-
bres are submersions, orzequivalently) it is a fibred square p = (p, py, pam, P),
i.e. a commutative square diagram with arrows being surjective submersions
p:Y - M py Y Y pyy: M —- Mand p:Y — M such that
the system (p,py) : ¥ — M Xp Y of maps p and py is a submersion.
If pt = (php') : (pyr : Y — YhH — (pyp : MY — M*) is another
fibred-fibred manifold then a fibred-fibred map f : Y — Y' is a system
f=(ffi,fo,f)ofmaps f: Y - Y fi:Y - Yl fo: M - M" and
f: M — M?" such that the obvious cubic diagram is commutative.

A fibred-fibred manifold p = (p,p) : (py : Y = Y) — (ppr : M — M)
is of dimension (m1,ma,ny,ng) if dim(Y) = mq 4+ ma + n1 + ng, dim(M)
= my + mgy, dim(Y) = my + n; and dim(M) = my. The fibred-fibred
manifolds of dimension (mq,mg,n1,n2) and their local fibred-fibred diffeo-
morphisms form a local admissible category over manifolds (in the sense
of [KMS| Section 18]), which will be denoted by F2Mn, mgnymne- Any
F2 My my.ny np-object is locally isomorphic to the trivial fibred square (de-
noted by R ™M2:M1:n2) with vertices R™ x R™2 x R™ x R™, R™ x R™2,
R™t x R™ and R™ and arrows being obvious projections.

Let 7, s,q be non-negative integers with s > r < ¢. Let p = (p,p) :
(py : Y —Y) — (py : M — M) be a fibred-fibred manifold of dimen-
sion (mq,ma,n1,n2). According to [KMS, Section 12.19|, two fibred sec-
tions 01,09 : (pM:M—>M) — (py 1Y = Y)ofp:Y — M (ie.
fibred maps with p o o; = idys) covering sections g,,09 : M — Y of

: Y — M have the same (7, s, q)-jet jz*%01 = j%09 at x € M iff jloy =
jIO'Q, J20 = ji0s, ja(onm,) = Ji(o2)n, ), Where M, is the fibre of M over
z = par(z) € M. The space J"51Y of (r, s, q)-jets of fibred sections M — Y’
of p: Y — M is a fibred manifold over Y with respect to the target projection

P Y YUTE f = (f, fi, far f5) 2 Y — Y is an F2Mong g s
morphlsm then we have the fibred map J"9f : J™ S’QY — Jm%Y cov-

ering f given by J"%4f(jy*%0) = j;;q (foagofyh), ju™a € JoY.

The correspondence J™*9 : F2Mp, monyne — FM is a (regular) bundle
functor in the sense of [KMS|, which is called the (r,s,q)-jet prolonga-
tion functor. This functor J"*9 was first introduced by the second author
in [MI].

The space J™*1Y is also a fibred manifold over J7Y with respect to the
projection pg®? : J"51Y — J9Y given by pg”?(jz"0) = jio. Consequently,
J"®9Y" can be considered as a fibred-fibred manifold p"*? = (p"*9,p) :
(g™ J"5Y — JIY) — (py : Y — Y), where p?: J9Y — Y is the target
projection of the g-jet prolongation of the fibred manifold p : ¥ — M.
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The fibred-fibred manifold p™*? is called the (r, s, q)-jet prolongation of the
fibred-fibred manifold p.

The concept of higher order connections on fibred manifolds can be ex-
tended to the one of higher order projectable connections on fibred-fibred
manifolds as follows.

DEFINITION 3.1. Let 7, s,q be non-negative integers with s > r < ¢q. An
(r,s,q)-order projectable connection on a fibred-fibred manifold p = (p,p) :
(py : Y = Y) — (ppr : M — M) is a fibred section © : (py : Y — Y)
— (pg®*: J51Y — J9Y) (or briefly a fibred section © : Y — J"%9Y) of
pret = (pno9,p?) : (pg™? s JPHY — JIY) — (py 1 Y — Y) (or briefly of
phed ;. Jhsay Y) covering a section @ : Y — J9Y of p? : JIY — Y,
where p™®4 is the (r, s, q)-jet prolongation of p. a

A projectable general connection on a fibred-fibred manifold p is a
(1,1,1)-order projectable connection I : Y — J5L1Y on p, or (equiva-
lently) it is a square connection in the sense of [K2| on the fibred square p
(i.e. a pair of general connections I' : Y xpy TM — TY and I’ : Y X
TM — TY on the fibred manifolds p : ¥ — M and p : ¥ — M (re-

spectively) such that I" o (py Xia,, Tpm) = Tpy o). If p = (p,p) :
(py : Y = Y) = (pp : M — M) is a fibred-fibred vector bundle (i.e.
a fibred-fibred manifold such that p : ¥ — M and p : ¥ — M are
vector bundles and py : Y — Y is a vector bundle map covering pys :
M — M), then an (r,s,q)-order projectable linear connection on p is by
definition an (r,s,q)-order projectable connection & : Y — J"%7Y on
the fibred-fibred manifold p such that © : (p : ¥ — M) — (pop"? :
Jr$9Y  — M) is a vector bundle map covering idys (and consequently
O :p:Y - M) - (pop? : JIY — M) is a vector bundle map
covering idpr). An (r,5,q)-order projectable linear connection on a fibred
manifold ppr : M — M is an (r, s, q)-order projectable linear connection
A TM — J-%TM on the fibred-fibred vector tangent bundle pﬂ =
(p,,p%) : (Tpy : TM — TM) — (py : M — M), or (equivalently) it
is a linear square connection of order (r,s,q) in the sense of [K2] on pyy.
A projectable classical linear connection on a fibred manifold py; : M —
M is a (1,1,1)-order projectable linear connection V on pyy : M — M,
or (equivalently) a classical linear connection V on the manifold M such
that there is a (unique) pps-related (to V) classical linear connection V
on M.

Let F : F>Mom, mymnims — FM be a (regular) bundle functor of order
r in the sense of [KMS|. The construction F(I',A) from [K3] (mentioned
in Introduction) can be adapted to the fibred-fibred manifold situation as
follows.
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EXAMPLE 3.2. Let I' : Y — JVLY be a projectable general connec-
tion on an (mjy, msg,ni,ny)-dimensional fibred-fibred manifold p = (p,p) :
(py : Y = Y) - (pyy : M — M) and let A : TM — J""™"TM be
an (r,r,r)-order projectable linear connection on the fibred manifold py; :
M — M. Let us recall that a projectable-projectable vector field on p is
a vector field X € X(Y) on Y such that there exist underlying vector
fields Xy € X(M), Xy € X(Y) and Xy € X(M) such that X is p-
related to Xy, X is py-related to Xy, Xy is py-related to Xp; and Xy
is p-related to X7, or (equivalently) the flow Exp(tX) of X is formed
by F2Mn, my.ny.mp-morphisms. So, similarly to the fibred manifold case,
the flow operator F of F' lifting projectable-projectable vector fields X
on p into vector fields FX := %lt:OF(Exp(tX)) on FY (we can apply

F as Exp(tX) is an F2Mp, my.ny np-map) is of order 7, and then it can
be interpreted as the flow morphism F : FY xy J"T,i05projY — TFY,
F(v,jyX) = FX(v),ve F,Y,y €Y, X € Xpojproj(p : Y — M). Since
the general connection I' : Y X3y TM — TY on p is projectable, the I'-
horizontal lift X© of a projectable vector field X on pas (defined by X |FZ =
F(z,gm(z)), z € Y) is a projectable-projectable vector field on p. Then
(as in the fibred manifold case) we have FIL:FY xy J TorojM — TFY,
FI(v,jiX) = Fo,j5(X), v € F)Y, y € Yo, 2 € M, X € Xproj(par :
M — M). So, applying A : TM — J"""TM = J Ty M, we get a gen-
eral connection F(I, A) = FI' o (idpy xA) : FY x3y TM — TFY on
FY — M.

In particular, if F = J%1! we have the general connection J111 (I, V) :
JLUY — Jtgbbly on JLLY — M for any projectable general connec-
tion I : Y — JLLY on the fibred-fibred manifold p and a (torsion-free)
projectable classical linear connection V on the fibred manifold pys. Now,
quite similarly to Section 2, using J111(I', V) one can produce the following
family of general connections on JV'Y — M from a projectable general
connection I : Y — J5L1Y on p by means of a (torsion-free) projectable
classical linear connection V on pyy.

ExAMPLE 3.3. In Example 2.1, we observed that the curvature tensor
Rr: Y — N’T*M @ VY of I (treated as a general connection on the
fibred manifold p : Y — M) can be considered as the fibred map Rp :
JY — T*M @ VJ'Y. Now (see Remark 4.3 in the next section), using
the “special” coordinates from Lemma 4.2 and the characterization (4.1)
(see the next section) of VJL11Y (the vertical bundle of JHU1Y — M)
and recalling what is the curvature of I' (e.g. from [KMS]), one can rather
easily verify that (in our situation of projectable I') R restricts to a fibred
map Rp : JUMY — T*M @ VJHHY covering id j1.1.1y. On the other hand,
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JYHIJEBY — M) — J5L1Y s (canonically) an affine bundle with the cor-
responding vector bundle T*M ® VJHU1Y . So, given t € R we have the
general connection Dy(I', V) := JW YT V) +tRp - JWBY — JLIBLLY on
JELY — M.

REMARK 3.4. Quite similarly to Remark 2.2, an F?Mu, mynyno-
natural operator D : Jgiﬁl X Qrproj(B) ~ JYJMY — B) is a family of
F2 Moy mo.ny .mp-invariant regular operators

D : Conproj(p: Y — M) X Qrproj(prs : M — M) — Con(Jl’l’lY — M)

for all F2 My ma.nyma-objects p (as above), where Conproj(p : Y — M) is
the set of all projectable general connections on the fibred-fibred manifold p,
Qr-proj (par 2 M — M) is the set of all torsion-free projectable classical linear
connections on the fibred manifold py; and Con(JY5Y — M) is the set of
all general connections on JHH1Y — M.

Thus (because of the canonical character of the construction D:(I, V)
from Example 3.3) we have the corresponding F2 M, mg nyny-natural op-
erator Dy : J;;éj]-l X Qr-proj(B) ~ JY(JL1 — B) for any t € R.

4. The main result. The main result of the present paper is the fol-
lowing classification theorem extending Proposition 2.3.

THEOREM 4.1. If my > 2 and no > 1, then all fQMmhmz,nhnz -natural
operators D : J;I%’jl X Qrproj(B) ~ JYH(JLYL — B) form the one-parameter
family Dy := JYV 4+ 1R, t € R.

The proof of the above theorem will occupy the rest of this section.

Forj=1,...,mgand s =1,...,ng we put [j] := m1+7j and (s) := ni+s.

Let xz,xm,yq ,y%) be the usual fibred-fibred coordinates on the trivial

3 , ni, oyt oyl <s>_8<5> <3>_8<-5>
fibred square R™™2™072, il = 55, yly = g % = T Y] = gaBl
be the additional coordinates on the first jet prolongation J!R™12:m1:m2 of
the fibred manifold R™! x R™2 x R™ x R"2 — R™ x R™2 and Y? = dy?,

() — go{s) v _ 2.0 va _ 3.0 () _ g (s) yA(s) _ 4 (s) }
Y dy**’, Y; dy;, Y[j] dy[j], Y, dy;™’, Y[j] dy[j] be the essen
tial coordinates on the vertical bundle V JIR™t:m2nin2 of JIRM1M2,0102
RMtm2 =1 ... my,j=1,...,mo,q=1,...,n1,5=1,...,n09.

The (1,1, 1)-jet prolongation of the fibred-fibred manifold R™1.72m1,m2
can be characterized as the subset JLIR™bm2n0n2 ¢ JIRMLM211m2 gatig
fying the equalities y{zj] =0,g=1,...,n1,j =1,...,mo. Similarly, the verti-
cal bundle of JLLIR™LM2.n1n2 _ Ratm2 i the subset VJ 1 LIR™1m2m1.02
C VJIR™m2mm2 gatisfying (on J1HIR™LM2:m1m2) the equalities

(4.1) Y[;I.]:O, g=1,...,n1,7=1,...,ma.
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Consequently, on JLLIR™1m2:m1m2 we have the additional coordinates yl =

g?j:zv yz'<8> - ag;?’ [<g8]> 8y< > ,and on V JLLIR™MEM2m1m2 we have the essen-
tial coordinates Y7 = dyq, Y< ) = dy'®), Y = dy?, Y;<S> = dyis>, [<}> d [<j1>,
g=1,...,n1,s=1,...,n0,0=1,...,mq, 5 =1,...,mo.

The following lemma can be treated as a fibred-fibred manifold version
of [M2], Proposition 2.2(a) for r = 1].

LEMMA 4.2. Let I’ : Y xp TM — TY be a projectable general
connection on an F M, myny ny-object p = (p,p) : (py : Y — Y) —
(par : M — M) and V be a torsion-free projectable classical linear con-
nection on pyy : M — M. Let y, € Y and z, = p(yo) € M. Then
there exists an F M, mymnyns-chart 1 on'Y covering a V-normal fibred
coordinate system on M with centre x, such that ¥ (y,) = (0,0,0,0) and
j(10707070)(1/1*f) = j(10,070’0)F, where I' is of the form

mi ‘ 8 mo '
_ i 2 (4]
(42) I = de ® 5 +;dx ® =7

. b
+ Z ZAHD Zldl‘w@aqu—{_ Z ZB’”? Zldxm@@y@)

11,7,2 1q 1 21,12 1s=1
m1 mo n2 mip m2 n2
St g [J] s
£ 3038 peanti 08535 st 0
2—13—15*1 i=1 j=1 s=1
0
s plil gyl
+ Z ZE dzl?l @ )
J1,J2=1s=1
for some real numbers Alm, iy Ciyr D3 and E3 ) satisfying
(4'3) A;ZUQ - _A;12Z1’ Blslm - Bls2117 ij = _DJSZ’ Ejslh - EJS231
fOTi,il, 2 = 17"'7m1y j7]17,72 = 17"'7m2y q= 17"'7”17 s = 17"'7”2-

If ¢ is a chart having the above properties, then so is (A X B) o 4
for any A € GL(myi,me) (= the group of fibred linear isomorphisms
(R™ x R™2 — R™) — (R™ x R™2 — R™)) and B € GL(n1,nz2).

Proof. Choose an F2Mn, mynymp-chart ¢ on Y covering a V-normal
fibred coordinate system on M with centre z, € M such that ¢(y,) =
(0,0,0,0). Replacing (f,V) by . (I", V), we can additionally assume that
Y = R™mum2nnnz g0 = (0,0,0,0) and that the identity map on R™ x R™2
is a V-normal fibre coordinate system with centre (0,0). So, one can write

. , 0
]%0707070)(1—1 0000 <Zd(£ X — +Zd1‘m®8]+)
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with the dots denoting

- 0
TS 5B SV da* S Sman e 0

i1,i0=1 q=1 i1,i2=1 s=1

mi1 m2 N2 mi1 m2 n2

+ZZZCS idali []]dx ®

Oy(s)
11]131 zl]lsl y

+ Z Z j1i2® bl el

Ji,J2=1s=1 1= 1II!I1 1
mip mi1 N2

DD W

i=1 g=1 s=1 115511

0
QIqul da' @ Ayt

slzy a (s)

m2 nip N2

+ZZstqudUCm ® — —i—Z Z €5,y (s1) gpli 88( ;

j=1g=1 s=1 j=1s,51=1
mi1 ni mi mn2
355 @szgm o 50
1=1 q=1 1=1 s=1
mo na
sdxll &
35St 0 0
j=1s=1
for some real numbers A? PRI (because of the projectability of ]:’)

Now, replacing I" by (wl)*f, where ¢ : R™Mom2n0m2 _y RMLM2,1NLN2 g
an F2Mn, my ny.np-map such that (defined by)

ot = (o 3510 0S5 )
i=1 j=1 =1

for any v = (v),0l]) € R™*+™2 and w = (w9, w'®) € R we can
additionally assume that in ([£.4) we have f! =0 and g; =0, h% = 0.

Next, replacing I" by (12)s1, where 1y : R71m2:01m2 _, RiMA,m2,m1,12 jg
a local F2 M, my.ny np-map such that (defined by)

o (v, w) = ( (wq Z Z aj v wq1> i (w' — ... )?;)

i=1 g1=1
with the dots denoting
mo N1 mi1 ni
DD LENTCICED 9) SUNCIIES B) DNGTELED 9p LA
j=1s1=1 j=1¢q=1 i=1 s1=1 =1 g=1

for any v = (v, vb]) € R™*™2 and w = (w9, w') € R™™™ we can
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additionally assume that in (4.4) we have e . =0, dyi =0,¢5,;,=0,by, =0
and a?

s17 S11 » Yqi
.= 0.
q1?

Finally, replacing I by (¢3).I", where 13 : R™1m2n1.m2 _, Rim1,m2,nm1,n2
is a local F2 M, my.ny .np-map such that (defined by)

1 mi . . ni 1 n2
P3(v,w) = (v, (wq—Z | Z (A§1i2+A§2i1)v“v”> ; (w[s] _5(. ..)) )

q= s=1

with the dots denoting

mi mi1 ma ma

D (BlutBl)v v 43 Y (CtDi'e 3 (B4 )bl
iy ig=1 i=1 j=1 J1.j2=1

for any v = (v, 0l)) € R™+™2 and w = (w9, w'®) € Rt we can
aiditionaliy assurrze that in 1} we have AY, = —Al. B}, = —Bj,,
Cij = —Dji and B, = —Ej,;,.

Thus the proof of the main part of the lemma is complete.
The last sentence of the lemma is a simple observation. =

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Put A(I'V) := D(IV) — J-L(I, V)
JULYY — T*M @ VJLLYY . As D(I0, V) is determined by A(I, V), it suf-
fices to study the F2 M, mo ny mp-natural operator A corresponding to the
construction A(I, V).

Using the invariance of A with respect to the homotheties t idgm;.mg.ny.ng
for ¢t > 0, the non-linear Peetre theorem (see [KMS]) and the homogeneous
function theorem one can easily observe that A is of order 1 in I" and of
order 0 in V. Then (using Lemma 4.2, the invariance of A with respect
to F M, mg,nino-charts, the regularity of A and the density of respective
GL(m1,m2) x GL(n1,n2)th orbits) one can rather standardly deduce that
A is determined by the values (contractions)

0
4.5 yin2) [ AL VO — R
(4.5) < " 'p’< (v )<p)’3wm1‘1(0,0)>> ©

and

(4.6) <Y|;”2>, <A(F, Vo) (p), 8%”‘1_1(070)» eR

for all p € (J1’171Rm1’m2’”1’"2)(0’070’0) and all projectable general connec-
tions I' on R™™2n1n2 of the form (4.2) with coefficients satisfying (4.3)

(Yn(f?) and % exist as my > 2 and ng > 1), where V? is the flat pro-

jectable classical linear connection on the trivial bundle R™! x R™2 — R™1,
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One can easily see that the (local) F My, myny n,-map ¢ : RM1M2:7102

— R™M1m2:11n2 given by
v, w) = (v, (wq)gél,w<1>, w2 4 (pine))2))

where v = (v, vl]) € R™1+72 4y = (w7, w*)) € RM+72 preserves #KO 0’
j(oooo)F7 Ve and sends Yn§12> into Yn<{?> + 2y7<7?12>Y<”2> over (0,0,0,0) €
R™1m2m12 (we have y("2) = 0 over (0 0,0,0)). Then (by the invariance of
A with respect to 1) the values (4.6)) for all I’ satlsfylng and (4.3] and
all p as above are determined by the values ) for all F satlsfylng
and (4.3) and all p as above.

Consequently, A is uniquely determined by the values (4.5) for all I’

satisfying (4.2]) and (4.3) and all p as above.
On the other hand, by the invariance of A with respect to the “homoth-

eties” 1y, : RMum2ninz — Rmimaninz (for all t = (t;,t;)) € RT77™2 and

T = (74, T(s)) € R’ 72) given by

an et = ((30): (t[lﬂvm) (), (70 ).

v = (v, 0ll) € Rmitm2 = (w9, w'®) € R+ we deduce (using the
homogeneous function theorem) that the value . for I satisfying (4
and (4.3)) and p as above is a constant multiple of B( 2 Dy = —Bml(m1 1)
Therefore the vector space of all A (as above) is of dimension < 1.

The proof of Theorem 4.1 is complete.

REMARK 4.3. In Example 3.3 we used the inclusion im(Rr) C T*M ®
VJEHLLY  We can prove this inclusion as follows. We see that R is of first
order in I'. Then (because of Lemma 4.2 and equalities ([.1])) it suffices to
observe that

(48) <Y§”p’ <Rr(p)’ aaﬂvil(o,O)>> =0

and

0
q 0 —
(49) <}/[j]p’ <RF<10)7 O] (070)>> =0

for any I of the form with coefficients satisfying (4.3)), 7,71 = 1,...,ma,
q = 1 nl, i=1,...,myand any p € (Jl’l’lle’mQ’”l’”Q)(o 0,0,0)- To show
and we use the invariance of the operator R with respect to the
hornothetles and then apply the homogeneous function theorem.

EXAMPLE 4.4. Considering (mq,mg,n1,n2)-dimensional fibred-fibred
manifolds p = (p.p) : (py : Y — ¥) — (par : M — M) as (m1 + mo.
n1 + ng)-dimensional fibred manifolds p : Y — M we have the “inclusion”
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F2 Moy momymg — FMumytmam+ns (the “forgetting” functor being injec-
tive on morphisms). So, we have the “restriction” J' : F2 M, monims —
FM of Jb 1 FMuytmymysn, — FM. Any projectable general connec-
tion on an F2Mn, mynymp-object p is also a general connection on the
F M pni+mani4+ne-0bject p. Any torsion-free projectable classical linear con-
nection on the fibred manifold M is also a torsion-free classical linear con-
nection on the manifold M. So (because of Example 2.1), for any t € R we
have the .’FQMml,mzm,nz—natural operator J' + tR : Jéroj X Qrproj(B) ~
JY(J' — B) producing general connections J(I, V) +tRp : J'Y — JLJ'Y
on J'Y — M from projectable general connections I" on F2 M, my.ny.na-
objectsp = (p,p) : (py : Y = Y) — (pm : M — M) by means of torsion-free

projectable classical linear connections V on pys : M — M.
Quite similarly to Theorem 4.1 one can prove the following one.

THEOREM 4.5. If my > 2 and ny > 1 then all F My, mo.ny no-natural
operators D : ngj X Qr-proj(B) ~ JY(J' — B) form the one-parameter
family J' +tR, t € R.
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