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Abstract. We extend the concept of r-order connections on fibred manifolds to the
one of (r, s, q)-order projectable connections on fibred-fibred manifolds, where r, s, q are
arbitrary non-negative integers with s ≥ r ≤ q. Similarly to the fibred manifold case,
given a bundle functor F of order r on (m1,m2, n1, n2)-dimensional fibred-fibred manifolds
Y → M , we construct a general connection F(Γ,Λ) : FY → J1FY on FY → M from a
projectable general (i.e. (1, 1, 1)-order) connection Γ : Y → J1,1,1Y on Y →M by means
of an (r, r, r)-order projectable linear connection Λ : TM → Jr,r,rTM on M .

In particular, for F = J1,1,1 we construct a general connection J 1,1,1(Γ,∇) :
J1,1,1Y → J1J1,1,1Y on J1,1,1Y →M from a projectable general connection Γ on Y →M
by means of a torsion-free projectable classical linear connection ∇ on M . Next, we ob-
serve that the curvature of Γ can be considered as RΓ : J1,1,1Y → T ∗M ⊗ V J1,1,1Y .
The main result is that if m1 ≥ 2 and n2 ≥ 1, then all general connections D(Γ,∇) :
J1,1,1Y → J1J1,1,1Y on J1,1,1Y → M canonically depending on Γ and ∇ form the
one-parameter family J 1,1,1(Γ,∇) + tRΓ , t ∈ R. A similar classification of all general
connections D(Γ,∇) : J1Y → J1J1Y on J1Y →M from (Γ,∇) is presented.

1. Introduction. Higher order jets in the sense of C. Ehresmann
(see [E2]) constitute a powerful tool in differential geometry and in many
areas of mathematical physics. They globalize the theory of differential sys-
tems and play an important role in the calculus of variations (see [S], [V]).
Higher order connections were first introduced on groupoids by C. Ehres-
mann (see [E1]) and next on arbitrary fibred manifolds by I. Kolář (see [K1]).
Roughly speaking, higher order connections are sections of bundles of higher
order jets. Higher order connections play an important role in the theory of
higher order absolute differentiation (see [K1]). The theory of jets and con-
nections is closely related to the theory of natural operations in differential
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geometry (see [KMS]). The theory of jets and (principal) connections con-
stitutes the geometrical background for field theories and theoretical physics
(see [LR], [MM]).

In the present paper, an r-order connection on a fibred manifold
Y →M is a section Θ : Y → JrY of the r-jet prolongation JrY → Y of
Y →M . For r = 1, we obtain the concept of general connections on Y →M .
A general connection Γ : Y → J1Y on Y → M can be equivalently defined
as the corresponding lifting map Γ : Y ×M TM → TY . An r-order linear
connection on a vector bundle Y →M is an r-order connection on Y →M
which is additionally a vector bundle morphism Θ : Y → JrY covering the
identity map idM of M . An r-order linear connection on a manifold M is an
r-order linear connection on the tangent bundle TM →M of M . A classical
linear connection on M is a first order linear connection on M . A classical
linear connection ∇ : TM → J1TM on M can be equivalently defined as
the corresponding covariant derivative ∇ : X (M)×X (M)→ X (M). A more
detailed notion of connection can be found in the fundamental monograph
[KMS].

In [K3] (see also [KMS, Section 45.1]), given a bundle functor F of or-
der r on (m,n)-dimensional fibred manifolds Y → M , I. Kolář constructed
a general connection F(Γ,Λ) : FY → J1FY on FY → M from a general
connection Γ : Y → J1Y on Y → M by means of an r-order linear con-
nection on M . In particular, for F = J1 he obtained a general connection
J 1(Γ,∇) : J1Y → J1J1Y on J1Y → M from a general connection Γ on
Y → M by means of a torsion-free classical linear connection ∇ on M . In
[KMS, Sections 45.7–8], the authors presented another general connection
P (Γ,∇) : J1Y → J1J1Y on J1Y → M and deduced that all general con-
nections D(Γ,∇) : J1Y → J1J1Y on J1Y → M canonically depending on
Γ and ∇ form the one-parameter family tJ 1(Γ,∇) + (1− t)P (Γ,∇), t ∈ R,
where the first jet prolongation J1Z → Z of a fibred manifold Z → M (in
particular of Z = J1Y →M) is always endowed with the well-known affine
bundle structure with the corresponding vector bundle T ∗M ⊗ V Z.

In Section 2 of the present paper we observe that the curvature tensor
RΓ : Y →

∧2 T ∗M⊗V Y of Γ can be interpreted as the corresponding fibred
map RΓ : J1Y → T ∗M ⊗ V J1Y covering the identity map of J1Y . So, all
general connections D(Γ,∇) : J1Y → J1J1Y on J1Y → M canonically
depending on Γ and ∇ form the one-parameter family J 1(Γ,∇) + tRΓ ,
t ∈ R.

In [M1], the second author defined a fibred-fibred manifold to be a fibred
surjective submersion Y → M between fibred manifolds Y and M such
that the restrictions of it to fibres are submersions. Moreover, he defined
the so-called (r, s, q)-jet prolongation Jr,s,qY → Y of Y → M . In [K2],
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I. Kolář observed that a fibred-fibred manifold can be defined as a fibred
square in the sense of J. Pradines (see [P]), and generalized the concept of
general connections on fibred manifolds to the one of (1, 1, 1)-order square
connections on fibred squares. He also defined linear square connections of
order (r, s, q) on fibred manifolds.

In Section 3 of the present paper, we extend the concept of (1, 1, 1)-
order square connections to the one of (r, s, q)-order projectable connections
Θ : Y → Jr,s,qY on fibred-fibred manifolds (also called (r, s, q)-order square
connections on fibred squares), where r, s, q are arbitrary non-negative inte-
gers with s ≥ r ≤ q. Next, we generalize the above-mentioned “construction”
F(Γ,∇). Namely, given a bundle functor F of order r on (m1,m2, n1, n2)-
dimensional fibred-fibred manifolds Y → M , we construct a general con-
nection F(Γ,Λ) : FY → J1FY on FY → M from a projectable general
(i.e. (1, 1, 1)-order square) connection Γ : Y → J1,1,1Y on Y → M by
means of an (r, r, r)-order projectable linear connection Λ : TM → Jr,r,rTM
on M (i.e. linear square connection of order (r, r, r) on the fibred man-
ifold M). In particular, for F = J1,1,1 we obtain a general connection
J 1,1,1(Γ,∇) : J1,1,1Y → J1J1,1,1Y on J1,1,1Y → M from a projectable
general connection Γ on Y →M by means of a torsion-free projectable clas-
sical linear connection ∇ on M . Moreover, we observe that the curvature
tensor RΓ : Y →

∧2 T ∗M ⊗ V Y can be interpreted as the corresponding
fibred map RΓ : J1,1,1Y → T ∗M ⊗ V J1,1,1Y covering the identity map of
J1,1,1Y .

In Section 4, we formulate and prove the main result of the present
paper saying that if m1 ≥ 2 and n2 ≥ 1 then all general connections
D(Γ,∇) : J1,1,1Y → J1J1,1,1Y on J1,1,1Y → M canonically depending
on a projectable general connection Γ : Y → J1,1,1Y on an (m1,m2, n1, n2)-
dimensional fibred-fibred manifold Y → M and a torsion-free projectable
classical linear connection ∇ on the fibred manifold M form the one-para-
meter family J 1,1,1(Γ,∇)+ tRΓ , t ∈ R. A similar classification of all general
connections D(Γ,∇) : J1Y → J1J1Y on J1Y → M canonically depending
on Γ : Y → J1,1,1Y and ∇ is also presented.

All manifolds and maps in the present paper are assumed to be of
class C∞.

2. On constructions on connections on fibred manifolds. Let Γ :
Y → J1Y be a general connection on a fibred manifold p : Y →M and ∇ be
a torsion-free classical linear connection onM . Let J 1(Γ,∇) : J1Y → J1J1Y
be the induced general connection on J1Y → M (see Introduction). Using
J 1(Γ,∇) one can produce the following family of general connections on
J1Y →M .
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Example 2.1. It is well-known that p1 : J1Y → Y (the target jet
projection) is (canonically) an affine bundle with the corresponding vec-
tor bundle T ∗M ⊗ V Y . Then p1 : J1J1Y → J1Y is (canonically) an affine
bundle with the corresponding vector bundle T ∗M ⊗ V J1Y . The curvature
tensor RΓ : Y →

∧2 T ∗M ⊗ V Y of Γ : Y → J1Y can be (in an obvi-
ous way) considered as a fibred map RΓ : J1Y → T ∗M ⊗ T ∗M ⊗ V Y ⊂
T ∗M ⊗ V J1Y covering the identity map idJ1Y , where the inclusion is in-
duced by the injection T ∗M ⊗ V Y → V J1Y from the known exact sen-
tence 0 → T ∗M ⊗ V Y → V J1Y → V Y → 0 of vector bundles over
J1Y (the obvious pull-backs are not indicated). So, for any t ∈ R we have
the general connection Dt(Γ,∇) := J 1(Γ,∇) + tRΓ : J1Y → J1J1Y on
J1Y →M .

Remark 2.2. The most general concept of natural operators can be
found in [KMS]. In particular, an FMm,n-natural operator D : J1 ×Qτ (B)
 J1(J1 → B) transforming general connections Γ on fibred manifolds
Y → M and torsion-free classical linear connections ∇ on M into general
connections D(Γ,∇) : J1Y → J1J1Y on J1Y → M is a family of FMm,n-
invariant regular operators

D : Con(Y →M)×Qτ (M)→ Con(J1Y →M)

for all FMm,n-objects Y →M , where Con(Y →M) is the set of all general
connections on Y → M and Qτ (M) is the set of all torsion-free classical
linear connections onM . The FMm,n-invariance means thatD(Γ,Λ) is J1f -
related to D(Γ1, Λ1) for any Γ ∈ Con(Y → M), Γ1 ∈ Con(Y1 → M1),
∇ ∈ Qτ (M) and ∇1 ∈ Qτ (M1) such that Γ is f -related to Γ1 by an FMm,n-
map f : Y → Y1 covering f : M → M1 (i.e. J1f ◦ Γ = Γ1 ◦ f) and ∇ is
f -related (or more precisely Tf -related) to ∇1 (i.e. J1Tf ◦ ∇ = ∇1 ◦ Tf).
The regularity means that D transforms smoothly parametrized families of
connections into smoothly parametrized ones.

Thus (because of the canonical character of the construction of Dt(Γ,∇)
in Example 2.1) we have the corresponding FMm,n-natural operator Dt :
J1 ×Qτ (B) J1(J1 → B) for any t ∈ R.

We see that the classification result [KMS, Proposition 45.8] mentioned
in Introduction can be immediately reformulated as follows.

Proposition 2.3. All FMm,n-natural operators D : J1 × Qτ (B)  
J1(J1 → B) form the one-parameter family Dt := J 1 + tR, t ∈ R.

3. On constructions on connections on fibred-fibred manifolds.
In this section we extend the results presented in the previous section to
fibred-fibred manifolds instead of fibred manifolds.
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A fibred-fibred manifold is a fibred surjective submersion p = (p, p) :
(pY : Y → Y )→ (pM : M →M) between fibred manifolds pY : Y → Y and
pM : M → M covering p : Y → M such that the restrictions of p to the fi-
bres are submersions, or (equivalently) it is a fibred square p = (p, pY , pM , p),
i.e. a commutative square diagram with arrows being surjective submersions
p : Y → M , pY : Y → Y , pM : M → M and p : Y → M such that
the system (p, pY ) : Y → M ×M Y of maps p and pY is a submersion.
If p1 = (p1, p1) : (p1

Y 1 : Y 1 → Y 1) → (p1
M1 : M1 → M1) is another

fibred-fibred manifold then a fibred-fibred map f : Y → Y 1 is a system
f = (f, f1, f2, f) of maps f : Y → Y 1, f1 : Y → Y 1, f2 : M → M1 and
f : M →M1 such that the obvious cubic diagram is commutative.

A fibred-fibred manifold p = (p, p) : (pY : Y → Y ) → (pM : M → M)
is of dimension (m1,m2, n1, n2) if dim(Y ) = m1 + m2 + n1 + n2, dim(M)
= m1 + m2, dim(Y ) = m1 + n1 and dim(M) = m1. The fibred-fibred
manifolds of dimension (m1,m2, n1, n2) and their local fibred-fibred diffeo-
morphisms form a local admissible category over manifolds (in the sense
of [KMS, Section 18]), which will be denoted by F2Mm1,m2,n1,n2 . Any
F2Mm1.m2,n1,n2-object is locally isomorphic to the trivial fibred square (de-
noted by Rm1,m2,n1,n2) with vertices Rm1 × Rm2 × Rn1 × Rn2 , Rm1 × Rm2 ,
Rm1 × Rn1 and Rm1 and arrows being obvious projections.

Let r, s, q be non-negative integers with s ≥ r ≤ q. Let p = (p, p) :
(pY : Y → Y ) → (pM : M → M) be a fibred-fibred manifold of dimen-
sion (m1,m2, n1, n2). According to [KMS, Section 12.19], two fibred sec-
tions σ1, σ2 : (pM : M → M) → (pY : Y → Y ) of p : Y → M (i.e.
fibred maps with p ◦ σi = idM ) covering sections σ1, σ2 : M → Y of
p : Y →M have the same (r, s, q)-jet jr,s,qx σ1 = jr,s,qx σ2 at x ∈M iff jrxσ1 =
jrxσ2, j

q
xσ1 = jqxσ2, j

s
x(σ1|Mx

) = jsx(σ2|Mx
), where Mx is the fibre of M over

x = pM (x) ∈M . The space Jr,s,qY of (r, s, q)-jets of fibred sections M → Y
of p : Y →M is a fibred manifold over Y with respect to the target projection
pr,s,q : Jr,s,qY → Y . If f = (f, f1, f2, f3) : Y → Y 1 is an F2Mm1,m2,n1,n2-
morphism then we have the fibred map Jr,s,qf : Jr,s,qY → Jr,s,qY 1 cov-
ering f given by Jr,s,qf(jr,s,qx σ) = jr,s,qf2(x)(f ◦ σ ◦ f

−1
2 ), jr,s,qx σ ∈ Jr,s,qY .

The correspondence Jr,s,q : F2Mm1,m2,n1,n2 → FM is a (regular) bundle
functor in the sense of [KMS], which is called the (r, s, q)-jet prolonga-
tion functor . This functor Jr,s,q was first introduced by the second author
in [M1].

The space Jr,s,qY is also a fibred manifold over JqY with respect to the
projection pr,s,qq : Jr,s,qY → JqY given by pr,s,qq (jr,s,qx σ) = jqxσ. Consequently,
Jr,s,qY can be considered as a fibred-fibred manifold pr,s,q = (pr,s,q, pq) :
(pr,s,qq : Jr,s,qY → JqY )→ (pY : Y → Y ), where pq : JqY → Y is the target
projection of the q-jet prolongation of the fibred manifold p : Y → M .
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The fibred-fibred manifold pr,s,q is called the (r, s, q)-jet prolongation of the
fibred-fibred manifold p.

The concept of higher order connections on fibred manifolds can be ex-
tended to the one of higher order projectable connections on fibred-fibred
manifolds as follows.

Definition 3.1. Let r, s, q be non-negative integers with s ≥ r ≤ q. An
(r, s, q)-order projectable connection on a fibred-fibred manifold p = (p, p) :
(pY : Y → Y ) → (pM : M → M) is a fibred section Θ : (pY : Y → Y )
→ (pr,s,qq : Jr,s,qY → JqY ) (or briefly a fibred section Θ : Y → Jr,s,qY ) of
pr,s,q = (pr,s,q, pq) : (pr,s,qq : Jr,s,qY → JqY ) → (pY : Y → Y ) (or briefly of
pr,s,q : Jr,s,qY → Y ) covering a section Θ : Y → JqY of pq : JqY → Y ,
where pr,s,q is the (r, s, q)-jet prolongation of p.

A projectable general connection on a fibred-fibred manifold p is a
(1, 1, 1)-order projectable connection Γ : Y → J1,1,1Y on p, or (equiva-
lently) it is a square connection in the sense of [K2] on the fibred square p
(i.e. a pair of general connections Γ : Y ×M TM → TY and Γ : Y ×M
TM → TY on the fibred manifolds p : Y → M and p : Y → M (re-
spectively) such that Γ ◦ (pY ×idM TpM ) = TpY ◦ Γ ). If p = (p, p) :
(pY : Y → Y ) → (pM : M → M) is a fibred-fibred vector bundle (i.e.
a fibred-fibred manifold such that p : Y → M and p : Y → M are
vector bundles and pY : Y → Y is a vector bundle map covering pM :
M → M), then an (r, s, q)-order projectable linear connection on p is by
definition an (r, s, q)-order projectable connection Θ : Y → Jr,s,qY on
the fibred-fibred manifold p such that Θ : (p : Y → M) → (p ◦ pr,s,q :
Jr,s,qY → M) is a vector bundle map covering idM (and consequently
Θ : (p : Y → M) → (p ◦ pq : JqY → M) is a vector bundle map
covering idM ). An (r, s, q)-order projectable linear connection on a fibred
manifold pM : M → M is an (r, s, q)-order projectable linear connection
Λ : TM → Jr,s,qTM on the fibred-fibred vector tangent bundle pTM =
(pTM , p

T
M ) : (TpM : TM → TM) → (pM : M → M), or (equivalently) it

is a linear square connection of order (r, s, q) in the sense of [K2] on pM .
A projectable classical linear connection on a fibred manifold pM : M →
M is a (1, 1, 1)-order projectable linear connection ∇ on pM : M → M ,
or (equivalently) a classical linear connection ∇ on the manifold M such
that there is a (unique) pM -related (to ∇) classical linear connection ∇
on M .

Let F : F2Mm1,m2,n1,n2 → FM be a (regular) bundle functor of order
r in the sense of [KMS]. The construction F(Γ,Λ) from [K3] (mentioned
in Introduction) can be adapted to the fibred-fibred manifold situation as
follows.
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Example 3.2. Let Γ : Y → J1,1,1Y be a projectable general connec-
tion on an (m1,m2, n1, n2)-dimensional fibred-fibred manifold p = (p, p) :
(pY : Y → Y ) → (pM : M → M) and let Λ : TM → Jr,r,rTM be
an (r, r, r)-order projectable linear connection on the fibred manifold pM :
M → M . Let us recall that a projectable-projectable vector field on p is
a vector field X ∈ X (Y ) on Y such that there exist underlying vector
fields XM ∈ X (M), XY ∈ X (Y ) and XM ∈ X (M) such that X is p-
related to XM , X is pY -related to XY , XM is pM -related to XM and XY

is p-related to XM , or (equivalently) the flow Exp(tX) of X is formed
by F2Mm1,m2,n1,n2-morphisms. So, similarly to the fibred manifold case,
the flow operator F of F lifting projectable-projectable vector fields X
on p into vector fields FX := ∂

∂t |t=0
F (Exp(tX)) on FY (we can apply

F as Exp(tX) is an F2Mm1,m2,n1,n2-map) is of order r, and then it can
be interpreted as the flow morphism F : FY ×Y JrTproj-projY → TFY ,
F(v, jryX) = FX(v), v ∈ FyY , y ∈ Y , X ∈ Xproj-proj(p : Y → M). Since
the general connection Γ : Y ×M TM → TY on p is projectable, the Γ -
horizontal lift XΓ of a projectable vector field X on pM (defined by XΓ

|z =
Γ (z,X |p(z)), z ∈ Y ) is a projectable-projectable vector field on p. Then
(as in the fibred manifold case) we have F̃Γ : FY ×M JrTprojM → TFY ,
F̃Γ (v, jrxX) = F(v, jry(X

Γ )), v ∈ FyY , y ∈ Yx, x ∈ M , X ∈ Xproj(pM :
M → M). So, applying Λ : TM → Jr,r,rTM = JrTprojM , we get a gen-
eral connection F(Γ,Λ) =: F̃Γ ◦ (idFY ×Λ) : FY ×M TM → TFY on
FY →M .

In particular, if F = J1,1,1 we have the general connection J 1,1,1(Γ,∇) :
J1,1,1Y → J1J1,1,1Y on J1,1,1Y → M for any projectable general connec-
tion Γ : Y → J1,1,1Y on the fibred-fibred manifold p and a (torsion-free)
projectable classical linear connection ∇ on the fibred manifold pM . Now,
quite similarly to Section 2, using J 1,1,1(Γ,∇) one can produce the following
family of general connections on J1,1,1Y → M from a projectable general
connection Γ : Y → J1,1,1Y on p by means of a (torsion-free) projectable
classical linear connection ∇ on pM .

Example 3.3. In Example 2.1, we observed that the curvature tensor
RΓ : Y →

∧2 T ∗M ⊗ V Y of Γ (treated as a general connection on the
fibred manifold p : Y → M) can be considered as the fibred map RΓ :
J1Y → T ∗M ⊗ V J1Y . Now (see Remark 4.3 in the next section), using
the “special” coordinates from Lemma 4.2 and the characterization (4.1)
(see the next section) of V J1,1,1Y (the vertical bundle of J1,1,1Y → M)
and recalling what is the curvature of Γ (e.g. from [KMS]), one can rather
easily verify that (in our situation of projectable Γ ) RΓ restricts to a fibred
map RΓ : J1,1,1Y → T ∗M ⊗V J1,1,1Y covering idJ1,1,1Y . On the other hand,
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J1(J1,1,1Y → M) → J1,1,1Y is (canonically) an affine bundle with the cor-
responding vector bundle T ∗M ⊗ V J1,1,1Y . So, given t ∈ R we have the
general connection Dt(Γ,∇) := J 1,1,1(Γ,∇)+ tRΓ : J1,1,1Y → J1J1,1,1Y on
J1,1,1Y →M .

Remark 3.4. Quite similarly to Remark 2.2, an F2Mm1,m2,n1,n2-
natural operator D : J1,1,1

proj × Qτ -proj(B)  J1(J1,1,1 → B) is a family of
F2Mm1,m2,n1,n2-invariant regular operators

D : Conproj(p : Y →M)×Qτ -proj(pM : M →M)→ Con(J1,1,1Y →M)

for all F2Mm1,m2,n1,n2-objects p (as above), where Conproj(p : Y → M) is
the set of all projectable general connections on the fibred-fibred manifold p,
Qτ -proj(pM : M →M) is the set of all torsion-free projectable classical linear
connections on the fibred manifold pM and Con(J1,1,1Y → M) is the set of
all general connections on J1,1,1Y →M .

Thus (because of the canonical character of the construction Dt(Γ,∇)
from Example 3.3) we have the corresponding F2Mm1,m2,n1,n2-natural op-
erator Dt : J1,1,1

proj ×Qτ -proj(B) J1(J1,1,1 → B) for any t ∈ R.

4. The main result. The main result of the present paper is the fol-
lowing classification theorem extending Proposition 2.3.

Theorem 4.1. If m1 ≥ 2 and n2 ≥ 1, then all F2Mm1,m2,n1,n2-natural
operators D : J1,1,1

proj × Qτ -proj(B)  J1(J1,1,1 → B) form the one-parameter
family Dt := J 1,1,1 + tR, t ∈ R.

The proof of the above theorem will occupy the rest of this section.
For j = 1, . . . ,m2 and s = 1, . . . , n2 we put [j] := m1+j and 〈s〉 := n1+s.
Let xi, x[j], yq, y〈s〉 be the usual fibred-fibred coordinates on the trivial

fibred square Rm1,m2,n1,n2 , yqi = ∂yq

∂xi
, yq[j] = ∂yq

∂x[j] , y
〈s〉
i = ∂y〈s〉

∂xi
, y〈s〉[j] = ∂y〈s〉

∂x[j]

be the additional coordinates on the first jet prolongation J1Rm1,m2,n1,n2 of
the fibred manifold Rm1 × Rm2 × Rn1 × Rn2 → Rm1 × Rm2 , and Y q = dyq,
Y 〈s〉 = dy〈s〉, Y q

i = dyqi , Y
q
[j] = dyq[j], Y

〈s〉
i = dy

〈s〉
i , Y 〈s〉[j] = dy

〈s〉
[j] be the essen-

tial coordinates on the vertical bundle V J1Rm1,m2,n1,n2 of J1Rm1,m2,n1,n2 →
Rm1+m2 , i = 1, . . . ,m1, j = 1, . . . ,m2, q = 1, . . . , n1, s = 1, . . . , n2.

The (1, 1, 1)-jet prolongation of the fibred-fibred manifold Rm1,m2,n1,n2

can be characterized as the subset J1,1,1Rm1,m2,n1,n2 ⊂ J1Rm1,m2,n1,n2 satis-
fying the equalities yq[j] = 0, q = 1, . . . , n1, j = 1, . . . ,m2. Similarly, the verti-
cal bundle of J1,1,1Rm1,m2,n1,n2 → Rm1+m2 is the subset V J1,1,1Rm1,m2,n1,n2

⊂ V J1Rm1,m2,n1,n2 satisfying (on J1,1,1Rm1,m2,n1,n2) the equalities

Y q
[j] = 0, q = 1, . . . , n1, j = 1, . . . ,m2.(4.1)
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Consequently, on J1,1,1Rm1,m2,n1,n2 we have the additional coordinates yqi =
∂yq

∂xi
, y〈s〉i = ∂y〈s〉

∂xi
, y〈s〉[j] = ∂y〈s〉

∂x[j] , and on V J1,1,1Rm1,m2,n1,n2 we have the essen-

tial coordinates Y q = dyq, Y 〈s〉 = dy〈s〉, Y q
i = dyqi , Y

〈s〉
i = dy

〈s〉
i , Y 〈s〉[j] = dy

〈s〉
[j] ,

q = 1, . . . , n1, s = 1, . . . , n2, i = 1, . . . ,m1, j = 1, . . . ,m2.
The following lemma can be treated as a fibred-fibred manifold version

of [M2, Proposition 2.2(a) for r = 1].

Lemma 4.2. Let Γ̃ : Y ×M TM → TY be a projectable general
connection on an F2Mm1,m2,n1,n2-object p = (p, p) : (pY : Y → Y ) →
(pM : M → M) and ∇ be a torsion-free projectable classical linear con-
nection on pM : M → M . Let yo ∈ Y and xo = p(yo) ∈ M . Then
there exists an F2Mm1,m2,n1,n2-chart ψ on Y covering a ∇-normal fibred
coordinate system on M with centre xo such that ψ(yo) = (0, 0, 0, 0) and
j1(0,0,0,0)(ψ∗Γ̃ ) = j1(0,0,0,0)Γ , where Γ is of the form

(4.2) Γ =
m1∑
i=1

dxi ⊗ ∂

∂xi
+

m2∑
j=1

dx[j] ⊗ ∂

∂x[j]

+
m1∑

i1,i2=1

n1∑
q=1

Aqi1i2x
i1dxi2 ⊗ ∂

∂yq
+

m1∑
i1,i2=1

n2∑
s=1

Bs
i1i2x

i1dxi2 ⊗ ∂

∂y〈s〉

+
m1∑
i=1

m2∑
j=1

n2∑
s=1

Csijx
idx[j]⊗ ∂

∂y〈s〉
+

m1∑
i=1

m2∑
j=1

n2∑
s=1

Ds
jix

[j]dxi⊗ ∂

∂y〈s〉

+
m2∑

j1,j2=1

n2∑
s=1

Esj1j2x
[j1]dx[j2] ⊗ ∂

∂y〈s〉

for some real numbers Aqi1i2 , B
s
i1i2

, Csij, D
s
ji and E

s
j1j2

satisfying

Aqi1i2 = −Aqi2i1 , Bs
i1i2 = −Bs

i2i1 , Csij = −Ds
ji, Esj1j2 = −Esj2j1(4.3)

for i, i1, i2 = 1, . . . ,m1, j, j1, j2 = 1, . . . ,m2, q = 1, . . . , n1, s = 1, . . . , n2.
If ψ is a chart having the above properties, then so is (A × B) ◦ ψ

for any A ∈ GL(m1,m2) (= the group of fibred linear isomorphisms
(Rm1 × Rm2 → Rm1)→ (Rm1 × Rm2 → Rm1)) and B ∈ GL(n1, n2).

Proof. Choose an F2Mm1,m2,n1,n2-chart ϕ on Y covering a ∇-normal
fibred coordinate system on M with centre xo ∈ M such that ϕ(yo) =
(0, 0, 0, 0). Replacing (Γ̃ ,∇) by ψ∗(Γ̃ ,∇), we can additionally assume that
Y = Rm1,m2,n1,n2 , yo = (0, 0, 0, 0) and that the identity map on Rm1 × Rm2

is a ∇-normal fibre coordinate system with centre (0, 0). So, one can write

j1(0,0,0,0)(Γ̃ ) = j1(0,0,0,0)

( m1∑
i=1

dxi ⊗ ∂

∂xi
+

m2∑
j=1

dx[j] ⊗ ∂

∂x[j]
+ · · ·

)
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with the dots denoting

(4.4)
m1∑

i1,i2=1

n1∑
q=1

Aqi1i2x
i1dxi2 ⊗ ∂

∂yq
+

m1∑
i1,i2=1

n2∑
s=1

Bs
i1i2x

i1dxi2 ⊗ ∂

∂y〈s〉

+
m1∑
i=1

m2∑
j=1

n2∑
s=1

Csijx
idx[j] ⊗ ∂

∂y〈s〉
+

m1∑
i=1

m2∑
j=1

n2∑
s=1

Ds
jix

[j]dxi ⊗ ∂

∂y〈s〉

+
m2∑

j1,j2=1

n2∑
s=1

Esj1j2x
[j1]dx[j2] ⊗ ∂

∂y〈s〉
+

m1∑
i=1

n1∑
q,q1=1

aqq1iy
q1dxi ⊗ ∂

∂yq

+
m1∑
i=1

n1∑
q=1

n2∑
s=1

bsqiy
qdxi ⊗ ∂

∂y〈s〉
+

m1∑
i=1

n2∑
s,s1=1

css1iy
〈s1〉dxi ⊗ ∂

∂y〈s〉

+
m2∑
j=1

n1∑
q=1

n2∑
s=1

dsqjy
qdx[j] ⊗ ∂

∂y〈s〉
+

m2∑
j=1

n2∑
s,s1=1

ess1jy
〈s1〉dx[j] ⊗ ∂

∂y〈s〉

+
m1∑
i=1

n1∑
q=1

f qi dx
i ⊗ ∂

∂yq
+

m1∑
i=1

n2∑
s=1

gsi dx
i ⊗ ∂

∂y〈s〉

+
m2∑
j=1

n2∑
s=1

hsjdx
[j] ⊗ ∂

∂y〈s〉

for some real numbers Aqi1i2 , . . . , h
s
j (because of the projectability of Γ̃ ).

Now, replacing Γ̃ by (ψ1)∗Γ̃ , where ψ1 : Rm1,m2,n1,n2 → Rm1,m2,n1,n2 is
an F2Mm1,m2,n1,n2-map such that (defined by)

ψ1(v, w) =
(
v,
(
wq −

m1∑
i=1

f qi v
i
)n1

q=1
,
(
w〈s〉 −

m2∑
j=1

hsjv
[j] −

m1∑
i=1

gsi v
i
)n2

s=1

)
for any v = (vi, v[j]) ∈ Rm1+m2 and w = (wq, w〈s〉) ∈ Rn1+n2 , we can
additionally assume that in (4.4) we have f qi = 0 and gsi = 0, hsj = 0.

Next, replacing Γ̃ by (ψ2)∗Γ̃ , where ψ2 : Rm1,m2,n1,n2 → Rm1,m2,n1,n2 is
a local F2Mm1,m2,n1,n2-map such that (defined by)

ψ2(v, w) =
(
v,
(
wq −

m1∑
i=1

n1∑
q1=1

aqq1iv
iwq1

)n1

q=1
, (w〈s〉 − · · · )n2

s=1

)
with the dots denoting
m2∑
j=1

n2∑
s1=1

ess1jw
〈s1〉v[j]+

m2∑
j=1

n1∑
q=1

dsqjv
[j]wq+

m1∑
i=1

n2∑
s1=1

css1iv
iw〈s1〉+

m1∑
i=1

n1∑
q=1

bsqiv
iwq

for any v = (vi, v[j]) ∈ Rm1+m2 and w = (wq, w〈s〉) ∈ Rn1+n2 , we can
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additionally assume that in (4.4) we have ess1j = 0, dsqj = 0, css1i = 0, bsqi = 0
and aqq1i = 0.

Finally, replacing Γ̃ by (ψ3)∗Γ̃ , where ψ3 : Rm1,m2,n1,n2 → Rm1,m2,n1,n2

is a local F2Mm1,m2,n1,n2-map such that (defined by)

ψ3(v, w) =
(
v,

(
wq− 1

2

m1∑
i1,i2=1

(Aqi1i2 +Aqi2i1)v
i1vi2

)n1

q=1

,

(
w[s]− 1

2
(· · · )

)n2

s=1

)
with the dots denoting
m1∑

i1,i2=1

(Bs
i1i2+B

s
i2i1)v

i1vi2+
m1∑
i=1

m2∑
j=1

(Csij+D
s
ji)v

iv[j]+
m2∑

j1,j2=1

(Esj1j2+E
s
j2j1)v

[j1]v[j2]

for any v = (vi, v[j]) ∈ Rm1+m2 and w = (wq, w〈s〉) ∈ Rn1+n2 , we can
additionally assume that in (4.4) we have Aqi1i2 = −Aqi2i1 , B

s
i1i2

= −Bs
i2i1

,
Csij = −Ds

ji and E
s
j1j2

= −Esj2j1 .
Thus the proof of the main part of the lemma is complete.
The last sentence of the lemma is a simple observation.

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. Put ∆(Γ,∇) := D(Γ,∇) − J 1,1,1(Γ,∇) :
J1,1,1Y → T ∗M ⊗ V J1,1,1Y . As D(Γ,∇) is determined by ∆(Γ,∇), it suf-
fices to study the F2Mm1,m2,n1,n2-natural operator ∆ corresponding to the
construction ∆(Γ,∇).

Using the invariance of ∆ with respect to the homotheties t idRm1,m2,n1,n2

for t > 0, the non-linear Peetre theorem (see [KMS]) and the homogeneous
function theorem one can easily observe that ∆ is of order 1 in Γ and of
order 0 in ∇. Then (using Lemma 4.2, the invariance of ∆ with respect
to FMm1,m2,n1,n2-charts, the regularity of ∆ and the density of respective
GL(m1,m2) × GL(n1, n2)th orbits) one can rather standardly deduce that
∆ is determined by the values (contractions)〈

Y 〈n2〉
m1 |ρ,

〈
∆(Γ,∇o)(ρ), ∂

∂xm1−1 |(0,0)

〉〉
∈ R(4.5)

and 〈
Y
〈n2〉
|ρ ,

〈
∆(Γ,∇o)(ρ), ∂

∂xm1−1 |(0,0)

〉〉
∈ R(4.6)

for all ρ ∈ (J1,1,1Rm1,m2,n1,n2)(0,0,0,0) and all projectable general connec-
tions Γ on Rm1,m2,n1,n2 of the form (4.2) with coefficients satisfying (4.3)
(Y 〈n2〉
m1 and ∂

∂xm1−1 exist as m1 ≥ 2 and n2 ≥ 1), where ∇o is the flat pro-
jectable classical linear connection on the trivial bundle Rm1 ×Rm2 → Rm1 .
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One can easily see that the (local) FMm1,m2,n1,n2-map ψ : Rm1,m2,n1,n2

→ Rm1,m2,n1,n2 given by

ψ−1(v, w) = (v, (wq)n1
q=1, w

〈1〉, . . . , w〈n2−1〉, w〈n2〉 + (w〈n2〉)2),

where v= (vi, v[j])∈Rm1+m2, w= (wq, w〈s〉)∈Rn1+n2, preserves ∂
∂xm1−1 |(0,0)

,

j1(0,0,0,0)Γ , ∇
o and sends Y 〈n2〉

m1 into Y
〈n2〉
m1 + 2y〈n2〉

m1 Y
〈n2〉 over (0, 0, 0, 0) ∈

Rm1,m2,n1,n2 (we have y〈n2〉 = 0 over (0, 0, 0, 0)). Then (by the invariance of
∆ with respect to ψ) the values (4.6) for all Γ satisfying (4.2) and (4.3) and
all ρ as above are determined by the values (4.5) for all Γ satisfying (4.2)
and (4.3) and all ρ as above.

Consequently, ∆ is uniquely determined by the values (4.5) for all Γ
satisfying (4.2) and (4.3) and all ρ as above.

On the other hand, by the invariance of ∆ with respect to the “homoth-
eties” ψt,τ : Rm1,m2,n1,n2 → Rm1,m2,n1,n2 (for all t = (ti, t[j]) ∈ Rm1+m2

+ and
τ = (τq, τ〈s〉) ∈ Rn1+n2

+ ) given by

ψt,τ (v, w) =
((

1
ti
vi
)
,

(
1
t[j]

v[j]

)
, (τqwq), (τ〈s〉w

〈s〉)
)
,(4.7)

v = (vi, v[j]) ∈ Rm1+m2 , w = (wq, w〈s〉) ∈ Rn1+n2 , we deduce (using the
homogeneous function theorem) that the value (4.5) for Γ satisfying (4.2)
and (4.3) and ρ as above is a constant multiple of Bn2

(m1−1)m1
= −Bn2

m1(m1−1).
Therefore the vector space of all ∆ (as above) is of dimension ≤ 1.
The proof of Theorem 4.1 is complete.

Remark 4.3. In Example 3.3 we used the inclusion im(RΓ ) ⊂ T ∗M ⊗
V J1,1,1Y . We can prove this inclusion as follows. We see that RΓ is of first
order in Γ . Then (because of Lemma 4.2 and equalities (4.1)) it suffices to
observe that 〈

Y q
[j]|ρ,

〈
RΓ (ρ),

∂

∂xi |(0,0)

〉〉
= 0(4.8)

and 〈
Y q

[j]|ρ,

〈
RΓ (ρ),

∂

∂x[j1] |(0,0)

〉〉
= 0(4.9)

for any Γ of the form (4.2) with coefficients satisfying (4.3), j, j1 = 1, . . . ,m2,
q = 1, . . . , n1, i = 1, . . . ,m1 and any ρ ∈ (J1,1,1Rm1,m2,n1,n2)(0,0,0,0). To show
(4.8) and (4.9) we use the invariance of the operator R with respect to the
homotheties (4.7) and then apply the homogeneous function theorem.

Example 4.4. Considering (m1,m2, n1, n2)-dimensional fibred-fibred
manifolds p = (p, p) : (pY : Y → Y ) → (pM : M → M) as (m1 + m2,
n1 + n2)-dimensional fibred manifolds p : Y → M we have the “inclusion”
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F2Mm1,m2,n1,n2 → FMm1+m2,n1+n2 (the “forgetting” functor being injec-
tive on morphisms). So, we have the “restriction” J1 : F2Mm1,m2,n1,n2 →
FM of J1 : FMm1+m2,n1+n2 → FM. Any projectable general connec-
tion on an F2Mm1,m2,n1,n2-object p is also a general connection on the
FMm1+m2,n1+n2-object p. Any torsion-free projectable classical linear con-
nection on the fibred manifold M is also a torsion-free classical linear con-
nection on the manifold M . So (because of Example 2.1), for any t ∈ R we
have the F2Mm1,m2,n1,n2-natural operator J 1 + tR : J1

proj × Qτ -proj(B)  
J1(J1 → B) producing general connections J 1(Γ,∇)+ tRΓ : J1Y → J1J1Y
on J1Y → M from projectable general connections Γ on F2Mm1,m2,n1,n2-
objects p = (p, p) : (pY : Y → Y )→ (pM : M →M) by means of torsion-free
projectable classical linear connections ∇ on pM : M →M .

Quite similarly to Theorem 4.1 one can prove the following one.

Theorem 4.5. If m1 ≥ 2 and n2 ≥ 1 then all FMm1,m2,n1,n2-natural
operators D : J1

proj × Qτ -proj(B)  J1(J1 → B) form the one-parameter
family J 1 + tR, t ∈ R.
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