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Continuity of plurisubharmonic envelopes

by Nihat Gokhan Gogus (Syracuse, NY)

Abstract. Let D be a domain in C
n. The plurisubharmonic envelope of a function

ϕ ∈ C(D) is the supremum of all plurisubharmonic functions which are not greater than ϕ

on D. A bounded domain D is called c-regular if the envelope of every function ϕ ∈ C(D)

is continuous on D and extends continuously to D. The purpose of this paper is to give a
complete characterization of c-regular domains in terms of Jensen measures.

1. Introduction. The plurisubharmonic envelopes of functions have
been quite useful and found a lot of applications in pluripotential theory.
In this paper we address the problem of their continuity. To characterize
domains where continuous functions have continuous envelopes we use the
notion of Jensen measures. These measures have recently attracted the at-
tention of quite a number of mathematicians (see [CCW], [W], [CR], [R] and
[P3]) and have been used to explain different phenomena of pluripotential
theory.

In particular, in [W] Wikström uses them to classify domains where the
Dirichlet problem for the homogeneous Monge–Ampère equation always has
a continuous solution. It should be noted that different classes of plurisub-
harmonic functions generate different Jensen measures. The results in [W]
are obtained by comparing these classes of measures. In §2 we introduce
additional classes of Jensen measures which we consider as multifunctions
in C∗(D). As it happens the continuity of envelopes is a consequence of
such geometric properties of these multifunctions as upper and lower semi-
continuity. In §3 we establish these properties for our classes and after that
in §4 we prove the main theorem. Roughly speaking, envelopes of continuous
functions are continuous if and only if any limit point of Jensen measures
with respect to bounded plurisubharmonic functions can be obtained as a
limit of such Jensen measures from every direction. We call such domains
c-regular.
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In §5 we investigate the continuity of the Perron–Bremermann envelopes
for continuous functions on the boundary. We prove for a particular class of
domains that the continuity of the Perron–Bremermann envelopes is neces-
sary and sufficient for the continuity of the plurisubharmonic envelopes.

In §6 we characterize strongly regular points, which are local plurisub-
harmonic peak functions, in terms of Jensen measures and prove that their
set is always closed in the boundary when the domain is c-regular. In §7
we give an example of a smooth, strongly hyperconvex star-shaped domain
where continuous functions need not have envelopes that extend continu-
ously to the boundary. Note that by [W] they are continuous inside. In this
example strongly regular points are not closed in the boundary.

I would like to thank Prof. Evgeny Poletsky, who suggested this problem
to me, for helpful discussions.

Now let us start by introducing the classes of Jensen measures and give
some basic properties.

2. Classes of Jensen measures. If f is a holomorphic mapping of a
neighborhood V of the closure U of the unit disk U ⊂ C into an open set
D ⊂ C

n, then the measure

µf (E) =
1

2π
l(f−1(E) ∩ T ),

where T = ∂U and l(A) is the length of a set A ⊂ T , is Jensen with
barycenter z0 = f(0). For z ∈ D let Hz = Hz(D) be the set of all measures
µf such that f(0) = z.

We will frequently use a theorem proved in [P2].

Theorem 2.1. If ϕ is an upper semicontinuous function on an open set

D ⊂ C
n, then the function

Sϕ(z) = sup{u(z) : u ≤ ϕ is plurisubharmonic on D}

is plurisubharmonic and equal to

Eϕ(z) = inf
{\
ϕdµ : µ ∈ Hz

}
,

the plurisubharmonic envelope of ϕ.

Let us introduce the following classes of Jensen measures. In the following
definitions ϕ is a continuous function on D and M(D) is the class of all
regular Borel measures µ on D such that µ(D) = 1. The set M(D) belongs
to the dual C∗(D) of C(D) and we will endow it with the weak-∗ topology
defined by this duality.

(i) Given z ∈ D, we denote by Jz = Jz(D) the family of all measures
µ ∈ M(D) with compact support in D such that

u(z) ≤
\
u dµ
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for every u in the set PSH(D) of all plurisubharmonic functions on D. We
define the set Jz as the weak-∗ closure of Jz with respect to M(D).

(ii) For z ∈ D let

Ĵz = Ĵz(D) = {µ : µ = limµj, µj ∈ Jzj
, zj → z, zj ∈ D},

where the limit above should be understood as the weak-∗ limit.
We define the envelope

Êϕ(z) = ÊDϕ(z) = inf
{\
ϕdµ : µ ∈ Ĵz

}
.

(iii) If ψ is a bounded function on D we define its upper semicontinuous
regularization ψ∗ on D as

ψ∗(z) = lim sup
w→z, w∈D

ψ(w).

Let J b
z = J b

z (D) (z ∈ D) be the set of all measures µ in M(D) such
that

u∗(z) ≤
\
u∗ dµ

for all u in the set PSHb(D) of all bounded plurisubharmonic functions
on D. Let

Ebϕ(z) = Eb
Dϕ(z) = inf

{\
ϕdµ : µ ∈ J b

z

}
.

This class of Jensen measures was studied in [W].
(iv) If z ∈ D is a point, let PSHz(D) be the set of all upper bounded

plurisubharmonic functions on D for which limw→z, w∈D u(w) exists. We

define J l
z = J l

z(D) to be the set of all µ ∈ M(D) such that

u(z) ≤
\
u∗ dµ

for every u ∈ PSHz(D).
(v) Given z ∈ D, we write J c

z = J c
z (D) for the set of all measures

µ ∈ M(D) such that

u(z) ≤
\
u dµ

for every u ∈ PSHc(D) = PSH(D) ∩ C(D). The class J c
z was introduced in

[CCW].
Here we would like to state a few basic facts about these measures that

will be used in the paper.
All Jensen measures are necessarily probability measures since the con-

stant functions 1 and −1 are pluriharmonic everywhere. Note that the class

Ĵz need not be convex, but the classes Jz, J
b
z , J l

z and J c
z are convex. The

compactness of Jz, Ĵz and J c
z is obvious. Let us show that J b

z is compact.
First we need the following lemma:
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Lemma 2.2. Let s be an upper semicontinuous function on D and {µj} ⊂
C∗(D) be a sequence of measures converging weak-∗ to a measure µ ∈ C∗(D).
Then

lim sup
j

\
s dµj ≤

\
s dµ.

Proof. There exist functions ϕk ∈ C(D) so that ϕk ↓ s on D. Then

lim sup
j

\
s dµj ≤ lim sup

j

\
ϕk dµj =

\
ϕk dµ

for all k. Finally, by the monotone convergence theorem,

lim sup
j

\
s dµj ≤

\
s dµ.

Suppose µj is a sequence in J b
z that converges weak-∗ to µ ∈ M(D)

and take any upper bounded plurisubharmonic function u on D. Then by
Lemma 2.2,

u∗(z) ≤ lim sup
j

\
u∗ dµj ≤

\
u∗ dµ.

Therefore, µ ∈ J b
z and J b

z is compact. One can argue the same way to prove
that J l

z is compact.
We will frequently use a corollary of the Hahn–Banach theorem, so it is

worth noting it here ([C, Theorem 3.9]).

Theorem 2.3. Let X be a real locally convex space and A and B be

two disjoint closed convex subsets of X. If B is compact , then there exist a

continuous linear functional f on X and a number α so that

sup{f(b) : b ∈ B} < α < inf{f(a) : a ∈ A}.

All classes of Jensen measures are related as follows:

Lemma 2.4. If z ∈ D, then Hz ⊂ Jz ⊂ Jz = Hz = J b
z ⊂ Ĵz. If z ∈ D,

we have Ĵz ⊂ J l
z ⊂ J c

z .

Proof. The first and second inclusions follow immediately from the def-
initions. By a theorem of Bu and Schachermayer (see [BS]), Jz ⊂ Hz. Since
also Hz ⊂ Jz, we get Jz = Hz.

Clearly Jz ⊂ J b
z , hence Jz ⊂ J b

z since J b
z is closed. Conversely, if there

exists µ ∈ J b
z \ Jz, then by Theorem 2.3 there exists ϕ ∈ C(D) such that\

ϕdµ < inf
ν∈Jz

\
ϕdν = u(z),

where u = Eϕ is the plurisubharmonic envelope of ϕ. Then u ∈ PSHb(D)
by Theorem 2.1 and u ≤ ϕ, but we have\

ϕdµ < u(z) ≤
\
u∗ dµ ≤

\
ϕdµ,

which leads to a contradiction. Thus we get the equality. Clearly, Jz ⊂ Ĵz.
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Suppose µ ∈ Ĵz, z ∈ D. Then there exists a sequence µj ∈ Jzj
such that

zj ∈ D, zj → z and µj converges weak-∗ to µ. Take u ∈ PSHz(D). Then for
all j, u(zj) ≤

T
u∗ dµj. Using Lemma 2.2,

lim sup
j

u(zj) = u(z) ≤ lim sup
j

\
u∗ dµj ≤

\
u∗ dµ.

Thus µ ∈ J l
z and we have proved Ĵz ⊂ J l

z . The inclusion J l
z ⊂ J c

z is clear
from the definition.

As the following example shows, in general, Ĵz 6= Jz.

Example 2.5. Consider this example due to Fornæss (see [K, Ex. 2.9.4]):
Let D ⊂ C

2 be the domain defined by

D = [(U(0, 2) \ ∂U) × U ] ∪
∞⋃

j=2

∂U × U

(
1

j
, ee−j

)
,

where U(a, r) is the disk in C centered at a with radius r. We define a
subharmonic function ψ on C by

ψ(w) =
∞∑

j=2

2−j

log j
log

∣∣∣∣w −
1

j

∣∣∣∣

and a plurisubharmonic function u on D by

u(z, w) =

{
max{ψ(w),−1}, |z| < 1,

−1, |z| ≥ 1.

It was shown by Fornæss that there exists no sequence uj ∈ PSHc(D) de-
creasing pointwise to u on D. In particular, it is shown that u does not
satisfy the inequality

u(0, 0) ≤ sup
|z|=3/2

u(z, 0).

Now we let fj(z) = (3z/2, 1/j) be the mappings of the closed unit disc

U into D. Then fj(0) = zj and µfj
is a Jensen measure in Jzj

(D) for each j.
Note that fj converges to f(z) = (3z/2, 0) uniformly on S = {|z| = 1}, so
µfj

converges weak-∗ to µf . Also note that f maps S into D (but f does
not map U into D since f(2/3) = (1, 0) 6∈ D). Hence, if z0 = (0, 0), then

µf ∈ Ĵz0
, but µf 6∈ Jz0

since u does not satisfy u(z0) ≤
T
u dµ.

3. Jensen multifunctions. Let F and G be topological spaces and let
p : F × G → F be the projection. A set K ⊂ F × G is a multifunction on
F if p(K) = F and for each x ∈ F the fiber Kx = {y ∈ G : (x, y) ∈ K} is
compact.

A multifunction K is upper semicontinuous at x ∈ F if for every neigh-
borhood V of Kx in F ×G there is a neighborhood W of x in F such that
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Ky ⊂ V when y ∈W . A multifunction K is lower semicontinuous at x ∈ F
if for every (x, y) ∈ Kx and for every neighborhood V of (x, y) in F × G
there is a neighborhood W of x in F such that Ky ∩ V 6= ∅ when y ∈W .

We define the Jensen multifunction J (D) as a set in D × C∗(D) with

fibers Jz(D) at z ∈ D. The multifunctions Ĵ (D), J b(D) and J c(D) are de-

fined as sets in D×C∗(D) with fibers Ĵz(D), J b
z (D) and J c

z (D) respectively
at z ∈ D.

If m ≥ 1 is an integer and r > 0, let Br be the closed ball in R
m centered

at the origin and with radius r. We endow R
m with a scalar product (x, y)

and the norm ‖x‖.

Lemma 3.1. Let {Kn} be a sequence of non-empty convex and compact

sets in R
m which are contained in BR \Br for some R > r > 0. Then there

exist a vector u ∈ R
m and a subsequence {Knk

} of {Kn} so that for each

x ∈ Knk
and each k we have (u, x) ≥ 1.

Proof. The sets Kn and Br are disjoint convex sets. Hence for each n
there exists a number δn > 0 and a vector vn ∈ R

m so that we have

|(vn, y)| ≤ ‖vn‖r < δn < (vn, x)

for all x ∈ Kn and for all y ∈ Br. Letting

un =
2vn

‖vn‖r
,

we have

|(un, y)| ≤ 2 < (un, x)

for all x ∈ Kn and for all y ∈ Br. Since ‖un‖ = 2/r, there exists a subse-
quence {unk

} of {un} that converges to a point u ∈ R
m.

We take an integer k0 ≥ 1 large enough so that ‖u− unk
‖ < 1/R for all

k ≥ k0. Then for any x ∈ BR and k ≥ k0,

|(u− unk
, x)| < 1.

In particular, for any k ≥ k0 and x ∈ Knk
we have

(u, x) = (unk
, x) + (u− unk

, x) ≥ 1.

Let ϕ : D → R be a continuous function. We let B∗ denote the closed
unit ball in C∗(D). If K ⊂ D × C∗(D) is a multifunction on D or D with
fibers Kz ⊂ B∗, we set

Iϕ(z) = inf
µ∈Kz

\
ϕdµ, Sϕ(z) = sup

µ∈Kz

\
ϕdµ.

Theorem 3.2. The function Iϕ (respectively Sϕ) is upper semicontinu-

ous at a point z0 ∈ D for all ϕ ∈ C(D) if the set K is lower semicontinuous

(respectively upper semicontinuous) at z0. If the fibers Kz are convex for
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z ∈ D (respectively if the fiber Kz0
is convex ), then the converse is also

true.

Proof. (1) Suppose K is lower semicontinuous at z0. Choose µ ∈ Kz0

such that \
ϕdµ < Iϕ(z0) +

ε

2

and let

V =

{
µ+ ν :

∣∣∣
\
ϕdν

∣∣∣ <
ε

2
, ν ∈ C∗(D)

}
.

There exists a neighborhood W of z0 such that if z ∈W there exists µ+νz ∈
V ∩Kz. Then

Iϕ(z) ≤
\
ϕdµ+

\
ϕdνz <

\
ϕdµ+

ε

2
< Iϕ(z0) + ε.

Hence Iϕ is upper semicontinuous at z0.
Now suppose K is not lower semicontinuous at z0 ∈ D. Then we can find

an element µ ∈ Kz0
, a neighborhood V of µ and a sequence zk ∈ D such

that zk → z0 and Kzk
∩ V = ∅. We may assume that there are functions

ϕj ∈ C(D), j = 1, . . . ,m, and a number ε > 0 so that V is of the form

V =
{
ν ∈ C∗(D) :

∣∣∣
\
ϕj dµ−

\
ϕj dν

∣∣∣ < ε, j = 1, . . . ,m
}
.

We set

(3.1) ψj = ϕj −
\
ϕj dµ.

Let

Ck =
{(\

ψ1 dν, . . . ,
\
ψm dν

)
: ν ∈ Kzk

}
.

Since Kzk
is compact and convex, the set Ck is a compact convex subset

of R
m. Also note that since Kzk

∩ V = ∅, for every ν ∈ Kzk
there is j ∈

{1, . . . ,m} such that ∣∣∣
\
ψj dν

∣∣∣ ≥ ε.

So ‖x‖ ≥ ε for every x ∈ Ck. Clearly, all sets Ck are contained in BR

for some R > ε > 0. Now we can apply Lemma 3.1. There exist a vector
u = (uj) ∈ R

m and a subsequence of {Kzk
}, which we call {Kzk

} again, so
that

m∑

j=1

uj

\
ψj dν ≥ 1

for all ν ∈ Kzk
and for all k. If we set ϕ =

∑m
j=1

ujψj , then by (3.1) we get\
ϕdν > 1 +

\
ϕdµ
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for all ν ∈ Kzk
and for all k. Thus

Iϕ(z0) ≤
\
ϕdµ < Iϕ(zk) − 1

for a sequence zk ∈ D converging to z0. Hence Iϕ is not upper semicontin-
uous at z0.

(2) Suppose K is upper semicontinuous at z0. Let

V = Kz0
+

{
ν :

∣∣∣
\
ϕdν

∣∣∣ < ε
}
.

There exists a neighborhood W of z0 such that if z ∈ W then Kz ⊂ V .
Hence for all ω ∈ Kz there exists µ ∈ Kz0

such that\
ϕdµ+ ε >

\
ϕdω >

\
ϕdµ− ε.

Taking supremum over ω ∈ Kz, we get

Sϕ(z0) + ε ≥ Sϕ(z)

for all z ∈W . Thus Sϕ is upper semicontinuous at z0.
Suppose K is not upper semicontinuous at some point z0. There exist

a sequence {wj} ⊂ D converging to z0, a neighborhood V of 0 in C∗(D)
and measures µj ∈ Kwj

\ (Kz0
+ V ). There exists a subsequence µjk

of µj

that converges weak-∗ to a measure µ ∈ B∗. Then µ 6∈ Kz0
and once again

by Theorem 2.3 there exist a function ϕ ∈ C(D), an integer k0 ≥ 1 and a
number a > 0 so that for all k ≥ k0,

Sϕ(z0) <
\
ϕdµ− a <

\
ϕdµjk

≤ Sϕ(zjk
).

Thus Sϕ is not upper semicontinuous at z0.

Using Theorem 2.1 we obtain an immediate corollary of the above the-
orem:

Corollary 3.3. The set J (D) is a lower semicontinuous multifunction

in D × C∗(D).

We prove now that J b is a lower semicontinuous multifunction. The
second part of the following proposition was stated as a corollary of the
Edwards’ theorem in [W, Corollary 2.2], but it can also be seen directly
from the first part.

Proposition 3.4. Let D be a bounded domain in C
n and let ϕ be a

continuous function on D. Then for every z ∈ D, Ebϕ(z) = (Eϕ)∗(z), i.e.,
Ebϕ is upper semicontinuous on D. Hence

Ebϕ(z) = sup{u∗(z) : u ∈ PSH(D), u∗ ≤ ϕ}.

Proof. First let us prove that Ebϕ is upper semicontinuous on D. From
Theorem 2.1 and Lemma 2.4, Ebϕ = Eϕ is plurisubharmonic on D. Let
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z ∈ D and µ ∈ J b
z . Then

(Ebϕ)∗(z) ≤
\
(Ebϕ)∗ dµ ≤

\
ϕdµ.

Taking infimum over the measures µ ∈ J b
z yields

(Ebϕ)∗(z) ≤ Ebϕ(z),

hence Ebϕ is upper semicontinuous. Since Ebϕ = Eϕ on D,

Ebϕ(z) = (Ebϕ)∗(z) = (Eϕ)∗(z)

for all z ∈ D. This yields the last assertion.

Corollary 3.5. The set J b(D) is a lower semicontinuous multifunc-

tion in D × C∗(D).

This result allows us to to D extend an inclusion proved in Lemma 2.4.

Corollary 3.6. Let z be a point in D, µ ∈ J b
z and {zj} be a sequence

in D converging to z. Then there are measures µj ∈ Jzj
that weak-∗ converge

to µ. Hence J b
z ⊂ Ĵz for all z ∈ D.

Proof. Since C(D) is separable, the weak-∗ topology on M(D) is metriz-
able by some metric (see [C, Theorem 5.1]). If µ ∈ J b

z , let βk be the open
ball of radius 1/k around µ in this metric. Since βk is open and J b is a
lower semicontinuous multifunction, for any sequence zj ∈ D converging to

z there exist jk ≥ 1 and µj ∈ βk ∩ Jzj
for all j ≥ jk. Then the sequence

{µj} converges to µ and µ ∈ Ĵz.

Theorem 3.7. The sets Ĵ (D) and J c(D) are upper semicontinuous

multifunctions in D × C∗(D).

Proof. Let K be either Ĵ (D) or J c(D). Suppose K is not upper semi-
continuous at z0 ∈ D. There exist a neighborhood V of Kz0

, a sequence of
points zj ∈ D and a sequence of measures µj ∈ Kzj

such that zj → z0 and
µj 6∈ V . Since K is compact, we can choose a weak-∗ convergent subsequence
µjk

. Let µ = limµjk
. It is easy to see that µ ∈ Kz0

, hence µ ∈ V . This leads
to a contradiction since µjk

6∈ V .

As we prove in the next theorem, the envelope Êϕ coincides with the
lower semicontinuous regularization of Eϕ on D. If ψ is a bounded function
on D we define its lower semicontinuous regularization ψ∗ on D as

ψ∗(z) = lim inf
w→z, w∈D

ψ(w).

Theorem 3.8. If ϕ ∈ C(D), then for all z ∈ D,

Êϕ(z) = (Eϕ)∗(z) = inf
{\
ϕdµ : µ ∈ Ĵz

}
.
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Proof. Take z ∈ D and suppose

Eϕ(zj) < Êϕ(z) − ε

for some sequence of points zj ∈ D such that zj → z and some number

ε > 0. We can find a sequence µj ∈ Jzj
so that for all j,\

ϕdµj < Êϕ(z) − ε.

There exists a subsequence µjk
such that µjk

→ µ for some µ ∈ Ĵz. Hence,
letting jk → ∞ yields \

ϕdµ ≤ Êϕ(z) − ε.

On the other hand, Êϕ(z) ≤
T
ϕdν for all ν ∈ Ĵz, which gives\

ϕdµ ≤ Êϕ(z) − ε ≤
\
ϕdµ− ε,

a contradiction. Thus (Eϕ)∗(z) ≥ Êϕ(z).

Suppose Êϕ(z) + ε < (Eϕ)∗(z) for some point z ∈ D and some number

ε > 0. We may find an element µ of Ĵz so that\
ϕdµ ≤ Êϕ(z) + ε.

There exist a sequence zj ∈ D and µj ∈ Jzj
such that zj → z and µj

converges weak-∗ to µ. Since Eϕ(zj) ≤
T
ϕdµj for all j,

(Eϕ)∗(z) ≤ lim inf
j

Eϕ(zj) ≤ lim
j

\
ϕdµj =

\
ϕdµ

≤ Êϕ(z) + ε < (Eϕ)∗(z).

This contradiction proves the equality.

4. C-regular boundaries and continuity of plurisubharmonic en-

velopes. Our goal in this section is to relate Jensen measures to the conti-
nuity of plurisubharmonic envelopes. We begin with some terminology.

Definition 4.1. LetΩ be a bounded open subset of C
n. A point z ∈ Ω is

said to be c-regular if the following holds: If zj ∈ D, zj → z and µ ∈ Ĵz, then

there exists a sequence µj ∈ Jzj
that converges weak-∗ to µ. The boundary

∂Ω of Ω is said to be c-regular if all boundary points are c-regular.

We say that the plurisubharmonic envelope Eϕ of a function ϕ defined
on D is continuous at a point z ∈ D if (Eϕ)∗(z) = (Eϕ)∗(z). The main
theorem of this section proves that c-regular points are exactly those where
the plurisubharmonic envelopes are continuous.

Theorem 4.2. Let D be a bounded domain in C
n and z be a point in D.

Then the following statements are equivalent :
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(1) The envelope Eϕ is continuous at z for all functions ϕ ∈ C(D).
(2) J b

z = J l
z .

(3) J b
z = Ĵz.

(4) The point z is c-regular.

Proof. First we note that in view of Lemma 2.4, (2) implies (3). Then
suppose the envelopes Eϕ are continuous at a point z ∈ D for every function
ϕ ∈ C(D). We already know from Lemma 2.4 and Corollary 3.6 that

(4.1) J b
z ⊂ Ĵz ⊂ J l

z .

Suppose there exists a measure µ ∈ J l
z \ J b

z . Then using Theorem 2.3 one
can find a function ϕ ∈ C(D) and a number a > 0 so that\

ϕdµ < Ebϕ(z) − a.

But now by Proposition 3.4, Ebϕ is in PSHz(D), therefore

Ebϕ(z) ≤
\
ϕdµ < Ebϕ(z) − a.

Thus we have equality in (4.1). Then Corollary 3.6 implies that the point z
is c-regular. Hence we have shown (1) implies (2) and (4).

If J b
z = Ĵz, then z is c-regular in view of Corollary 3.6. Using Propo-

sition 3.4 and Theorem 3.8 we see that (Eϕ)∗(z) = (Eϕ)∗(z), hence Eϕ is
continuous at z. Thus (3) implies (4) and (1).

Next we show that (4) implies (1) to finish the proof. Suppose z is c-
regular and suppose there exist a sequence {zj} ⊂ D and a number a > 0
such that zj → z and

Eϕ(zj) > Êϕ(z) + a.

Hence there exists an element µ ∈ Ĵz such that for any sequence µj ∈ Jzj
,\

ϕdµj ≥ Eϕ(zj) > Êϕ(z) + a >
\
ϕdµ.

Since z is c-regular, there is a sequence {νj} ⊂ Jzj
that converges weak-∗

to µ ∈ Ĵz. Therefore letting j → ∞ leads to\
ϕdµ ≥ Êϕ(z) + a >

\
ϕdµ,

a contradiction. Hence (Eϕ)∗(z) ≤ Êϕ(z). From Theorem 3.8, Êϕ(z) =
(Eϕ)∗(z), so (Eϕ)∗(z) = (Eϕ)∗(z). Thus (4) implies (1).

Using the following observation from [Wa, Lemma 1], it is enough to
prove the continuity of the plurisubharmonic envelope on the boundary if
we want to prove that the envelope is continuous on D.
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Theorem 4.3. Let D be a bounded domain in C
n and let g : D →

[−∞,∞] have the property that its restriction to D is either uniformly con-

tinuous or identically +∞. If (Eg)∗ is dominated by g on D and continuous

on ∂D, then Eg is continuous in D.

In the terminology of [W], a bounded domain D in C
n is said to have the

approximation property if for each u ∈ PSHb(D) there exist uj ∈ PSHc(D)

such that uj(z) ↓ u∗(z) for all z ∈ D. It was shown in [W] that J c
z = J b

z

for all z ∈ D if and only if D has the approximation property. We may now
use Theorems 4.2 and 4.3 to prove the following.

Corollary 4.4. Let D be a bounded domain in C
n. Then the following

statements are equivalent :

(1) Eϕ is continuous on D for all functions ϕ ∈ C(D).
(2) J b

z = J c
z for all z ∈ ∂D.

(3) J b
z = Ĵz for all z ∈ ∂D.

(4) ∂D is c-regular.

(5) D has the approximation property.

Proof. The equivalence of (1), (3) and (4) follows from Theorems 4.2
and 4.3. By [W], (5) implies (2). We already know by Lemma 2.4 that

J b
z ⊂ Ĵz ⊂ J c

z . Thus (2) implies (3). We show that (1) implies (2) and (5)
to finish the proof.

Thus suppose the envelopes are continuous on D. Let z ∈ D. Suppose
there exists a measure µ ∈ J c

z \ J b
z . Then by Theorem 2.3 there exist a

function ϕ ∈ C(D) and a number a > 0 such that\
ϕdµ ≤ inf

{\
ϕdν : ν ∈ J b

z

}
− a = Ebϕ(z) − a.

Since µ ∈ J c
z and since Ebϕ is continuous on D,

Ebϕ(z) ≤
\
ϕdµ ≤ Ebϕ(z) − a,

which is a contradiction. Thus J c
z = Ĵz = J b

z for all z ∈ D. This implies (2),
and (5) follows from [W].

5. Continuity of the Perron–Bremermann function. This section
is devoted to the Perron–Bremermann function. For any function f on ∂D
we let

Sf(z) = sup{v∗(z) : v ∈ PSH(D), v∗|∂D ≤ f}

for all z ∈ D. If f ∈ C(∂D), then the upper semicontinuous regularization
S∗f of the map Sf defined on D is called the Perron–Bremermann function

of f on D (see [K]). The following lemma is useful:
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Lemma 5.1. Suppose s is an upper semicontinuous function on D and

f ∈ C(∂D) satisfies s(ζ) ≤ f(ζ) for all ζ ∈ ∂D. Then there exists a contin-

uous extension ϕ of f on D such that s ≤ ϕ on D.

Proof. We may find a sequence of exhausting subdomains Vj so that⋃
j Vj = D and V j ⊂ Vj+1. For each j we take a function χj ∈ C(D) such

that 0 ≤ χj ≤ 1 and

χj =

{
1 on V j ,

0 on D \ Vj+1.

We extend f as a continuous function F on D. Now the function r =
max{s, F} is upper semicontinuous. There exist functions rj ∈ C(D) such

that rj(z) decreases to r(z) for every z ∈ D. We define a function ψ on D
as follows: Given any z ∈ D, there is a unique integer j ≥ 1 such that
z ∈ Vj+1 \ Vj . Set

ψ(z) = χj(z)rj(z) + (1 − χj(z))rj+1(z).

Now, evidently, the function ψ is continuous on D. For all z ∈ D,

(5.1) r(z) ≤ rj+1(z) ≤ ψ(z) ≤ rj(z).

Let ϕ be equal to max{ψ, F} on D and equal to f on ∂D. Then ϕ ≥ s on D.
We only need to show that ϕ is continuous on D.

Clearly ϕ is continuous on D. Let zj ∈ D be such that zj → ζ ∈ ∂D.
Then

lim inf
j

ϕ(zj) ≥ lim inf
j

F (zj) = F (ζ) = f(ζ) = ϕ(ζ).

Hence ϕ is lower semicontinuous on D. Since r|∂D = f is continuous, the
functions rj decrease uniformly to r on ∂D. Thus for a given number ε > 0,
one can find an integer j0 ≥ 1 such that

rj(ζ) < f(ζ) + ε = F (ζ) + ε

for all points ζ ∈ ∂D and integers j ≥ j0. Since rj0 and F are uniformly

continuous on D, we can find a number δ > 0 so that

(5.2) rj0(z) < F (z) + ε

for all z ∈ Dδ, where

Dδ = {z ∈ D : dist(z, ∂D) ≤ δ}.

We can find an integer k0 ≥ 1 so that D \ V k ⊂ Dδ for all integers k ≥ k0.
Let k be an integer greater than or equal to max{k0, j0}. By (5.1) and (5.2),

ψ(z) < F (z) + ε

for each z ∈ D \ V k. Thus for each ε > 0 we can find an integer k ≥ 1 such
that ϕ(z) < F (z) + ε for all z ∈ D \ V k. This implies that ϕ is also upper
semicontinuous on D.
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The above lemma and Proposition 3.4 allow us to describe the function
Sf as in the next result.

Proposition 5.2. Let D be a bounded domain in C
n and let f ∈ C(∂D).

Then the function Sf coincides with the function

Uf(z) = sup{Ebϕ(z) : ϕ ∈ C(D), ϕ|∂D = f}

on D.

Proof. In view of Theorem 2.1 and Proposition 3.4, Sf ≥ Uf on D. To
get the reverse inequality let v ∈ PSH(D) with v∗ ≤ f on ∂D. By Lemma
5.1 there exists a function ϕ ∈ C(D) such that ϕ = f on ∂D and v∗ ≤ ϕ
on D. Therefore Sf ≤ Uf on D, which implies the equality Sf = Uf .

As a consequence of Proposition 5.2 and Theorem 4.2 we get the follow-
ing.

Corollary 5.3. Let D be a bounded domain in C
n, z ∈ D and let

f ∈ C(∂D). Then Sf is lower semicontinuous at the point z. In particular ,
if D is c-regular , then the function Sf is lower semicontinuous on D.

Now let us prove an integral representation of the function Sf .

Proposition 5.4. Let f ∈ C(∂D). For every integer k ≥ 0 let fk be

defined as k on D and f on ∂D. Then there exists an integer k0 such that

for all z ∈ D and for all k ≥ k0,

Sf(z) = inf
{\
fk dµ : µ ∈ J b

z

}
.

Moreover , for all z ∈ D there exists µz ∈ J b
z with suppµz ⊂ ∂D such that

Sf(z) =
T
∂D f dµz.

Proof. We shall suppose f ≤ 0 on ∂D and extend f as a lower semicon-
tinuous function fk on D by defining fk = k on D where k ≥ 0 is an integer.
We let

s(z) = sup{v∗(z) : v ∈ PSHb(D), v∗ ≤ fk on D}.

Clearly s(z) ≤ Sf(z). If v ∈ PSHb(D) and v∗ ≤ f on ∂D, then v∗ ≤ fk

on D. Thus we get S(z) = s(z). It follows from Edwards’ theorem (see for
instance [W, Theorem 2.1] for a general version) that

s(z) = inf
{\

fk dµ : µ ∈ J b
z

}

for all z ∈ D.
For the second part, we first prove that for all k ≥ 0 there exists µk ∈ J b

z

such that

Sf(z) =
\
D

fk dµk.
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For each k ≥ 0, there exist measures νj ∈ J b
z such that

Sf(z) ≤
\
fk dνj < Sf(z) +

1

j
.

Since J b
z is closed, there exist a subsequence of {νj}, which we denote by

{νj} again, and ν ∈ J b
z such that νj → ν weak-∗. By the first part proved

above, Sf(z) ≤
T
fk dν. Also lim infj→∞

T
fk dνj = Sf(z) ≥

T
fk dν. Thus we

take µk = ν.
Now a subsequence of {µk}, say {µk} again, converges weak-∗ to some

µ ∈ J b
z . Suppose there exist a compact set K ⊂ D and a number c > 0 such

that for all k,

µk(K) > c.

Let m = min∂D f . Then

Sf(z) =
\
D

fk dµk ≥ m+ kc.

Hence Sf(z)=∞, which is impossible. Therefore for any compact setK⊂D,
µk(K) → 0 as k → ∞. This implies suppµ ⊂ ∂D.

For each k,

Sf(z) =
\
D

fk dµk ≥
\
D

f0 dµk.

Also since f0 is lower semicontinuous,

lim inf
k

\
D

f0 dµk ≥
\
D

f0 dµ ≥ Sf0(z) = Sf(z),

hence

Sf(z) =
\

∂D

f0 dµ.

This completes the proof.

If A is any subset of D, the characteristic function of A, which is equal
to 1 if z ∈ A and 0 if z 6∈ A, is denoted by χA(z).

Definition 5.5. A point z0 ∈ ∂D is called a regular point if for every
neighborhood V of z0 in D,

lim sup
z→z0, z∈V ∩D

S(−χV ∩∂D|∂D)(z) = −1.

A domain D is called a regular domain if every boundary point of D is a
regular point.

Theorem 5.6. Let D be a regular and c-regular domain. Then for any

continuous function f ∈ C(∂D) the function Sf is continuous on D.
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Proof. Take a point ζ ∈ ∂D and a function f ∈ C(∂D). We may assume
that f < 0 on ∂D and f(ζ) = −1. For a given number ε > 0 let

W = {w ∈ ∂D : |f(w) − f(ζ)| < ε}.

Then f ≤ −χW + ε on ∂D and

S∗f(ζ) ≤ lim sup
z→ζ, z∈D

S(−χW + ε)(z) = f(ζ) + ε.

Since this holds for all ε > 0 we get the inequality

S∗f(ζ) ≤ f(ζ)

for all ζ ∈ ∂D. Thus S∗f(ζ) = Sf(ζ) and Sf is upper semicontinuous on D.
By Corollary 5.3 the function Sf is lower semicontinuous on D. This proves
the continuity of Sf .

Let us illustrate with the following example why we may need the as-
sumption that the boundary should be regular.

Example 5.7. Let D = U \ {0} be the punctured unit disk in C. Since
the plurisubharmonic envelopes onD are the same as those on U , the domain
D is c-regular. Let f(0) = −1 and f(z) = 0 for any z ∈ ∂U . Then f ∈ C(∂D)
while Sf is not continuous on D.

We will need the following result from [CCW, Theorem 2.8].

Theorem 5.8. A bounded domain D in C
n is hyperconvex if and only

if for every z ∈ ∂D and every measure µ ∈ J c
z , suppµ ⊂ ∂D.

The above characterization of hyperconvex domains implies the follow-
ing.

Theorem 5.9. Let D be a hyperconvex domain in C
n. If the envelope

Sf is continuous on D for every f ∈ C(∂D), then D is c-regular.

Proof. Take a function ϕ ∈ C(D) and let f be the restriction of ϕ to
∂D. We may assume that ϕ ≤ 0 on ∂D. For any measure µ ∈ J b

z , where
z ∈ ∂D, we have \

D

ϕdµ =
\

∂D

f dµ

by Theorem 5.8. Thus by Propositions 5.2 and 5.4, Ebϕ(z) = Sf(z) for all
z ∈ ∂D. This means that Ebϕ is continuous on ∂D. Note that by Propo-
sition 3.4, Ebϕ = (Eϕ)∗. According to Theorem 4.3 the envelope Ebϕ is
continuous on D. This completes the proof.

6. Strongly regular points. In this section we characterize strongly
regular points in terms of Jensen measures. The following definition is from
[P2]:
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Definition 6.1. A point z ∈ ∂D is called strongly regular if for every
number t > 0 there exists a neighborhood V of z and a negative plurisubhar-
monic function v on V1 = V ∩D such that the closure of the ball B(z, 1/t)
is contained in V , v < −ε < 0 on V1 \ B(z, 1/t) and v(w) → 0 as w → z
in D.

Remark 6.2. Since the function equal to max{v,−ε} on V1 and −ε on
D \ V1 is plurisubharmonic on D, we may assume in this definition that v
is defined globally on D.

Theorem 6.3. Let D be a bounded domain in C
n and z ∈ ∂D. The

point z is strongly regular if and only if Ĵz = {δz}.

Proof. Suppose the point z ∈ ∂D is strongly regular. By a result of Po-
letsky ([P1, Lemma 8.2]), the plurisubharmonic envelope Eϕ of any function
ϕ ∈ C(D) satisfies

lim
w→z, w∈D

Eϕ(w) = ϕ(z).

Hence the envelopes are continuous at z. Then Ĵz = J b
z by Theorem 4.2.

Let µ ∈ J b
z . Suppose for some numbers t > 0 and c > 0, µ(Vt) > c, where

Vt = D\B(z, 1/t). Since z is strongly regular, there exist a plurisubharmonic
function v on D and a number ε > 0 such that limw→z, w∈D v(w) = 0 and
v∗(w) ≤ −ε for all w ∈ Vt. Then

0 = v∗(z) ≤
\
D

v∗ dµ =
\
Vt

v∗ dµ+
\

D\Vt

v∗ dµ < −cε < 0.

This implies that µ(Vt) = 0 for all t > 0, therefore µ = δz and Ĵz = J b
z

= {δz}.

Conversely, suppose Ĵz = {δz}. Then also J b
z = {δz}. Choose a function

ϕ ∈ C(D) such that ϕ(z) = 0 and ϕ(w) < 0 for any w ∈ D \ {z}. Then
(Eϕ)∗(z) = Ebϕ(z) = 0. To show that the limit exists at z, suppose that
there exist a sequence of points {zj} ⊂ D converging to z and a number

a > 0 such that Eϕ(zj) < −a < 0. We can find measures µj ∈ Jzj
such that\

ϕdµj < −a.

A subsequence {µjk
} converges weak-∗ to a measure µ. Then µ ∈ Ĵz, there-

fore µ = δz. Finally, we get

0 = ϕ(z) < −a,

a contradiction. Thus the limit of Eϕ exists at the point z.
If t > 0, then there exists a number ε > 0 so that ϕ(w) < −ε for any

w ∈ D \ B(z, 1/t). Since Ebϕ ≤ ϕ on D, Ebϕ satisfies the requirements in
Definition 6.1.
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In the terminology of [S] a domainD is B-regular if the Dirichlet problem
for continuous data on the boundary has a solution, that is, for any function
f ∈ C(∂D) there exists a function u ∈ PSHc(D) so that u|∂D = f . E.
Poletsky (see [P1, Lemma 8.1]) proved that a boundary point is strongly
regular if and only if at this point there exists a negative plurisubharmonic
barrier. This means, for example, that a domain is strongly regular if and
only if it is B-regular. It is shown in [S] that a domain D is B-regular if and
only if Jc

z = {δz} for any z ∈ ∂D (see also [W, Corollary 3.8]). We can now
combine these results with Theorem 6.3 in one corollary:

Corollary 6.4. Let D be a domain in C
n. Then the following are equiv-

alent :

(1) D is strongly regular.

(2) D is B-regular.

(3) For any z ∈ ∂D, J c
z = {δz}.

(4) For any z ∈ ∂D, Ĵz = {δz}.

For a bounded domain D, denote the set of strongly regular points of
D by R. As shown by Example 7.3 below, the set R need not be a closed
subset of the boundary in general. As a corollary of Theorem 6.3 we obtain:

Corollary 6.5. If D is c-regular , then the set of strongly regular points

is a closed subset of ∂D.

Proof. Take a sequence of strongly regular points zj ∈ R that converges

to a point z ∈ ∂D. From Theorem 6.3, J b
zj

= Ĵzj
= {δzj

} for each j. If D

is c-regular, then by Theorem 4.2, Ĵz = J b
z , and by Corollary 3.6, for each

measure µ ∈ Ĵz there exists a sequence of measures µj ∈ J b
zj

that converges

weak-∗ to µ. Since µj = δzj
for all j, we have µ = δz. Hence Ĵz = {δz} and

z is strongly regular by Theorem 6.3.

7. An example. In this section we present an example of a strongly
hyperconvex, star-shaped domain D with smooth boundary that is not c-
regular. Also on the boundary ∂D of this domain there exists a function
f ∈ C(∂D) so that Sf is not continuous on ∂D.

Definition 7.1. A domain D ⊂ C
n is said to be star-shaped with re-

spect to 0 ∈ C
n if for all t ∈ [0, 1], tD ⊂ D.

In [W, Thm. 4.10], it is shown that on star-shaped domains, J c
z = J b

z

for all z ∈ D. It follows from Theorems 3.2, 3.7 and 4.2 that if D is star-
shaped, then the plurisubharmonic envelopes of continuous functions on D
are continuous on D. So it is natural to ask if the envelopes are continuous
up to the boundary. The answer is in general no, as the example of this
section shows.
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We will need the following well known fact:

Remark 7.2. If a domain is strongly pseudoconvex, then there exists a
plurisubharmonic solution for the Dirichlet problem for continuous data on
the boundary (see [B] and [Wa, Theorem 1]). In particular, for any point z

on the boundary, Ĵz = {δz} holds for strongly pseudoconvex domains by
Corollary 6.4.

Example 7.3. Take a smooth function η : R → R with the following
properties:

(1) η(x) ≥ 0, η is even and convex.
(2) η−1(0) = [−a, a], where 0 < a < 1.
(3) There exists b > 0 such that η(x) > 1 when |x| > b.
(4) The map u(z, w) = |z|2 + |z − 1|2|w|2 + η(|w|2) defined on C

2 has
non-zero gradient on the level set u(z, w) = 1.

We can satisfy condition (4) using Sard’s theorem. Set

D = {(z, w) : |z|2 + |z − 1|2|w|2 + η(|w|2) < 1}.

It is easy to calculate the determinant of the Levi form of u:

Lu = |z − 1|2 + (1 + |w|2)[η′(|w|2) + |w|2η′′(|w|2)].

Now D is a bounded strongly hyperconvex domain with a smooth boundary.
To get a star-shaped domain, we take b ≤ 1/64. For (z, w) ∈ D, let r = |z|
and s = |w|; then r ≤ 1 and s ≤ 1/8. We need to show that (tz, tw) ∈ D for
all t ∈ (0, 1). We show that

u(tz, tw) < u(z, w)

for all t ∈ (0, 1). A direct calculation shows that this is true if

(7.1) 2(1 − t3)s2r < (1 − t2)r2 + (1 − t4)s2r2 + (1 − t2)s2.

If r ≤ 1/4, then

2(1 − t3)s2r < (1 − t2)s2,

and if 1/4 ≤ r ≤ 1, then

2(1 − t3)s2r <
1

16
(1 − t2) ≤ (1 − t2)r2 + (1 − t4)s2r2 + (1 − t2)s2.

In either case (7.1) is true, thus D is star-shaped.
To show that ∂D is not c-regular, we need to find a non-c-regular point

on the boundary. Take tj → π/2 and rj 6= 0 so that

rj =
−2 cos tj

1 + sj
2 cos2 tj

,

where sj → 0. Set

pj = (1 + rje
itj , sj).
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Then pj ∈ ∂D and pj → p = (1, 0) ∈ ∂D. Evidently

Lu(pj) = r2j ↓ Lu(p) = 0.

For some open sets Vj ⊂ D with pj ∈ ∂Vj we have Lu(Vj) > 0. Then Vj are
strongly pseudoconvex, hence by Remark 7.2, J c

pj
= {δpj

} for all j. To show

that ∂D is not c-regular at p, we need to find a Jensen measure µ ∈ Ĵp such
that µ 6= δp.

Consider the analytic disk f : U → D defined for ζ ∈ U as

f(ζ) = (1, aζ),

and consider the Jensen measure µf induced by f . Then f is the uniform

limit of the analytic maps fj : U → D defined by

fj(ζ) = (1 − 1/j, aζ).

Therefore, µfj
∈ Ĵvj

, where vj = (1 − 1/j, 0) ∈ D. Since vj → p, we see

that µf ∈ Ĵp and it is not equal to the Dirac measure. Take a continuous

function ϕ defined on D so that ϕ(pj) = 1 for all j, and ϕ(1, aζ) ≡ 0 on

{|ζ| = 1}. Then Êϕ(pj) = ϕ(pj) = 1 for all j since Ĵpj
= {δpj

} and

Êϕ(p) ≤
\
ϕdµf = 0.

Thus Êϕ is not continuous, therefore ∂D is not c-regular. Note that by the
same reasoning as in the proof of Theorem 5.9, if f is the restriction of
ϕ to the boundary ∂D, then the envelope Sf coincides with Ebϕ on ∂D.
Therefore the envelope Sf is not continuous either.

Remark. The set of strongly regular points is not closed in this ex-
ample. Thus the assumption that the domain is c-regular is necessary in
Corollary 6.5.
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