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On continuous solutions to linear hyperbolic systems

by MALGORZATA ZDANOWICZ (Bialystok) and
ZBIGNIEW PERADZYNSKI (Warszawa)

Abstract. We study the conditions under which the Cauchy problem for a linear hy-
perbolic system of partial differential equations of the first order in two independent vari-
ables has a unique continuous solution (not necessarily Lipschitz continuous). In addition
to obvious continuity assumptions on coefficients and initial data, the sufficient conditions
are the bounded variation of the left eigenvectors along the characteristic curves.

1. Introduction. It is known [4]| that the Cauchy problem for a hyper-
bolic system

(1) % + A(t,x) % = b(t,z) + B(t, z)u,
(2) u(0,2) =u’(z), « € [af]

with C¥ coefficients, k > 1, has a unique C* solution provided that u° €
C*([cr, B]). A similar result has been shown in [2] for Lipschitz continuous
solutions: if all coefficients are Lipschitz continuous then u(t, x) is Lipschitz
continuous in (¢, z) if in addition u is Lipschitz continuous. In [1] it has been
shown that Lipschitz continuity can be in principle also replaced, to some
extent, by absolute continuity. To have uniqueness one assumes however the
Lipschitz continuity in x of the eigenvalues of A. The question arises whether
we can still replace the assumption of Lipschitz and absolute continuity by
a weaker one to assure only the continuity of the solution.

This work concerns the Cauchy problem (1)—(2) where « is an n-dimen-
sional column vector function of two variables ¢ and x. System (1) is hyper-
bolic, which means that the matrix A has real eigenvalues {{;(t, ) br=1,..p,
p < n (with multiplicities mj) and the corresponding eigenvectors span the
n-dimensional space. We assume that the multiplicities myg, k =1...,p, are
constant (not depending on (¢,z)) and the inequality & < --- < &, holds
for all (¢,z) € [0,T] x [, Bo], where [a, 5] C (o, Bo)- Let {L;}j=1,..n be
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left linearly independent eigenvectors of A corresponding to the eigenvalues
{€}. The matrix A is of the form A = L=! D L, where D = diag[¢1,. .., &)
and L is the nonsingular n X n matrix whose rows are the left eigenvectors
Li,...,Ly.

We will prove the existence and uniqueness of continuous solutions pro-
vided that the left eigenvectors have bounded variation along characteristic
curves. Qur purpose is to show the existence and uniqueness of a generalized
solution of system (1)—(2). By a continuous generalized solution we under-
stand a function satisfying an integral system obtained from the differential
system by integration along characteristic curves. In the proof we use the
contraction mapping principle.

2. Characteristic curves and generalized solution. Throughout
this section we assume that L € C1([0,T] x [ao, 0]). Multiplying (1) on
the left by L,

L% + DL% = Lb+ LBu,
and introducing the new unknown vector function (Riemann invariants)
(3) r(t,x) = L(t,x) - u(t, x)
we transform problem (1)—(2) to the following one:
" o p% sy [un s (202
(5) r(z) = r(0,2) = L(0,2) - u’(z), € [o,f].

Obviously the function u on the right hand side of (4) can be expressed by 7,
namely v = L™ 7.
The characteristic curve & = xy(t; ¢, ) of the kth family passing through

the point (¢, ) is the solution of the equation

dx
6 — =& (¢
(6) 7 E(t, )
which satisfies the initial condition
(7) ry(t:1,T)|mf = T

If the function &k (¢, ) is continuous and satisfies the Lipschitz condition with
respect to x then, by the Picard theorem, there is only one curve xj, passing
through the point (¢,Z), which is continuously differentiable with respect
to t. Since &(t,z) is bounded on [0,T] X [ap, Bo], the curve represented
by the solution = = zx(t;¢,7), (£,Z) € (0,T) X (ap, fo), exists for all t €
[0, 7] unless it intersects the lateral boundaries [0,7] x {ao} U [0,T] x {50}
of [O,T] X [O[[),,BQ].
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Set
(8) G = {(t.x) € [0.T) x [0, o] : X (1) <z < ¥(1)}
where
%§¥2:kgﬁfjfﬂtﬁﬁh X(0) = a,
d};it) - kirll}n’p{gk(tvy)}v Y(O) =0, a < (.

The time 7 is defined in the following way: if X (¢) and Y (¢) have the (first)
intersection point at time t, < 7T, X (t.) = Y (t.), or if X (¢) or Y (¢) intersect
(for the first time) the lateral boundaries of [0,T] X [ao, fo] at time t1,¢2
(respectively) then T = min {t1,t2,t}, otherwise T=T.

T

ts

Q (e ﬁ ﬁO

Notice that G has the property that every characteristic curve starting from
(t,7) € G is fully contained in G for 0 < t < T and z4(0;¢,%) € [a, ],
k=1,...,n

The differential operators appearing in equation (4) are in fact the di-
rectional derivatives along the characteristic curves. Indeed, for any differ-
entiable function f(¢,x) we have

d - 0
Ef(taxk(ta t,IL’)) at

Therefore (4) becomes

(9) drk(t’ngt;%’ ) Ly,(t, 21 (1,7)) - b(t, 21 (81, 7))

+ Li(t, (41, 7)) - B(t, 21 (8¢, 7)) - u(t, v (41, 7))

dL(t t:t,T _
+ k( ’zdlzf( ’ ?m)) ’ u<t7$k(t;t7§))

for k =1,...,n. Here d Ly /dt denotes the vector [d Lgy/dt,...,d Ly,/dt].

(1) + & (1, 2).
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We define a linear mapping

Py = C°([0,T7] x [a, Fo]) — C°([0, T x [0,T7] x [ao, Fo])

acting on vector functions f = (f1,..., fn)T by
(10) (Pt t,7) = fr(t,zp(t;, 7)), k=1,...,n.
Since we have
. sup | fut, 2k (8, 7)) = sup | fr(t, )],
(t,t,7)€[0,T)x[0,T] x [ex0,0] (t,2)€[0,T] X [ev0,0]

P is continuous. For convenience we will use the notation

Pif = (Pf)(tv K )

Hence we can rewrite (9) as follows:

d dL

11 — = Lb+ LB —u .
( ) dt(Pt’l") Pt< b+ U+ dt u)
Integrating (11) with respect to ¢ from 0 to ¢ we obtain

i

- = 0 dL

(12) r(6,7) = Por® + | P, (Lb+LBu+ Eu) dt.

0

We thus arrived at a system of n integral equations in place of the original
system (1):

t
(13) u(t, 7) = L7 (£, 7)Por® + L' (£,7) | P.(Lb + LBu) dt

0

t
_ dL
+ L' @)\ P = ) dt.
5 dt
To generalize the notion of solution we can treat the last integral as a Stieltjes
integral with respect to ¢ and rewrite (13) in the form
t
(14) u(t, z) = L7t 7)Por® + L7 (£, 7) | P(Lb + LBu) dt
0
t
+ L7 T) | PudL - w).
0
If the function u is continuous then for the existence of the Stieltjes integral
in (14) it is sufficient that the entries of the matrix L have bounded variation
along the characteristic curves for ¢ € [0, ¢] (respectively Lg; along z4(t;¢,T)
s,7=1,...,n).
By a continuous generalized solution of the Cauchy problem (1)—(2) we
understand a function satisfying the integral system (14).

3
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3. Existence theorem. Let us formulate our main result:

THEOREM 1. Let the entries of the matrices L(t,z) and L™1(t,z) be con-
tinuous functions on [0,T] X [, Bo]. Suppose L(t,x) has bounded variation
along each characteristic curve x = xy(t;t,T) contained in [0,T] x [ao, Bol,
i.e. Ly;(t,xi(t;1,T)), k,j = 1,...,n, has bounded variation as a function
of t. Let in addition this variation be a continuous function of t,T. Assume
that the entries of the matrices D(t,z), B(t,z), b(t,x) are continuous on
[0, T] % [cvo, Bo]. Let the entries of D(t,x) satisfy the Lipschitz condition with
respect to z and let the initial data u®(x) be continuous on [, B]. Then there
exists a unique function u(t,x) of class C°(G) which satisfies (1)—(2).

To prove the existence we will use the Banach fixed point theorem. We

first define (for T* € (0,71]) the set
(15) Gr+ =GN ([0, T*] x [, Bo))-
For the proof we consider the linear operator @, which transforms the vector
function u € C°(Gr+) into the vector function U € C°(Gr+), U = Q(u),
where according to (14),

t
(16)  Q(u) =U(%,Z) = L', Z)Por® + L' (£, %) | Pe(Lb + LBu) dt

0

i

SdLu

We will show that for sufficiently small 7* the mapping Q is a contraction.
We shall need the following

LEMMA 1. Let f, g : [O,ﬂ x G — R. Assume that the functions f(7,t,x)
and g(7,t,x) are continuous on [0,T] x G. Moreover let g be of bounded
variation with respect to the variable T for any fired t and x, and its variation
be a continuous function of t,x (}). Then

(*) Continuity of h(z,y) and bounded variation with respect to y do not guarantee
that the total variation is a continuous function of x. An example is the function

Y
zsinZ, x>0,

h:[_171}><[_7777r]—>R, h($7y):{ 0 xr < 0.

It is continuous on [—1, 1] X [—7, 7] and has bounded variation with respect to y (for any
fixed x). Moreover its total variation is

™ x.- = 0 xe[il,o}y
for(h( v)) { Qx[ ]+2x|s1n—fsln( [ED|, ZCG(O,H-

x

This is not a continuous function of z because lim,_ o+ V™ (h(z,-)) = 4, whereas
limzﬂo_ Vf‘rr(h(x7 )) =0.
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t

(17) J(t,x) = Sf(T;t,ﬂZ) dg(t;t, x)
0
18 a comntinuous function with respect to both variables.

REMARK. In the integral (17), ¢t and z are treated as parameters.

Proof. Let Vttf (g(7;t,z)) denote the variation of the function g for 7 €
[t1,t2]. We have the estimate

t to
| J(t, ) — J (to, zo)| = Hf(T;t,w) dg(r;t,x) = | f(7;t0,20) dg(T; to,mo)’
. .
< |§s(rit, @) dg(rst,) = § f (7o, m0) dg (73 o, 00)|
’ t " to
+ ‘ \ £(75t0, 20) dg(73 to, w0) — | f(r5t0, 20) dg(; to,:co)(
0 0

<|§lreite) - itz dg(rit, )|

0
t
+| § £(rto,20) dlg(rit. ) = g(rito, o)
0
t
+ ‘ | £(73t0, 20) dg(T;to,xo)‘

t,

< max |f(7it,2) — f(r5to, x0)| - V' (9(75t, 1))
T7€[0,T

[=}

+ max |f(rito,0)| - Vi (g9(75t,2) — g(T3t0, 20))
T7€[0,T]

7t ’ : Vt ,t ) .
+ max £ (73 t0, wo)| - Vi, (9(73 20, 20))
As f is continuous, we have

lim max |f(7;t,2) — f(7;to,z0)| = 0.

t—to 7€[0,T]
Tr—X0

The function ¢ is continuous and has bounded variation with respect to 7
for any fixed t¢ and xg, therefore [3] we have

: t . _
tILIth V;fo (g(Ta tO? 1’0)) =0.

According to the assumptions, the variation is a continuous function of ¢, x.

Hence
lim Vi' (g(75t,2) — g(75 0, 20)) = 0.
:E—>.’E(z)
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From the above remarks it follows that
lim J(t,z) = J(to, o),
t—to
r—xTQ
which proves the lemma. =
By Lemma 1, Q maps C°(Gp+) into itself. We claim that it is possible

to choose the time T™ so that the linear mapping Q will be a contraction.
Indeed, let u and @ be vector functions from the space C°(G7+) with norm
lul| = max max |ug(t,T)|.
(i.7)€Grs k=1,.n
We obtain
1Q(u) — Q@) = |U - U]
i i

< |27t {PuEB@ - at| + |27 [Piar( )|
0 0

<u—a| |[L7H(TLB| +n max max Vi (Ls(t,zs(t:7,7)))).
(t,2)eGpx s,j=1,...,n

It follows that
(18) ||lU-TU]|
<NLH(TH|LB| +n max  max Vg (Lsi(t,zs(t%,7))))|lu— .
(tvf)EGT* s,j=1,...,n

Here Vil (Ls;(t,z5(t;7,7))) stands for the variation of the function Lg; with
respect to t. The entries of the matrix L and L' are continuous on [0, T*] x
[0, Bo]- Hence || L7 < oo, || L B < .
According to (18), Q is a contraction mapping if 7™ satisfies
(19)  IL7Y(THILBI +n max  max Vi (Ly(t,25(67,7)))) < L.
(t,2)€Gp* $,J=1,...,n

Our task is now to show that (19) holds for some T* > 0.
The first term in brackets contains 7* and can be made arbitrarily small
for small T™:

(20) T*|L7Y|ILB|| =0 asT*— 0.
Similarly [3] for all s,j =1,...,n we have
(21) Vol (Lsj(t, 25(t;1,7))) — 0 as T* — 0

Since Q is a contraction, being a linear mapping in a Banach space it is also
continuous. From the fact that G+ is a compact set we deduce that 7% > 0
can be chosen in such a way that (21) holds for all (¢,Z) € G+ uniformly.
We conclude from (20) and (21) that there exists 7%, 0 < T* < T, such
that (19) is satisfied. By the Banach principle there is a unique fixed point
of the mapping Q. We have proved the existence of a local in time solution
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of (14) on Gr+. Since the norms of the entries of the matrices L, B, L™! do
not depend on ¢, we can extend the solution onto the whole set G. Indeed,
taking now ¢ = T™ as the initial time and u(7™, z) as the new initial condition
we come to the problem defined on the set

Gy = {(t,x) € [T*,T] x [ag, fo] : X(t) <z <Y (1)}

We continue in this fashion obtaining a solution on the set G, which com-
pletes the proof.

REMARKS. To conclude, let us note that a (local in time) existence the-
orem similar to Theorem 1 can be proved for a semilinear system, i.e. when
the RHS is a nonlinear continuous function Lipschitzian in u.

In applications it often happens that the coefficients of the system depend
only on x:

(22) e )
(23) u(0,z) = u’(z), €[, M)

We claim that Theorem 1 is still true in this case if instead of the continuity
of the vector function b(z) we only assume that it is a derivative along the
characteristic directions of some continuous function f(z), i.e.

(24) ba) = (g + D) 55 ) ) = Do) 32 f(0)

Using the integral formulation (14) for the Cauchy problem (22)-(23) we
have

u(®,7) =L (E7) Por’ + L7 (E,7) | Pu(L - df)

0
t
+ L&, 7) | Pu(dL - ).
0
Integrating by parts we obtain
i t
VPi(L-df) = =\ Pi(dL- ) + Py(Lf) = Po(Lf).
0 0

By the above, let us define a solution of the Cauchy problem (22)-(23) to
be a C° function satisfying the following integral system:
i t
u(t,7) = —L7' (%) \P(dL - f) + L7 (E,7) | Pu(dL - w)
0 0
)
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The integral Sg P(dL - f) exists and, by Lemma 1, is a continuous function
of (t,7).
If the matrix D(z) is nonsingular and b(z) € L'([ao, 0]) then a vector
function f(x) as in (24) always exists and it is given by
€T
f)= | DM (y)b(y) dy.
@0
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