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On 
ontinuous solutions to linear hyperboli
 systemsby Małgorzata Zdanowicz (Biaªystok) and
Zbigniew Peradzyński (Warszawa)Abstra
t. We study the 
onditions under whi
h the Cau
hy problem for a linear hy-perboli
 system of partial di�erential equations of the �rst order in two independent vari-ables has a unique 
ontinuous solution (not ne
essarily Lips
hitz 
ontinuous). In additionto obvious 
ontinuity assumptions on 
oe�
ients and initial data, the su�
ient 
onditionsare the bounded variation of the left eigenve
tors along the 
hara
teristi
 
urves.1. Introdu
tion. It is known [4℄ that the Cau
hy problem for a hyper-boli
 system
∂u

∂t
+ A(t, x)

∂u

∂x
= b(t, x) + B(t, x)u,(1)

u(0, x) = u0(x), x ∈ [α, β],(2)with Ck 
oe�
ients, k ≥ 1, has a unique Ck solution provided that u0 ∈
Ck([α, β]). A similar result has been shown in [2℄ for Lips
hitz 
ontinuoussolutions: if all 
oe�
ients are Lips
hitz 
ontinuous then u(t, x) is Lips
hitz
ontinuous in (t, x) if in addition u0 is Lips
hitz 
ontinuous. In [1℄ it has beenshown that Lips
hitz 
ontinuity 
an be in prin
iple also repla
ed, to someextent, by absolute 
ontinuity. To have uniqueness one assumes however theLips
hitz 
ontinuity in x of the eigenvalues of A. The question arises whetherwe 
an still repla
e the assumption of Lips
hitz and absolute 
ontinuity bya weaker one to assure only the 
ontinuity of the solution.This work 
on
erns the Cau
hy problem (1)�(2) where u is an n-dimen-sional 
olumn ve
tor fun
tion of two variables t and x. System (1) is hyper-boli
, whi
h means that the matrix A has real eigenvalues {ξk(t, x)}k=1,...,p,
p ≤ n (with multipli
ities mk) and the 
orresponding eigenve
tors span the
n-dimensional spa
e. We assume that the multipli
ities mk, k = 1 . . . , p, are
onstant (not depending on (t, x)) and the inequality ξ1 < · · · < ξp holdsfor all (t, x) ∈ [0, T ] × [α0, β0], where [α, β] ⊂ (α0, β0). Let {Lj}j=1,...,n be2000 Mathemati
s Subje
t Classi�
ation: Primary 35L45.Key words and phrases: linear hyperboli
 system, 
ontinuous solutions.[273℄
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z and Z. Peradzy«skileft linearly independent eigenve
tors of A 
orresponding to the eigenvalues
{ξk}. The matrix A is of the form A = L−1 D L, where D = diag[ξ1, . . . , ξn]and L is the nonsingular n × n matrix whose rows are the left eigenve
tors
L1, . . . , Ln.We will prove the existen
e and uniqueness of 
ontinuous solutions pro-vided that the left eigenve
tors have bounded variation along 
hara
teristi

urves. Our purpose is to show the existen
e and uniqueness of a generalizedsolution of system (1)�(2). By a 
ontinuous generalized solution we under-stand a fun
tion satisfying an integral system obtained from the di�erentialsystem by integration along 
hara
teristi
 
urves. In the proof we use the
ontra
tion mapping prin
iple.2. Chara
teristi
 
urves and generalized solution. Throughoutthis se
tion we assume that L ∈ C1([0, T ] × [α0, β0]). Multiplying (1) onthe left by L,

L
∂u

∂t
+ DL

∂u

∂x
= Lb + LBu,and introdu
ing the new unknown ve
tor fun
tion (Riemann invariants)(3) r(t, x) = L(t, x) · u(t, x)we transform problem (1)�(2) to the following one:

(4)
∂r

∂t
+ D

∂r

∂x
= Lb +

[
LB +

(
∂L

∂t
+ D

∂L

∂x

)]
u,

(5) r0(x) = r(0, x) = L(0, x) · u0(x), x ∈ [α, β].Obviously the fun
tion u on the right hand side of (4) 
an be expressed by r,namely u = L−1r.The 
hara
teristi
 
urve x = xk(t; t, x) of the kth family passing throughthe point (t, x) is the solution of the equation(6) dx

dt
= ξk(t, x)whi
h satis�es the initial 
ondition(7) xk(t; t, x)|t=t = x.If the fun
tion ξk(t, x) is 
ontinuous and satis�es the Lips
hitz 
ondition withrespe
t to x then, by the Pi
ard theorem, there is only one 
urve xk passingthrough the point (t, x), whi
h is 
ontinuously di�erentiable with respe
tto t. Sin
e ξk(t, x) is bounded on [0, T ] × [α0, β0], the 
urve representedby the solution x = xk(t; t, x), (t, x) ∈ (0, T ) × (α0, β0), exists for all t ∈

[0, T ] unless it interse
ts the lateral boundaries [0, T ] × {α0} ∪ [0, T ] × {β0}of [0, T ] × [α0, β0].



Continuous solutions to linear hyperboli
 systems 275Set(8) G = {(t, x) ∈ [0, T̃ ] × [α0, β0] : X(t) ≤ x ≤ Y (t)}where
dX(t)

dt
= max

k=1,...,p
{ξk(t, X)}, X(0) = α,

dY (t)

dt
= min

k=1,...,p
{ξk(t, Y )}, Y (0) = β, α < β.

The time T̃ is de�ned in the following way: if X(t) and Y (t) have the (�rst)interse
tion point at time t∗ ≤ T , X(t∗) = Y (t∗), or if X(t) or Y (t) interse
t(for the �rst time) the lateral boundaries of [0, T ] × [α0, β0] at time t1, t2(respe
tively) then T̃ = min {t1, t2, t∗}, otherwise T̃ = T .
t∗

T

α0 α β β0

G

Noti
e that G has the property that every 
hara
teristi
 
urve starting from
(t, x) ∈ G is fully 
ontained in G for 0 ≤ t ≤ T̃ and xk(0; t, x) ∈ [α, β],
k = 1, . . . , n.The di�erential operators appearing in equation (4) are in fa
t the di-re
tional derivatives along the 
hara
teristi
 
urves. Indeed, for any di�er-entiable fun
tion f(t, x) we have

d

dt
f(t, xk(t; t, x)) =

∂

∂t
f(t, x) + ξk

∂

∂x
f(t, x).Therefore (4) be
omes

drk(t, xk(t; t, x))

dt
= Lk(t, xk(t; t, x)) · b(t, xk(t; t, x))(9)

+ Lk(t, xk(t; t, x)) · B(t, xk(t; t, x)) · u(t, xk(t; t, x))

+
d Lk(t, xk(t; t, x))

dt
· u(t, xk(t; t, x))for k = 1, . . . , n. Here d Lk/dt denotes the ve
tor [d Lk1/dt, . . . , d Lkn/dt].
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z and Z. Peradzy«skiWe de�ne a linear mapping
Pt : C0([0, T̃ ] × [α0, β0]) → C0([0, T̃ ] × [0, T̃ ] × [α0, β0])a
ting on ve
tor fun
tions f = (f1, . . . , fn)T by(10) (Pf)k(t, t, x) = fk(t, xk(t; t, x)), k = 1, . . . , n.Sin
e we have

sup
(t,t,x)∈[0,T̃ ]×[0,T̃ ]×[α0,β0]

|fk(t, xk(t; t, x))| = sup
(t,x)∈[0,T̃ ]×[α0,β0]

|fk(t, x)|,

P is 
ontinuous. For 
onvenien
e we will use the notation
Ptf = (Pf)(t, ·, ·).Hen
e we 
an rewrite (9) as follows:(11) d

dt
(Ptr) = Pt

(
Lb + LBu +

dL

dt
u

)
.Integrating (11) with respe
t to t from 0 to t we obtain(12) r(t, x) = P0r

0 +

t\
0

Pt

(
Lb + LB u +

dL

dt
u

)
dt.We thus arrived at a system of n integral equations in pla
e of the originalsystem (1):

u(t, x) = L−1(t, x)P0r
0 + L−1(t, x)

t\
0

Pt(Lb + LBu) dt(13)
+ L−1(t, x)

t\
0

Pt

(
dL

dt
u

)
dt.To generalize the notion of solution we 
an treat the last integral as a Stieltjesintegral with respe
t to t and rewrite (13) in the form

u(t, x) = L−1(t, x)P0r
0 + L−1(t, x)

t\
0

Pt(Lb + LBu) dt(14)
+ L−1(t, x)

t\
0

Pt(dL · u).If the fun
tion u is 
ontinuous then for the existen
e of the Stieltjes integralin (14) it is su�
ient that the entries of the matrix L have bounded variationalong the 
hara
teristi
 
urves for t ∈ [0, t] (respe
tively Lsj along xs(t; t, x),
s, j = 1, . . . , n).By a 
ontinuous generalized solution of the Cau
hy problem (1)�(2) weunderstand a fun
tion satisfying the integral system (14).



Continuous solutions to linear hyperboli
 systems 2773. Existen
e theorem. Let us formulate our main result:Theorem 1. Let the entries of the matri
es L(t, x) and L−1(t, x) be 
on-tinuous fun
tions on [0, T ] × [α0, β0]. Suppose L(t, x) has bounded variationalong ea
h 
hara
teristi
 
urve x = xk(t; t, x) 
ontained in [0, T ] × [α0, β0],i.e. Lkj(t, xk(t; t, x)), k, j = 1, . . . , n, has bounded variation as a fun
tionof t. Let in addition this variation be a 
ontinuous fun
tion of t, x. Assumethat the entries of the matri
es D(t, x), B(t, x), b(t, x) are 
ontinuous on
[0, T ]×[α0, β0]. Let the entries of D(t, x) satisfy the Lips
hitz 
ondition withrespe
t to x and let the initial data u0(x) be 
ontinuous on [α, β]. Then thereexists a unique fun
tion u(t, x) of 
lass C0(G) whi
h satis�es (1)�(2).To prove the existen
e we will use the Bana
h �xed point theorem. We�rst de�ne (for T ∗ ∈ (0, T̃ ]) the set(15) GT ∗ = G ∩ ([0, T ∗] × [α0, β0]).For the proof we 
onsider the linear operator Q, whi
h transforms the ve
torfun
tion u ∈ C0(GT ∗) into the ve
tor fun
tion U ∈ C0(GT ∗), U = Q(u),where a

ording to (14),

Q(u) = U(t, x) = L−1(t, x)P0r
0 + L−1(t, x)

t\
0

Pt(Lb + LBu) dt(16)
+ L−1(t, x)

t\
0

Pt(dL · u).We will show that for su�
iently small T ∗ the mapping Q is a 
ontra
tion.We shall need the followingLemma 1. Let f, g : [0, T̃ ]×G → R. Assume that the fun
tions f(τ, t, x)and g(τ, t, x) are 
ontinuous on [0, T̃ ] × G. Moreover let g be of boundedvariation with respe
t to the variable τ for any �xed t and x, and its variationbe a 
ontinuous fun
tion of t, x (1). Then
(1) Continuity of h(x, y) and bounded variation with respe
t to y do not guaranteethat the total variation is a 
ontinuous fun
tion of x. An example is the fun
tion

h : [−1, 1] × [−π, π] → R, h(x, y) =

{
x sin y

x
, x > 0,

0, x ≤ 0.It is 
ontinuous on [−1, 1]× [−π, π] and has bounded variation with respe
t to y (for any�xed x). Moreover its total variation is
V

π
−π(h(x, ·)) =

{
0, x ∈ [−1, 0],

2x
[

2

x

]
+ 2x

∣∣sin π

x
− sin

(
π

2

[
2

x

])∣∣ , x ∈ (0, 1].This is not a 
ontinuous fun
tion of x be
ause limx→0+ V π
−π(h(x, ·)) = 4, whereas

limx→0− V π
−π(h(x, ·)) = 0.
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(17) J(t, x) =

t\
0

f(τ ; t, x) dg(τ ; t, x)is a 
ontinuous fun
tion with respe
t to both variables.
Remark. In the integral (17), t and x are treated as parameters.Proof. Let V t2

t1
(g(τ ; t, x)) denote the variation of the fun
tion g for τ ∈

[t1, t2]. We have the estimate
|J(t, x)−J(t0, x0)| =

∣∣∣
t\
0

f(τ ; t, x) dg(τ ; t, x) −

t0\
0

f(τ ; t0, x0) dg(τ ; t0, x0)
∣∣∣

≤
∣∣∣

t\
0

f(τ ; t, x) dg(τ ; t, x)−

t\
0

f(τ ; t0, x0) dg(τ ; t0, x0)
∣∣∣

+
∣∣∣

t\
0

f(τ ; t0, x0) dg(τ ; t0, x0)−

t0\
0

f(τ ; t0, x0) dg(τ ; t0, x0)
∣∣∣

≤
∣∣∣

t\
0

[f(τ ; t, x) − f(τ ; t0, x0)] dg(τ ; t, x)
∣∣∣

+
∣∣∣

t\
0

f(τ ; t0, x0) d[g(τ ; t, x) − g(τ ; t0, x0)]
∣∣∣

+
∣∣∣

t\
t0

f(τ ; t0, x0) dg(τ ; t0, x0)
∣∣∣

≤ max
τ∈[0,T ]

|f(τ ; t, x) − f(τ ; t0, x0)| · V
T
0 (g(τ ; t, x))

+ max
τ∈[0,T ]

|f(τ ; t0, x0)| · V
T
0 (g(τ ; t, x) − g(τ ; t0, x0))

+ max
τ∈[0,T ]

|f(τ ; t0, x0)| · V
t
t0

(g(τ ; t0, x0)).As f is 
ontinuous, we have
lim
t→t0
x→x0

max
τ∈[0,T ]

|f(τ ; t, x) − f(τ ; t0, x0)| = 0.

The fun
tion g is 
ontinuous and has bounded variation with respe
t to τfor any �xed t0 and x0, therefore [3℄ we have
lim
t→t0

V t
t0

(g(τ ; t0, x0)) = 0.A

ording to the assumptions, the variation is a 
ontinuous fun
tion of t, x.Hen
e
lim
t→t0
x→x0

V T
0 (g(τ ; t, x) − g(τ ; t0, x0)) = 0.
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 systems 279From the above remarks it follows that
lim
t→t0
x→x0

J(t, x) = J(t0, x0),whi
h proves the lemma.By Lemma 1, Q maps C0(GT ∗) into itself. We 
laim that it is possibleto 
hoose the time T ∗ so that the linear mapping Q will be a 
ontra
tion.Indeed, let u and u be ve
tor fun
tions from the spa
e C0(GT ∗) with norm
‖u‖ = max

(t,x)∈GT∗

max
k=1,...,n

|uk(t, x)|.We obtain
‖Q(u) −Q(u)‖ = ‖U − U‖

≤
∥∥∥L−1

t\
0

Pt(LB(u − u)) dt
∥∥∥ +

∥∥∥L−1
t\
0

Pt(dL(u − u))
∥∥∥

≤ ‖u − u‖ ‖L−1‖(T ∗‖LB‖ + n max
(t,x)∈GT∗

max
s,j=1,...,n

V T ∗

0 (Lsj(t, xs(t; t, x)))).It follows that
(18) ‖U − U‖

≤ ‖L−1‖(T ∗‖LB‖ + n max
(t,x)∈GT∗

max
s,j=1,...,n

V T ∗

0 (Lsj(t, xs(t; t, x))))‖u− u‖.Here V T ∗

0 (Lsj(t, xs(t; t, x))) stands for the variation of the fun
tion Lsj withrespe
t to t. The entries of the matrix L and L−1 are 
ontinuous on [0, T ∗]×
[α0, β0]. Hen
e ‖L−1‖ < ∞, ‖LB‖ < ∞.A

ording to (18), Q is a 
ontra
tion mapping if T ∗ satis�es(19) ‖L−1‖(T ∗‖LB‖ + n max

(t,x)∈GT∗

max
s,j=1,...,n

V T ∗

0 (Lsj(t, xs(t; t, x)))) < 1.Our task is now to show that (19) holds for some T ∗ > 0.The �rst term in bra
kets 
ontains T ∗ and 
an be made arbitrarily smallfor small T ∗:(20) T ∗‖L−1‖ ‖LB‖ → 0 as T ∗ → 0.Similarly [3℄ for all s, j = 1, . . . , n we have(21) V T ∗

0 (Lsj(t, xs(t; t, x))) → 0 as T ∗ → 0Sin
e Q is a 
ontra
tion, being a linear mapping in a Bana
h spa
e it is also
ontinuous. From the fa
t that GT ∗ is a 
ompa
t set we dedu
e that T ∗ > 0
an be 
hosen in su
h a way that (21) holds for all (t, x) ∈ GT ∗ uniformly.We 
on
lude from (20) and (21) that there exists T ∗, 0 < T ∗ ≤ T̃ , su
hthat (19) is satis�ed. By the Bana
h prin
iple there is a unique �xed pointof the mapping Q. We have proved the existen
e of a lo
al in time solution
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z and Z. Peradzy«skiof (14) on GT ∗ . Sin
e the norms of the entries of the matri
es L, B, L−1 donot depend on t, we 
an extend the solution onto the whole set G. Indeed,taking now t = T ∗ as the initial time and u(T ∗, x) as the new initial 
onditionwe 
ome to the problem de�ned on the set
G2 = {(t, x) ∈ [T ∗, T̃ ] × [α0, β0] : X(t) ≤ x ≤ Y (t)}.We 
ontinue in this fashion obtaining a solution on the set G, whi
h 
om-pletes the proof.

Remarks. To 
on
lude, let us note that a (lo
al in time) existen
e the-orem similar to Theorem 1 
an be proved for a semilinear system, i.e. whenthe RHS is a nonlinear 
ontinuous fun
tion Lips
hitzian in u.In appli
ations it often happens that the 
oe�
ients of the system dependonly on x:
∂u

∂t
+ A(x)

∂u

∂x
= b(x),(22)

u(0, x) = u0(x), x ∈ [α, β].(23)We 
laim that Theorem 1 is still true in this 
ase if instead of the 
ontinuityof the ve
tor fun
tion b(x) we only assume that it is a derivative along the
hara
teristi
 dire
tions of some 
ontinuous fun
tion f(x), i.e.(24) b(x) =

(
∂

∂t
+ D(x)

∂

∂x

)
f(x) = D(x)

∂

∂x
f(x).Using the integral formulation (14) for the Cau
hy problem (22)�(23) wehave

u(t, x) = L−1(t, x) · P0r
0 + L−1(t, x)

t\
0

Pt(L · df)

+ L−1(t, x)

t\
0

Pt(dL · u).Integrating by parts we obtain
t\
0

Pt(L · df) = −

t\
0

Pt(dL · f) + Pt(Lf) − P0(Lf).By the above, let us de�ne a solution of the Cau
hy problem (22)�(23) tobe a C0 fun
tion satisfying the following integral system:
u(t, x) = −L−1(t, x)

t\
0

Pt(dL · f) + L−1(t, x)

t\
0

Pt(dL · u)

+ L−1(t, x) · P0r
0 + L−1(t, x) · Pt(Lf) − L−1(t, x) · P0(Lf)



Continuous solutions to linear hyperboli
 systems 281The integral Tt0 Pt(dL · f) exists and, by Lemma 1, is a 
ontinuous fun
tionof (t, x).If the matrix D(x) is nonsingular and b(x) ∈ L1([α0, β0]) then a ve
torfun
tion f(x) as in (24) always exists and it is given by
f(x) =

x\
α0

D−1(y)b(y) dy.A
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