On some elliptic boundary-value problems with discontinuous nonlinearities

by GIOVANNI ANELLO (Messina)

Abstract. We establish two existence results for elliptic boundary-value problems with discontinuous nonlinearities. One of them concerns implicit elliptic equations of the form $\psi(-\Delta u) = f(x, u)$. We emphasize that our assumptions permit the nonlinear term f to be discontinuous with respect to the second variable at each point.

1. Introduction. Throughout, Ω is a nonempty open bounded set in \mathbb{R}^n $(n \geq 3)$ with smooth boundary $\partial \Omega$, a is a real positive number, p is a real number strictly greater than n/2, and $f: \Omega \times \mathbb{R} \to \mathbb{R}, \psi: [a, +\infty[\to \mathbb{R}$ are given functions.

This paper is motivated by the results of [7] and [8] where some elliptic boundary-value problems with discontinuous nonlinearities are studied. Specifically, in these papers, the following two problems are considered:

(P)
$$\begin{cases} -\Delta u(x) = f(x, u(x)) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

and

(P₁)
$$\begin{cases} \psi(-\Delta u(x)) = f(x, u(x)) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where Δ is the Laplacian operator; for both, existence of strong solutions is established. As is well known, a strong solution for problem (P) or (P_1) is a function $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ satisfying the corresponding equation for almost all $x \in \Omega$. There is wide literature on the existence of solutions for problem (P), and when f is a Carathéodory function, variational methods are usually employed.

Here we are interested in the case where f can be discontinuous with respect to the second variable. In this connection we refer to [7] and [8] (and the references therein). In particular, Theorems 3.1 and 4.2 of [7] give

²⁰⁰⁰ Mathematics Subject Classification: 35J25, 26E25.

 $Key \ words \ and \ phrases:$ elliptic equations, discontinuous nonlinearities, strong solutions, differential inclusions.

the existence of a strong solution for problem (P) and (P_1) respectively, assuming that $f(x, \cdot)$ is a Riemann-measurable function for almost all $x \in \Omega$ and, in the case of problem (P_1) , that f is also independent of $x \in \Omega$. We recall that a Riemann-measurable function is a function whose set of discontinuity points has Lebesgue measure 0. In the same paper it is pointed out that the assumption on f cannot be weakened. Indeed, in Remark 3.2 of [7] it is shown that if $f(x, \cdot)$ is almost everywhere equal to a Riemannmeasurable function for almost all $x \in \Omega$ only, then problem (P) may not have any strong solution. On the other hand, Theorem 3.1 of [8] gives the existence of a strong solution for problem (P_1) this time allowing f to depend on $x \in \Omega$ and assuming hypotheses substantially different from those of Theorem 4.2 of [7].

The purpose of the present paper is twofold: we give versions of Theorems 3.1 and 4.2 of [7] in which $f(x, \cdot)$ is supposed to be almost everywhere equal to a Riemann-measurable function for almost all $x \in \Omega$ extending, at the same time, the second one to the nonautonomous case. In the latter case, our result and Theorem 3.1 of [8] will turn out to be mutually independent. To prove the existence result relating to problem (P_1) we will use a recent selection theorem established in [1].

2. Basic definitions and notations. Let X, Y be two nonempty sets. A multifunction F from X into Y is a function from X into the family of all subsets of Y and we briefly denote it by $F: X \to 2^Y$. The set $\{(x, y) \in$ $X \times Y : y \in F(x)\}$ is called the graph of F. For each $A \subseteq Y$, we denote by $F^-(A)$ the set $\{x \in X : F(x) \cap A \neq \emptyset\}$. We say that a function $f: X \to Y$ is a selection of F if $f(x) \in F(x)$ for all $x \in X$. If X, Y are topological spaces, a multifunction $F: X \to 2^Y$ is called *lower semicontinuous* (briefly l.s.c.) at $x \in X$ if for any $y \in F(x)$ and any neighborhood V of y there exists a neighborhood U of x such that

$$F(z) \cap V \neq \emptyset$$
 for all $z \in U$.

If (X, \mathfrak{F}) is a measurable space and Y is a topological space, a multifunction $F: X \to 2^Y$ is called *measurable* when $F^-(A) \in \mathfrak{F}$ for any open set $A \subseteq Y$.

We denote by $\mathcal{L}(\Omega)$ the Lebesgue σ -algebra of Ω and by m_n the Lebesgue measure in \mathbb{R}^n . Also, the symbol $\mathcal{B}(\mathbb{R})$ stands for the Borel σ -algebra of \mathbb{R} . For a subset A of \mathbb{R}^n , $\overline{\operatorname{co}}(A)$ and $\operatorname{int}(A)$ will denote the closed convex hull and the interior of A respectively. If d is the Euclidean distance in \mathbb{R}^n and A is a nonempty set in \mathbb{R}^n , we put $d(x, A) = \inf_{y \in A} d(x, y)$ for all $x \in \mathbb{R}^n$. Finally, we denote by $\|\cdot\|_p$ the usual norm in $L^p(\Omega)$.

To close this section, recall that, thanks to Theorem 2 of [11], one has

(1) $\operatorname{ess\,sup}_{x\in\Omega}|u(x)| \le B \|\Delta u\|_p \quad \text{for every } u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$

where

$$B = [m(\Omega)]^{2/n-1/p} \frac{\Gamma(1+\frac{n}{2})}{\pi n(n-2)} \left[\frac{\Gamma(1+\frac{p}{p-1})\Gamma(\frac{n}{n-2}) - \frac{p}{p-1}}{\Gamma(\frac{n}{n-2})} \right]^{1-1/p}$$

and \varGamma denotes the Gamma function.

3. Main results. In this section we state and prove the main results. Throughout, we briefly write a.a. for "almost all".

THEOREM 1. Let $\beta \in L^p(\Omega)$ with $\beta \neq 0$ and $A = [-B||\beta||_p, B||\beta||_p]$. Assume that there exist $E \subseteq A$ with $m_1(E) = 0$ and a function $g : \Omega \times \mathbb{R} \to \mathbb{R}$ satisfying the following properties:

- $(\alpha_1) \ \{t \in A : g(x, \cdot) \text{ is discontinuous at } t \text{ or } g(x, t) \neq f(x, t)\} \subseteq E \text{ for} \\ a.a. \ x \in \Omega;$
- (α_2) $g(\cdot, t)$ is measurable for a.a. $t \in A$;
- (α_3) $\sup_{t \in A} |g(x,t)| \leq \beta(x)$ for a.a. $x \in \Omega$;
- (α_4) there exists an open set $D \supseteq E$ such that

$$\mathop{\mathrm{ess\,inf}}_{x\in\varOmega}\inf_{t\in D}g(x,t)>0\quad or\quad \mathop{\mathrm{ess\,sup\,sup}}_{x\in\varOmega}\sup_{t\in D}g(x,t)<0.$$

Then there exists a strong solution u of problem (P) satisfying

$$\Delta u(x)| \leq \sup_{t \in A} |g(x,t)| \quad \text{ for a.a. } x \in \Omega.$$

Proof. Without loss of generality, we can suppose that conditions (α_1) and (α_3) hold for all $x \in \Omega$. For every $x \in \Omega$, we define

$$\widehat{g}(x,t) = \begin{cases} g(x, -B \|\beta\|_p) & \text{if } t < -B \|\beta\|_p, \\ g(x,t) & \text{if } |t| \le B \|\beta\|_p, \\ g(x, B \|\beta\|_p) & \text{if } t > B \|\beta\|_p. \end{cases}$$

Clearly (α_1) holds with \widehat{g} in place of g. Observe that by (α_2) we can find a countable set $P \subseteq \mathbb{R} \setminus E$ dense in \mathbb{R} such that $\widehat{g}(\cdot, t)$ is measurable for all $t \in P$. Moreover, by (α_3) , we can suppose that the function $\widehat{g}(x, \cdot)$ is bounded for all $x \in \Omega$. Thus, thanks to Proposition 2 of [3] (which is proved assuming that Ω is a real interval, but it is easy to see that the same holds if Ω is a bounded open subset of \mathbb{R}^n), the multifunction $F : \Omega \times \mathbb{R} \to 2^{\mathbb{R}}$ defined by

$$F(x,t) = \bigcap_{m \in \mathbb{N}} \overline{\operatorname{co}} \Big(\bigcup_{y \in P, \, |y-t| \le 1/m} \{ \widehat{g}(x,y) \} \Big)$$

has the following properties:

- (a) F(x,t) is nonempty and convex for all $(x,t) \in \Omega \times \mathbb{R}$;
- (b) $F(\cdot, t)$ is measurable for all $t \in \mathbb{R}$;

(c) $F(x, \cdot)$ has closed graph for all $x \in \Omega$;

(d) if $x \in \Omega$ and $\widehat{g}(x, \cdot)$ is continuous at $t \in \mathbb{R}$, then $F(x, t) = \{\widehat{g}(x, t)\}$.

Now, thanks to Proposition 1 of [9] it is easy to deduce that

$$\sup_{t\in A} d(0, F(x,t)) = \sup_{t\in A\cap P} d(0, F(x,t))$$

for all $x \in \Omega$ (see, for instance, the proof of Theorem 3.1 of [7]). Consequently, the function $x \in \Omega \mapsto \sup_{t \in A} d(0, F(x, t))$ is measurable. Moreover, from condition (α_3) , this function belongs to $L^p(\Omega)$ and

(2)
$$\|\sup_{t\in A} d(0, F(\cdot, t))\|_{L^p(\Omega)} \le \|\beta\|_p.$$

At this point, we can apply Theorem 2.2 of [7]. Hence, there exists $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ such that

(3)
$$-\Delta u(x) \in F(x, u(x))$$

and

(4)
$$|\Delta u(x)| \le \sup_{t \in A} d(0, F(x, t))$$

for a.a. $x \in \Omega$. Observe that from (3) and (4) and in view of (1) we have $\operatorname{ess\,sup}_{x\in\Omega} |u(x)| \leq B \|\Delta u(x)\|_{L^p(\Omega)} \leq B \|\sup_{t\in A} d(0, F(x, t))\|_{L^p(\Omega)} \leq B \|\beta\|_p,$

that is,

(5)
$$u(x) \in A$$
 for a.a. $x \in \Omega$.

Now, put

 $\Omega_0 = \{ x \in \Omega : u(x) \in E \}.$

We claim that $m_n(\Omega_0) = 0$. Indeed, by Proposition 2.1 of [7] one has

(6)
$$\Delta u(x) = 0 \in F(x, u(x))$$

for almost all $x \in \Omega_0$. On the other hand, by condition (α_4) , we have

(7)
$$\operatorname{ess\,inf\,\,inf\,\,inf\,\,}_{x\in\Omega}\inf F(x,t) \ge \operatorname{ess\,inf\,\,inf\,\,}_{t\in D}g(x,t) > 0$$

or

(8)
$$\operatorname{ess\,sup\,sup\,sup}_{x\in\Omega} \sup_{t\in D} F(x,t) \le \operatorname{ess\,sup\,sup}_{x\in\Omega} \sup_{t\in D} g(x,t) < 0$$

Clearly, (6) together with (7) or (8) imply $m_n(\Omega_0) = 0$. This latter fact, the definition of \hat{g} , condition (α_1), properties (d) and (3)–(5) imply

$$-\Delta u(x) = f(x, u(x))$$

and

$$|\varDelta u(x)| \leq \sup_{t \in A} |g(x,t)|$$

for a.a. $x \in \Omega$. This completes the proof.

286

REMARK 1. As observed in the introduction, an example in Remark 3.2 of [7] shows that if f is almost everywhere equal to a function fulfilling all the assumptions of Theorem 3.1 of [7], then problem (P) may not have any strong solution. Precisely, for f defined by

$$f(x,t) = \begin{cases} 1 & \text{if } (x,t) \in \Omega \times \mathbb{Q}, \\ 0 & \text{otherwise,} \end{cases}$$

problem (P) cannot have any strong solution. Observe that this f does not satisfy the hypotheses of Theorem 1. Indeed, it is easy to note that there is no function g fulfilling both (α_1) and (α_4). On the other hand, if we define

$$f(x,t) = \begin{cases} 0 & \text{if } (x,t) \in \Omega \times \mathbb{Q}, \\ 1 & \text{otherwise,} \end{cases}$$

then for g(x,t) = 1 for all $(x,t) \in \Omega \times \mathbb{R}$ all the hypotheses of Theorem 1 are satisfied, and so problem (P) admits a strong solution. We emphasize that in this latter case f is discontinuous at each point of \mathbb{R} .

REMARK 2. We observe that condition (α_3) of Theorem 1 is weaker than condition (α_3) of Theorem 3.1 of [7]. Indeed, the measurability of the function $x \in \Omega \mapsto \sup_{t \in A} |g(x,t)|$ is not required.

To prove the next result we need the following selection theorem for multifunctions of two variables:

THEOREM A (Theorem 2 of [1]). Let T, X be Polish spaces and let μ, ψ be positive regular Borel measures on T and X, respectively, with μ finite and ψ σ -finite. Let S be a separable metric space, $F : T \times X \to 2^S$ a multifunction with nonempty complete values, and let $E \subseteq X$ be a given set. Finally, let $\mathcal{B}(X)$ be the Borel σ -algebra of X and \mathcal{T}_{μ} the completion of the Borel σ -algebra of T with respect to μ . Assume that:

- (i) F is $T_{\mu} \otimes \mathcal{B}(X)$ -measurable;
- (ii) $\{x \in X : F(t, \cdot) \text{ is not lower semicontinuous at } x\} \subseteq E \text{ for a.a.} t \in T.$

Then there exists a selection $\phi : T \times X \to S$ of F and a negligible set $R \subseteq X$ such that:

(i)' $\phi(\cdot, x)$ is \mathcal{T}_{μ} -measurable for each $x \in X \setminus (E \cup R)$;

(ii)' $\{x \in X : \phi(t, \cdot) \text{ is not continuous at } x\} \subseteq E \cup R \text{ for a.a. } t \in T.$

Now, we are able to prove our second main result. From now on, if $C \subseteq \mathbb{R}$, $\mathcal{B}(C)$ will denote the Borel σ -algebra of C.

THEOREM 2. Let $\beta \in L^p(\Omega)$ with $\beta \neq 0$ and put $A = [-B \|\beta\|_p, B \|\beta\|_p]$. Assume that there exist $E, E_1 \subset A$ with $m_1(E \cup E_1) = 0$ and E_1 closed, and a function $g: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfying the following properties:

G. Anello

- $\begin{array}{l} (\beta_1) \ \{t \in A : g(x, \cdot) \ is \ discontinuous \ at \ t\} \subseteq E_1 \ and \\ \{t \in A : g(x, t) \neq f(x, t)\} \subseteq E \ for \ a.a. \ x \in \Omega; \end{array}$
- (β_2) ψ is continuous in $[a, +\infty[$ and $\psi^{-1}(\sigma)$ has empty interior for every $\sigma \in \operatorname{int} \psi([a, +\infty]);$
- (β_3) $g(\cdot, t)$ is measurable for a.a. $t \in A$;
- (β_4) if one puts

$$v(x) = \mathop{\mathrm{ess\,inf}}_{t \in A} g(x,t) \quad and \quad z(x) = \mathop{\mathrm{ess\,sup}}_{t \in A} g(x,t)$$

for all $x \in \Omega$, then $[v(x), z(x)] \subseteq \psi([a, +\infty[) \text{ and } \psi^{-1}([v(x), z(x)]) \subseteq [a, \beta(x)]$ for a.a. $x \in \Omega$.

Then there exists a strong positive solution of problem (P_1) .

Proof. Without loss of generality, we can suppose that the conditions (β_1) and (β_4) hold for all $x \in \Omega$. By (β_2) we can find a countable set $P \subseteq A \setminus E_1$ dense in A such that $g(\cdot, t)$ is measurable for all $t \in P$. Moreover, it is easy to see that

$$v(x) = \inf_{t \in A \setminus E_1} g(x, t)$$
 and $z(x) = \sup_{t \in A \setminus E_1} g(x, t)$

for all $x \in \Omega$. Hence, $g_{|\Omega \times (A \setminus E_1)}$ is $\mathcal{L}(\Omega) \otimes \mathcal{B}(A \setminus E_1)$ -measurable by the Lemma on p. 198 of [6]. So, by Lemma III.39 of [2], the functions v and z are measurable. Now, define

$$\phi(x,t) = \begin{cases} g(x,t) & \text{if } (x,t) \in \Omega \times (A \setminus E_1), \\ z(x) & \text{if } (x,t) \in \Omega \times E_1. \end{cases}$$

Since E_1 is closed, condition (β_1) implies that

(9)
$$\{t \in A : \phi(x, \cdot) \text{ is discontinuous at } t\} \subseteq E_1.$$

Moreover, ϕ turns out to be $\mathcal{L}(\Omega) \otimes \mathcal{B}(A)$ -measurable and satisfies

(10)
$$v(x) \le \phi(x,t) \le z(x)$$

for all $(x,t) \in \Omega \times A$. At this point, observe that the function ψ fulfils all the hypotheses of Theorem 2.4 of [10]. Hence, there exists a set $Y \subseteq [a, +\infty[$ such that $\psi^{-1}(\sigma) \cap Y$ is nonempty and closed in \mathbb{R} for each $\sigma \in \psi([a, +\infty[)$ and the multifunction $\psi^{-1}(\cdot) \cap Y$ is l.s.c. in $\psi([a, +\infty[)$. Now, put

$$\Gamma(x,t) = \begin{cases} \psi^{-1}(\phi(x,t)) \cap Y & \text{if } (x,t) \in \Omega \times A, \\ \mathbb{R} & \text{otherwise.} \end{cases}$$

Then Γ is an $\mathcal{L}(\Omega) \otimes \mathcal{B}(\mathbb{R})$ -measurable multifunction and, further, by (9) one has

(11)
$$\{t \in \mathbb{R} : \Gamma(x, \cdot) \text{ is not l.s.c. at } t\} \subseteq E_1.$$

Consequently, by Theorem A, there exist $R \subseteq \mathbb{R}$ with $m_1(R) = 0$ and a selection γ of Γ such that

(12)
$$\{t \in \mathbb{R} : \gamma(x, \cdot) \text{ is discontinuous at } t\} \subseteq E_1 \cup R$$

for a.a. $x \in \Omega$ and $\gamma(\cdot, t)$ measurable for all $t \in \mathbb{R} \setminus (E_1 \cup R)$. From this latter property we can find a countable set $P_1 \subseteq \mathbb{R} \setminus (E_1 \cup R)$, dense in \mathbb{R} , such that $\gamma(\cdot, t)$ is measurable for all $t \in P_1$. Also, by conditions (β_4) , (10) and since

(13)
$$\gamma(x,t) \in \psi^{-1}(\phi(x,t)) \text{ for all } (x,t) \in \Omega \times A$$

we deduce that

(14)
$$a \leq \gamma(x,t) \leq \sup_{t \in A} \sup \psi^{-1}(\phi(x,t))$$
$$\leq \sup \psi^{-1}([v(x), z(x)]) \leq \beta(x)$$

for all $(x,t) \in \Omega \times A$. At this point, we can apply Theorem 1. Hence, there exists $u \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ such that

(15)
$$-\Delta u(x) = \gamma(x, u(x))$$

and

(16)
$$|\Delta u(x)| \le \sup_{t \in A} \gamma(x, t) \le \beta(x)$$

for a.a. $x \in \Omega$. In particular, by (16) and (1), one has $\operatorname{ess\,sup}_{x \in \Omega} |u(x)| \le B \|\beta\|_p$, that is,

(17)
$$u(x) \in A$$
 for a.a. $x \in \Omega$.

Taking into account (14) and (15), we can argue as in the proof of Theorem 1 to deduce that

(18)
$$m_n(\{x \in \Omega : u(x) \in E \cup E_1\}) = 0.$$

Consequently, by the definition of ϕ and conditions (β_1), (13), (15), (17) and (18) one has

$$\psi(-\Delta u(x)) = f(x, u(x))$$

for a.a. $x \in \Omega$. Moreover, the Maximum Principle and (14), (15) and (17) imply that u is positive. This completes the proof.

REMARK 3. Notice that Theorem 2 is a nonautonomous version of Theorem 4.2 of [7].

REMARK 4. When the function g of Theorem 2 does not depend on $x \in \Omega$, then we can take the function β equal to a constant ϱ . So we have $A = [-Bm_n(\Omega)^{1/p}\varrho, Bm_n(\Omega)^{1/p}\varrho]$ and condition (β_4) becomes

$$(\beta'_4) \ g([-Bm_n(\Omega)^{1/p}\varrho, Bm_n(\Omega)^{1/p}\varrho]) \subseteq \psi([a, +\infty]) \text{ and } \\ \psi^{-1}(g([-Bm_n(\Omega)^{1/p}\varrho, Bm_n(\Omega)^{1/p}\varrho])) \subseteq [a, \varrho].$$

G. Anello

We observe that condition (β'_4) is stronger than condition (c_3) of Theorem 4.2 of [7]. Hence, the former does not generalize the latter to the nonautonomous case. Nevertheless, we point out that condition (c_3) of Theorem 4.2 of [7] must be replaced with (β'_4) , otherwise inequality (14) and the subsequent inclusion in the proof of that result may not be true, as is easily checked.

REMARK 5. We observe that Theorem 3.1 of [8] deals with the vectorial case of problem (P_1) , namely \mathbb{R} is replaced by \mathbb{R}^h where h is an integer greater than or equal to 1. When h = 1, it is immediate to check that this result and Theorem 2 are mutually independent.

References

- G. Anello and P. Cubiotti, Parametrization of Riemann-measurable selections for multifunctions of two variables with application to differential inclusions, Ann. Polon. Math. 83 (2004), 179–187.
- [2] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer, Berlin, 1977.
- P. Cubiotti, Non-autonomous vector integral equations with discontinuous righthand side, Comm. Math. Univ. Carolin. 38 (1997), 241–246.
- [4] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, Berlin, 1965.
- [5] E. Klein and A. C. Thompson, Theory of Correspondences, Wiley, New York, 1984.
- [6] A. Kucia, Scorza Dragoni type theorems, Fund. Math. 138 (1991), 197–203.
- [7] A. S. Marano, Elliptic boundary-value problem with discontinuous nonlinearities, Set-Valued Anal. 3 (1995), 167–180.
- [8] —, Implicit elliptic boundary-value problem with discontinuous nonlinearities, ibid. 4 (1996), 287–300.
- [9] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type $\Psi(u)(t) \in F(t, \Phi(u)(t))$ and application to a multivalued boundary problem, Appl. Anal. 38 (1990), 259–270.
- B. Ricceri, Sur la semi-continuité inférieure de certaines multifonctions, C. R. Acad. Sci. Paris 294 (1982), 265–267.
- G. Talenti, *Elliptic equations and rearrangements*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 697–718.

Department of Mathematics University of Messina 98166 S.Agata, Messina, Italy E-mail: anello@dipmat.unime.it

 $Reçu \ par \ la \ Rédaction \ le \ 16.9.2005 \tag{1607}$

290