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On some elliptic boundary-value problems

with discontinuous nonlinearities

by Giovanni Anello (Messina)

Abstract. We establish two existence results for elliptic boundary-value problems
with discontinuous nonlinearities. One of them concerns implicit elliptic equations of the
form ψ(−∆u) = f(x, u). We emphasize that our assumptions permit the nonlinear term
f to be discontinuous with respect to the second variable at each point.

1. Introduction. Throughout, Ω is a nonempty open bounded set in
Rn (n ≥ 3) with smooth boundary ∂Ω, a is a real positive number, p is a
real number strictly greater than n/2, and f : Ω×R → R, ψ : [a,+∞[ → R

are given functions.
This paper is motivated by the results of [7] and [8] where some ellip-

tic boundary-value problems with discontinuous nonlinearities are studied.
Specifically, in these papers, the following two problems are considered:

(P )

{
−∆u(x) = f(x, u(x)) in Ω,

u = 0 on ∂Ω,

and

(P1)

{
ψ(−∆u(x)) = f(x, u(x)) in Ω,

u = 0 on ∂Ω,

where ∆ is the Laplacian operator; for both, existence of strong solutions is
established. As is well known, a strong solution for problem (P ) or (P1) is a

function u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) satisfying the corresponding equation for

almost all x ∈ Ω. There is wide literature on the existence of solutions for
problem (P ), and when f is a Carathéodory function, variational methods
are usually employed.

Here we are interested in the case where f can be discontinuous with
respect to the second variable. In this connection we refer to [7] and [8]
(and the references therein). In particular, Theorems 3.1 and 4.2 of [7] give
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the existence of a strong solution for problem (P ) and (P1) respectively,
assuming that f(x, ·) is a Riemann-measurable function for almost all x ∈ Ω
and, in the case of problem (P1), that f is also independent of x ∈ Ω.
We recall that a Riemann-measurable function is a function whose set of
discontinuity points has Lebesgue measure 0. In the same paper it is pointed
out that the assumption on f cannot be weakened. Indeed, in Remark 3.2
of [7] it is shown that if f(x, ·) is almost everywhere equal to a Riemann-
measurable function for almost all x ∈ Ω only, then problem (P ) may not
have any strong solution. On the other hand, Theorem 3.1 of [8] gives the
existence of a strong solution for problem (P1) this time allowing f to depend
on x ∈ Ω and assuming hypotheses substantially different from those of
Theorem 4.2 of [7].

The purpose of the present paper is twofold: we give versions of Theo-
rems 3.1 and 4.2 of [7] in which f(x, ·) is supposed to be almost everywhere
equal to a Riemann-measurable function for almost all x ∈ Ω extending, at
the same time, the second one to the nonautonomous case. In the latter case,
our result and Theorem 3.1 of [8] will turn out to be mutually independent.
To prove the existence result relating to problem (P1) we will use a recent
selection theorem established in [1].

2. Basic definitions and notations. Let X,Y be two nonempty sets.
A multifunction F from X into Y is a function from X into the family of
all subsets of Y and we briefly denote it by F : X → 2Y . The set {(x, y) ∈
X × Y : y ∈ F (x)} is called the graph of F . For each A ⊆ Y , we denote by
F−(A) the set {x ∈ X : F (x)∩A 6= ∅}. We say that a function f : X → Y is
a selection of F if f(x) ∈ F (x) for all x ∈ X. If X,Y are topological spaces,
a multifunction F : X → 2Y is called lower semicontinuous (briefly l.s.c.)
at x ∈ X if for any y ∈ F (x) and any neighborhood V of y there exists a
neighborhood U of x such that

F (z) ∩ V 6= ∅ for all z ∈ U.

If (X,ℑ) is a measurable space and Y is a topological space, a multifunction
F : X → 2Y is called measurable when F−(A) ∈ ℑ for any open set A ⊆ Y .

We denote by L(Ω) the Lebesgue σ-algebra of Ω and bymn the Lebesgue
measure in Rn. Also, the symbol B(R) stands for the Borel σ-algebra of R.
For a subset A of Rn, co(A) and int(A) will denote the closed convex hull
and the interior of A respectively. If d is the Euclidean distance in Rn and
A is a nonempty set in Rn, we put d(x,A) = infy∈A d(x, y) for all x ∈ Rn.
Finally, we denote by ‖ · ‖p the usual norm in Lp(Ω).

To close this section, recall that, thanks to Theorem 2 of [11], one has

(1) ess sup
x∈Ω

|u(x)| ≤ B‖∆u‖p for every u ∈W 2,p(Ω) ∩W 1,p
0 (Ω)
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where

B = [m(Ω)]2/n−1/p Γ
(
1 + n

2

)

πn(n− 2)

[
Γ

(
1 + p

p−1

)
Γ

(
n

n−2

)
− p

p−1

Γ
(

n
n−2

)
]1−1/p

and Γ denotes the Gamma function.

3. Main results. In this section we state and prove the main results.
Throughout, we briefly write a.a. for “almost all”.

Theorem 1. Let β ∈ Lp(Ω) with β 6= 0 and A = [−B‖β‖p, B‖β‖p].
Assume that there exist E ⊆ A with m1(E) = 0 and a function g : Ω×R → R

satisfying the following properties:

(α1) {t ∈ A : g(x, ·) is discontinuous at t or g(x, t) 6= f(x, t)} ⊆ E for

a.a. x ∈ Ω;
(α2) g(·, t) is measurable for a.a. t ∈ A;
(α3) supt∈A |g(x, t)| ≤ β(x) for a.a. x ∈ Ω;
(α4) there exists an open set D ⊇ E such that

ess inf
x∈Ω

inf
t∈D

g(x, t) > 0 or ess sup
x∈Ω

sup
t∈D

g(x, t) < 0.

Then there exists a strong solution u of problem (P ) satisfying

|∆u(x)| ≤ sup
t∈A

|g(x, t)| for a.a. x ∈ Ω.

Proof. Without loss of generality, we can suppose that conditions (α1)
and (α3) hold for all x ∈ Ω. For every x ∈ Ω, we define

ĝ(x, t) =






g(x,−B‖β‖p) if t < −B‖β‖p,

g(x, t) if |t| ≤ B‖β‖p,

g(x,B‖β‖p) if t > B‖β‖p.

Clearly (α1) holds with ĝ in place of g. Observe that by (α2) we can find
a countable set P ⊆ R \ E dense in R such that ĝ(·, t) is measurable for
all t ∈ P . Moreover, by (α3), we can suppose that the function ĝ(x, ·) is
bounded for all x ∈ Ω. Thus, thanks to Proposition 2 of [3] (which is proved
assuming that Ω is a real interval, but it is easy to see that the same holds
if Ω is a bounded open subset of Rn), the multifunction F : Ω × R → 2R

defined by

F (x, t) =
⋂

m∈N

co
( ⋃

y∈P, |y−t|≤1/m

{ĝ(x, y)}
)

has the following properties:

(a) F (x, t) is nonempty and convex for all (x, t) ∈ Ω × R;
(b) F (·, t) is measurable for all t ∈ R;
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(c) F (x, ·) has closed graph for all x ∈ Ω;
(d) if x ∈ Ω and ĝ(x, ·) is continuous at t ∈ R, then F (x, t) = {ĝ(x, t)}.

Now, thanks to Proposition 1 of [9] it is easy to deduce that

sup
t∈A

d(0, F (x, t)) = sup
t∈A∩P

d(0, F (x, t))

for all x ∈ Ω (see, for instance, the proof of Theorem 3.1 of [7]). Conse-
quently, the function x ∈ Ω 7→ supt∈A d(0, F (x, t)) is measurable. Moreover,
from condition (α3), this function belongs to Lp(Ω) and

‖ sup
t∈A

d(0, F (·, t))‖Lp(Ω) ≤ ‖β‖p.(2)

At this point, we can apply Theorem 2.2 of [7]. Hence, there exists u ∈

W 2,p(Ω) ∩W 1,p
0 (Ω) such that

−∆u(x) ∈ F (x, u(x))(3)

and

|∆u(x)| ≤ sup
t∈A

d(0, F (x, t))(4)

for a.a. x ∈ Ω. Observe that from (3) and (4) and in view of (1) we have

ess sup
x∈Ω

|u(x)| ≤ B‖∆u(x)‖Lp(Ω) ≤ B‖ sup
t∈A

d(0, F (x, t))‖Lp(Ω) ≤ B‖β‖p,

that is,

u(x) ∈ A for a.a. x ∈ Ω.(5)

Now, put

Ω0 = {x ∈ Ω : u(x) ∈ E}.

We claim that mn(Ω0) = 0. Indeed, by Proposition 2.1 of [7] one has

∆u(x) = 0 ∈ F (x, u(x))(6)

for almost all x ∈ Ω0. On the other hand, by condition (α4), we have

ess inf
x∈Ω

inf
t∈D

inf F (x, t) ≥ ess inf
x∈Ω

inf
t∈D

g(x, t) > 0(7)

or

ess sup
x∈Ω

sup
t∈D

supF (x, t) ≤ ess sup
x∈Ω

sup
t∈D

g(x, t) < 0.(8)

Clearly, (6) together with (7) or (8) imply mn(Ω0) = 0. This latter fact, the
definition of ĝ, condition (α1), properties (d) and (3)–(5) imply

−∆u(x) = f(x, u(x))

and
|∆u(x)| ≤ sup

t∈A
|g(x, t)|

for a.a. x ∈ Ω. This completes the proof.
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Remark 1. As observed in the introduction, an example in Remark 3.2
of [7] shows that if f is almost everywhere equal to a function fulfilling all
the assumptions of Theorem 3.1 of [7], then problem (P ) may not have any
strong solution. Precisely, for f defined by

f(x, t) =

{
1 if (x, t) ∈ Ω × Q,

0 otherwise,

problem (P ) cannot have any strong solution. Observe that this f does not
satisfy the hypotheses of Theorem 1. Indeed, it is easy to note that there is
no function g fulfilling both (α1) and (α4). On the other hand, if we define

f(x, t) =

{
0 if (x, t) ∈ Ω × Q,

1 otherwise,

then for g(x, t) = 1 for all (x, t) ∈ Ω × R all the hypotheses of Theorem 1
are satisfied, and so problem (P ) admits a strong solution. We emphasize
that in this latter case f is discontinuous at each point of R.

Remark 2. We observe that condition (α3) of Theorem 1 is weaker
than condition (α3) of Theorem 3.1 of [7]. Indeed, the measurability of the
function x ∈ Ω 7→ supt∈A |g(x, t)| is not required.

To prove the next result we need the following selection theorem for
multifunctions of two variables:

Theorem A (Theorem 2 of [1]). Let T,X be Polish spaces and let µ, ψ
be positive regular Borel measures on T and X, respectively , with µ finite

and ψ σ-finite. Let S be a separable metric space, F : T × X → 2S a

multifunction with nonempty complete values, and let E ⊆ X be a given set.

Finally , let B(X) be the Borel σ-algebra of X and Tµ the completion of the

Borel σ-algebra of T with respect to µ. Assume that :

(i) F is Tµ ⊗ B(X)-measurable;
(ii) {x ∈ X : F (t, ·) is not lower semicontinuous at x} ⊆ E for a.a.

t ∈ T .

Then there exists a selection φ : T ×X → S of F and a negligible set R ⊆ X
such that:

(i)′ φ(·, x) is Tµ-measurable for each x ∈ X \ (E ∪R);
(ii)′ {x ∈ X : φ(t, ·) is not continuous at x} ⊆ E ∪R for a.a. t ∈ T .

Now, we are able to prove our second main result. From now on, if C ⊆ R,
B(C) will denote the Borel σ-algebra of C.

Theorem 2. Let β ∈ Lp(Ω) with β 6= 0 and put A = [−B‖β‖p, B‖β‖p].
Assume that there exist E,E1 ⊂ A with m1(E ∪E1) = 0 and E1 closed , and

a function g : Ω × R → R satisfying the following properties:
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(β1) {t ∈ A : g(x, ·) is discontinuous at t} ⊆ E1 and

{t ∈ A : g(x, t) 6= f(x, t)} ⊆ E for a.a. x ∈ Ω;
(β2) ψ is continuous in [a,+∞[ and ψ−1(σ) has empty interior for every

σ ∈ intψ([a,+∞]);
(β3) g(·, t) is measurable for a.a. t ∈ A;
(β4) if one puts

v(x) = ess inf
t∈A

g(x, t) and z(x) = ess sup
t∈A

g(x, t)

for all x ∈ Ω, then [v(x), z(x)] ⊆ ψ([a,+∞[) and ψ−1([v(x), z(x)])
⊆ [a, β(x)] for a.a. x ∈ Ω.

Then there exists a strong positive solution of problem (P1).

Proof. Without loss of generality, we can suppose that the conditions
(β1) and (β4) hold for all x ∈ Ω. By (β2) we can find a countable set
P ⊆ A\E1 dense in A such that g(·, t) is measurable for all t ∈ P . Moreover,
it is easy to see that

v(x) = inf
t∈A\E1

g(x, t) and z(x) = sup
t∈A\E1

g(x, t)

for all x ∈ Ω. Hence, g|Ω×(A\E1) is L(Ω) ⊗ B(A \ E1)-measurable by the
Lemma on p. 198 of [6]. So, by Lemma III.39 of [2], the functions v and z
are measurable. Now, define

φ(x, t) =

{
g(x, t) if (x, t) ∈ Ω × (A \E1),

z(x) if (x, t) ∈ Ω × E1.

Since E1 is closed, condition (β1) implies that

{t ∈ A : φ(x, ·) is discontinuous at t} ⊆ E1.(9)

Moreover, φ turns out to be L(Ω) ⊗ B(A)-measurable and satisfies

v(x) ≤ φ(x, t) ≤ z(x)(10)

for all (x, t) ∈ Ω × A. At this point, observe that the function ψ fulfils all
the hypotheses of Theorem 2.4 of [10]. Hence, there exists a set Y ⊆ [a,+∞[
such that ψ−1(σ)∩ Y is nonempty and closed in R for each σ ∈ ψ([a,+∞[)
and the multifunction ψ−1(·) ∩ Y is l.s.c. in ψ([a,+∞[). Now, put

Γ (x, t) =

{
ψ−1(φ(x, t)) ∩ Y if (x, t) ∈ Ω ×A,

R otherwise.

Then Γ is an L(Ω) ⊗ B(R)-measurable multifunction and, further, by (9)
one has

{t ∈ R : Γ (x, ·) is not l.s.c. at t} ⊆ E1.(11)
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Consequently, by Theorem A, there exist R ⊆ R with m1(R) = 0 and a
selection γ of Γ such that

{t ∈ R : γ(x, ·) is discontinuous at t} ⊆ E1 ∪R(12)

for a.a. x ∈ Ω and γ(·, t) measurable for all t ∈ R \ (E1 ∪ R). From this
latter property we can find a countable set P1 ⊆ R \ (E1 ∪ R), dense in R,
such that γ(·, t) is measurable for all t ∈ P1. Also, by conditions (β4), (10)
and since

γ(x, t) ∈ ψ−1(φ(x, t)) for all (x, t) ∈ Ω ×A(13)

we deduce that

a ≤ γ(x, t) ≤ sup
t∈A

supψ−1(φ(x, t))(14)

≤ supψ−1([v(x), z(x)]) ≤ β(x)

for all (x, t) ∈ Ω ×A. At this point, we can apply Theorem 1. Hence, there

exists u ∈W 2,p(Ω) ∩W 1,p
0 (Ω) such that

−∆u(x) = γ(x, u(x))(15)

and

|∆u(x)| ≤ sup
t∈A

γ(x, t) ≤ β(x)(16)

for a.a. x ∈ Ω. In particular, by (16) and (1), one has ess supx∈Ω |u(x)| ≤
B‖β‖p, that is,

u(x) ∈ A for a.a. x ∈ Ω.(17)

Taking into account (14) and (15), we can argue as in the proof of Theorem 1
to deduce that

mn({x ∈ Ω : u(x) ∈ E ∪ E1}) = 0.(18)

Consequently, by the definition of φ and conditions (β1), (13), (15), (17) and
(18) one has

ψ(−∆u(x)) = f(x, u(x))

for a.a. x ∈ Ω. Moreover, the Maximum Principle and (14), (15) and (17)
imply that u is positive. This completes the proof.

Remark 3. Notice that Theorem 2 is a nonautonomous version of The-
orem 4.2 of [7].

Remark 4. When the function g of Theorem 2 does not depend on
x ∈ Ω, then we can take the function β equal to a constant ̺. So we have
A = [−Bmn(Ω)1/p̺,Bmn(Ω)1/p̺] and condition (β4) becomes

(β′
4) g([−Bmn(Ω)1/p̺,Bmn(Ω)1/p̺]) ⊆ ψ([a,+∞]) and

ψ−1(g([−Bmn(Ω)1/p̺,Bmn(Ω)1/p̺])) ⊆ [a, ̺].
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We observe that condition (β′
4) is stronger than condition (c3) of Theorem

4.2 of [7]. Hence, the former does not generalize the latter to the nonau-
tonomous case. Nevertheless, we point out that condition (c3) of Theorem 4.2
of [7] must be replaced with (β′

4), otherwise inequality (14) and the subse-
quent inclusion in the proof of that result may not be true, as is easily
checked.

Remark 5. We observe that Theorem 3.1 of [8] deals with the vectorial
case of problem (P1), namely R is replaced by Rh where h is an integer
greater than or equal to 1. When h = 1, it is immediate to check that this
result and Theorem 2 are mutually independent.
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