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On some elliptic boundary-value problems
with discontinuous nonlinearities

by GIOVANNI ANELLO (Messina)

Abstract. We establish two existence results for elliptic boundary-value problems
with discontinuous nonlinearities. One of them concerns implicit elliptic equations of the
form ¢(—Au) = f(z,u). We emphasize that our assumptions permit the nonlinear term
f to be discontinuous with respect to the second variable at each point.

1. Introduction. Throughout, {2 is a nonempty open bounded set in
R™ (n > 3) with smooth boundary 9f2, a is a real positive number, p is a
real number strictly greater than n/2, and f: 2 xR — R, ¥ : [a,+oo[ — R
are given functions.

This paper is motivated by the results of [7] and [8] where some ellip-
tic boundary-value problems with discontinuous nonlinearities are studied.
Specifically, in these papers, the following two problems are considered:

—Au(z) = f(z,u(r)) in £,
" { u=0 on 012,
and
(P) {f:?“(x” = f(z,u()) " raz,g

where A is the Laplacian operator; for both, existence of strong solutions is
established. As is well known, a strong solution for problem (P) or (P;) is a
function u € W2P(02) N VVO1 P(£2) satisfying the corresponding equation for
almost all x € (2. There is wide literature on the existence of solutions for
problem (P), and when f is a Carathéodory function, variational methods
are usually employed.

Here we are interested in the case where f can be discontinuous with
respect to the second variable. In this connection we refer to [7] and [8]
(and the references therein). In particular, Theorems 3.1 and 4.2 of [7] give
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the existence of a strong solution for problem (P) and (P;) respectively,
assuming that f(z,-) is a Riemann-measurable function for almost all z € 2
and, in the case of problem (P;), that f is also independent of x € (2.
We recall that a Riemann-measurable function is a function whose set of
discontinuity points has Lebesgue measure 0. In the same paper it is pointed
out that the assumption on f cannot be weakened. Indeed, in Remark 3.2
of [7] it is shown that if f(z,-) is almost everywhere equal to a Riemann-
measurable function for almost all € {2 only, then problem (P) may not
have any strong solution. On the other hand, Theorem 3.1 of [8] gives the
existence of a strong solution for problem (P;) this time allowing f to depend
on x € {2 and assuming hypotheses substantially different from those of
Theorem 4.2 of [7].

The purpose of the present paper is twofold: we give versions of Theo-
rems 3.1 and 4.2 of [7] in which f(z,-) is supposed to be almost everywhere
equal to a Riemann-measurable function for almost all x € {2 extending, at
the same time, the second one to the nonautonomous case. In the latter case,
our result and Theorem 3.1 of [8] will turn out to be mutually independent.
To prove the existence result relating to problem (P;) we will use a recent
selection theorem established in [1].

2. Basic definitions and notations. Let X,Y be two nonempty sets.
A multifunction F' from X into Y is a function from X into the family of
all subsets of Y and we briefly denote it by F' : X — 2Y. The set {(z,y) €
X xY :ye F(x)} is called the graph of F. For each A CY, we denote by
F~(A) theset {z € X : F(x)NA # (}. We say that a function f: X — Y is
a selection of F if f(x) € F(x) for all z € X. If X, Y are topological spaces,
a multifunction F : X — 2Y is called lower semicontinuous (briefly 1.s.c.)
at x € X if for any y € F(x) and any neighborhood V' of y there exists a
neighborhood U of z such that

F(z)NV #0 forall z € U.

If (X, ) is a measurable space and Y is a topological space, a multifunction
F: X — 2" is called measurable when F~(A) € S for any open set A C Y.

We denote by £(§2) the Lebesgue o-algebra of 2 and by m,, the Lebesgue
measure in R™. Also, the symbol B(R) stands for the Borel o-algebra of R.
For a subset A of R", ¢6(A) and int(A) will denote the closed convex hull
and the interior of A respectively. If d is the Euclidean distance in R™ and
A is a nonempty set in R", we put d(z, A) = infyca d(z,y) for all z € R™.
Finally, we denote by || - ||, the usual norm in LP(£2).

To close this section, recall that, thanks to Theorem 2 of [11], one has

(1) ess S;;P lu(x)| < B||Aul|, for every u € W*P(£2) N W&’p(ﬁ)
re
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where

B = [m(@)]2/" "

Pt ) [P0+ 20 ()
mn(n — 2) %)

and I" denotes the Gamma function.

3. Main results. In this section we state and prove the main results.
Throughout, we briefly write a.a. for “almost all”.

THEOREM 1. Let § € LP(82) with 8 # 0 and A = [-B||B||p, Bl|B|lp]-
Assume that there exist E C A withmy(E) = 0 and a function g : 2xR — R
satisfying the following properties:

(1) {t € A: g(z,-) is discontinuous at t or g(x,t) # f(z,t)} C E for

a.a. x € {2;

(a2) g(+,t) is measurable for a.a. t € A;

(a) suprealg(z D] < B() for a.a. o € 2

(aq) there exists an open set D O E such that

inf inf g(x,t) >0 ,t) < 0.
essin tléng(x ) or esies!lzlp fggg(x )

Then there exists a strong solution u of problem (P) satisfying

|Au(z)| < suplg(z,t)| for a.a. z € (2.
teA

Proof. Without loss of generality, we can suppose that conditions (aq)
and (as) hold for all z € 2. For every x € {2, we define

g9(x, =B|[Bllp) ift < =B|B]p,
glz,t) = § g(z,1) it [t| < Bl|Bllp,
g9(x, Bl|fllp) it > BB,

Clearly (c) holds with g in place of g. Observe that by («a2) we can find
a countable set P C R\ E dense in R such that g(-,¢) is measurable for
all t € P. Moreover, by (as), we can suppose that the function g(z,-) is
bounded for all z € 2. Thus, thanks to Proposition 2 of [3] (which is proved
assuming that (2 is a real interval, but it is easy to see that the same holds
if £2 is a bounded open subset of R"), the multifunction F : 2 x R — 2F
defined by

Fan=No( U @@y

meN yeP, ly—t|<1/m
has the following properties:

(a) F(x,t) is nonempty and convex for all (x,t) € 2 x R;
(b) F(-,t) is measurable for all t € R;
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(¢) F(x,-) has closed graph for all z € (2;
(d) if z € £2 and g(z, ) is continuous at t € R, then F(z,t) = {g(x,t)}.

Now, thanks to Proposition 1 of [9] it is easy to deduce that

supd(0, F(x,t)) = sup d(0, F(x, 1))
teA teANP

for all x € 2 (see, for instance, the proof of Theorem 3.1 of [7]). Conse-
quently, the function x € 2 — sup,c 4 d(0, F(x,t)) is measurable. Moreover,
from condition (as3), this function belongs to LP(2) and

(2) [sup d(0, F'(-, t)) [l o) < [IBllp-
teA

At this point, we can apply Theorem 2.2 of [7]. Hence, there exists u €
W2P(02) N W,P(£2) such that

(3) —Au(z) € F(z,u(x))
and
(4) [ Aufa)| < supd(0. F(z.)

for a.a. x € £2. Observe that from (3) and (4) and in view of (1) we have

ess sup lu(z)| < Bl|Au(z)|[r(2) < Bl sup d(0, F(z,t))|| zr(2) < BlIBllp,
S €

that is,
(5) u(z) € A for a.a. x € (2.
Now, put
2 ={x € 2:u(zx) € E}.
We claim that m,,(£2p) = 0. Indeed, by Proposition 2.1 of [7] one has
(6) Au(z) =0 € F(z,u(z))

for almost all x € 29. On the other hand, by condition (a4), we have

7 inf inf inf F'(x,t) > inf inf t 0

" Rt M0 = eyt a0 >

or

(8) esssupsupsup F(z,t) < esssupsup g(z,t) < 0.
z€R teD z€Q teD

Clearly, (6) together with (7) or (8) imply my(2p) = 0. This latter fact, the
definition of g, condition (o), properties (d) and (3)—(5) imply

—Au(z) = f(z,u(x))
and
|Au(z)| < sup |g(x,1)]
teA

for a.a. z € £2. This completes the proof.
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REMARK 1. As observed in the introduction, an example in Remark 3.2
of [7] shows that if f is almost everywhere equal to a function fulfilling all
the assumptions of Theorem 3.1 of [7], then problem (P) may not have any
strong solution. Precisely, for f defined by

ﬂ%w:{liﬂaﬂeﬂxQ

0 otherwise,
problem (P) cannot have any strong solution. Observe that this f does not
satisfy the hypotheses of Theorem 1. Indeed, it is easy to note that there is
no function g fulfilling both (a1) and (ay). On the other hand, if we define

ﬂ%w:{OiHL”GQXQ

1 otherwise,
then for g(z,t) = 1 for all (x,t) € 2 x R all the hypotheses of Theorem 1
are satisfied, and so problem (P) admits a strong solution. We emphasize
that in this latter case f is discontinuous at each point of R.

REMARK 2. We observe that condition (ag) of Theorem 1 is weaker
than condition (ag) of Theorem 3.1 of [7]. Indeed, the measurability of the
function x € 2+ supc4 |g(z, )| is not required.

To prove the next result we need the following selection theorem for
multifunctions of two variables:

THEOREM A (Theorem 2 of [1]). Let T\, X be Polish spaces and let i,
be positive reqular Borel measures on T and X, respectively, with u finite
and 1 o-finite. Let S be a separable metric space, F : T x X — 2% a
multifunction with nonempty complete values, and let E C X be a given set.
Finally, let B(X) be the Borel o-algebra of X and T, the completion of the
Borel g-algebra of T with respect to . Assume that:

(i) Fis T, ® B(X)-measurable;

(ii) {x € X : F(t,-) is not lower semicontinuous at x} C E for a.a.

teT.

Then there exists a selection ¢ : T x X — S of F and a negligible set R C X
such that:

(i) ¢(-,x) is T,-measurable for each z € X \ (EU R);
(i) {z € X : ¢(t,-) is not continuous at x} C EUR for a.a. t € T.

Now, we are able to prove our second main result. From now on, if C C R,
B(C) will denote the Borel o-algebra of C.

THEOREM 2. Let 8 € LP(£2) with 8 # 0 and put A = [-B||B||p, B|B||p]-
Assume that there exist E, E1 C A with mi(EUE,) =0 and E; closed, and
a function g : 2 x R — R satisfying the following properties:
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(61) {t € A:g(x,-) is discontinuous at t} C Ey and
{te A:g(z,t) # f(z,t)} C E for a.a. x € §2;

(B2) ¥ is continuous in [a, +oo[ and 1)~ (o) has empty interior for every
o € it 1h([a, +oo]);

(B3) g(-,t) is measurable for a.a. t € A;

(Ba) if one puts

v(z) = essinf g(x,t) and z(x) = esssupg(z,t)
te A teA

for all x € 2, then [v(x), z(x)] C ¥([a, +oo[) and v~ ([v(x), 2(z)])
C [a,B(x)] for a.a. x € 2.

Then there exists a strong positive solution of problem (Py).

Proof. Without loss of generality, we can suppose that the conditions
(61) and (fB4) hold for all x € (2. By (f2) we can find a countable set
P C A\ E; dense in A such that g(-,?) is measurable for all t € P. Moreover,
it is easy to see that

v(z) = teiAn\fEl g(z,t) and z(x)= tes,}xl\l?zl g(z,t)

for all x € (2. Hence, g|ox(a\E;) 18 £(£2) ® B(A\ Ej)-measurable by the
Lemma on p. 198 of [6]. So, by Lemma II1.39 of [2], the functions v and z
are measurable. Now, define

o) = {g(m,t) if (x,t) € 2 x (A\ Ey),

z(x) if (x,t) € 2 x Ey.
Since F is closed, condition () implies that
(9) {t € A: ¢(z,-) is discontinuous at t} C Fj.
Moreover, ¢ turns out to be £({2) ® B(A)-measurable and satisfies
(10) v(z) < ¢(z,t) < 2(z)

for all (x,t) € £2 x A. At this point, observe that the function v fulfils all
the hypotheses of Theorem 2.4 of [10]. Hence, there exists a set Y C [a, +00[
such that ¢y ~1(¢) NY is nonempty and closed in R for each o € ¥([a, +0o|)
and the multifunction ¢¥~1(:) NY is Ls.c. in ¥([a, +oo[). Now, put

D) = {zb*(qb(x,t)) NY if (z,t) € 2 x 4,

R otherwise.
Then I' is an £(f2) ® B(R)-measurable multifunction and, further, by (9)
one has

(11) {teR:I'(z,-)is not Ls.c. at t} C FEj.
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Consequently, by Theorem A, there exist R C R with m;(R) = 0 and a
selection  of I" such that
(12) {t e R : v(x,-) is discontinuous at t} C F1 UR

for a.a. x € 2 and ~(-,t) measurable for all ¢t € R\ (E; U R). From this
latter property we can find a countable set P, C R\ (E; U R), dense in R,
such that ~(-,¢) is measurable for all ¢ € P;. Also, by conditions ((4), (10)
and since

(13) y(z,t) € v Hg(x,t)) forall (z,t) € 2 x A
we deduce that
(14) a < v(z,t) < supsupy~ ' (4(, 1))

teA

<supyp~H([v(x), 2(2)]) < B(x)
for all (x,t) € £2 x A. At this point, we can apply Theorem 1. Hence, there
exists u € W2P(2) N W, (£2) such that

(15) —Au(z) = y(z, u(z))
and
(16) |Au(z)] < fggﬁ(w,t) < B(x)

for a.a. x € (2. In particular, by (16) and (1), one has esssup,cp |u(z)| <
B||B]lp, that is,

(17) u(z) € A for a.a. x € f2.

Taking into account (14) and (15), we can argue as in the proof of Theorem 1
to deduce that
(18) mp({z € 2:u(x) e EUE})=0.
Consequently, by the definition of ¢ and conditions (/31), (13), (15), (17) and
(18) one has

(=Au(z)) = f(z,u(z))
for a.a. x € £2. Moreover, the Maximum Principle and (14), (15) and (17)
imply that v is positive. This completes the proof.

REMARK 3. Notice that Theorem 2 is a nonautonomous version of The-
orem 4.2 of [7].

REMARK 4. When the function g of Theorem 2 does not depend on

x € {2, then we can take the function § equal to a constant g. So we have
A = [=Bm,(2)/Pp, Bm,(£2)"/?] and condition (3;) becomes

(81) 9([=Bmu(£2)770, Bmy,(£2)/70]) C ([a, +oc]) and
& (g([=Bmn(2)V/P 0, Bmn(2)'/70))) C [a, 0.
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We observe that condition (3}) is stronger than condition (c3) of Theorem
4.2 of [7]. Hence, the former does not generalize the latter to the nonau-
tonomous case. Nevertheless, we point out that condition (¢3) of Theorem 4.2
of [7] must be replaced with (), otherwise inequality (14) and the subse-
quent inclusion in the proof of that result may not be true, as is easily
checked.

REMARK 5. We observe that Theorem 3.1 of [8] deals with the vectorial
case of problem (Pp), namely R is replaced by R" where h is an integer
greater than or equal to 1. When h = 1, it is immediate to check that this
result and Theorem 2 are mutually independent.
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