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Natural transformations of the composition
of Weil and cotangent functors

by MIROSLAV DOUPOVEC (Brno)

Abstract. We study geometrical properties of natural transformations TAT* —
T4 depending on a linear function defined on the Weil algebra A. We show that for
many particular cases of A, all natural transformations TAT* — T*T4 can be described
in a uniform way by means of a simple geometrical construction.

1. Introduction. By Tulczyjew [15], and Modugno and Stefani [13],
there is a natural equivalence TT* — T*T of second order tangent and
cotangent functors. All natural transformations of this type were determined
by Kolaf and Radziszewski [11]. The tangent functor T is a particular case
of the functor T} of k-dimensional velocities of order r, which is defined by

(1) TiM = Jg(R* M), Ty f(j59) = 45 (f 0 9)
for all smooth manifolds M and all smooth maps f : M — N. Then Cantrijn,
Crampin, Sarlet and Saunders [1] introduced a canonical natural equivalence
T7T* — T*T7, which can be considered as a generalization of the natural
equivalence TT* — T*T. In [3] we have classified all natural transformations
T2T* — T*T} and in [4] we have determined all natural transformations
TTT* — TT*T, which is a similar problem.

In general, let T4 be a Weil functor corresponding to a Weil algebra
A. In the jet-like approach, a Weil functor T4 can be interpreted as a gen-
eralization of the (k,r)-velocities functor T} . By [10], Weil functors even
represent a general model of all product preserving bundle functors. The
aim of this paper is to study natural transformations TAT* — T*T4. We
first define natural transformations sy : TAT* — T*T4 depending on linear
functions f : A — R and describe some geometrical properties of such natu-
ral transformations. In particular, we discuss the role of sy in the theory of
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lifting of 1-forms and (0, 2)-tensor fields to Weil bundles. We also consider
the existence of a natural equivalence TAT* — T*T4. Finally we construct
a fairly general model of natural transformations TAT* — T*T4, which
simply characterizes all such natural transformations for some particular
cases of the Weil algebra A.

We remark that natural transformations 777" — T*T] are of funda-
mental importance in analytical mechanics [2], and a natural equivalence of
this type enables us to introduce a symplectic structure on 777" M. In what
follows we will use the theory of natural operations in differential geometry
from [10]. All maps and manifolds are assumed to be infinitely differentiable.

2. Weil functors. We first recall the definition of a Weil functor 74
in a form generalizing the (k,r)-velocities functor 7. Let R [z1,...,z;] be
the algebra of all polynomials of k variables. A Weil ideal in R [z1,...,zk]
is an arbitrary ideal A such that

(%1,...,$k>r+1 CAC <$1,...,$k>2
where (x1,...,zr) C Rz1,...,xx] is the ideal of all polynomials with-
out constant term and (z1,...,z%)" "1 is its (r + 1)th power, i.e. the ideal

of all polynomials vanishing up to order r at 0. The factor algebra A =
R[z1,...,zk] /A is then called the Weil algebra, the number k is said to be
the width of A and the minimum of all r’s is called the depth of A. If we re-
place R [z1,...,x] by the algebra E(k) of all germs of smooth functions on
RF at zero, then A generates an ideal A C E(k) and we have A = E(k)/A
as well.

Let M be a manifold. Clearly, the jet space Tf M = J§(R¥ M) of all
k-dimensional velocities of order r can also be defined as follows: Two maps
g,h :R¥ — M, g(0) = h(0) = z, satisfy j5g = j5h if and only if

pog—wohc (xy,.. . ,xp) !

for every germ ¢ € C°(M,R) of a smooth function on M at x. The equiv-
alence class of a mapping g : R¥ — M is denoted by jig and called the
k-dimensional velocity of order r. This algebraic definition of T} M can be
generalized in the following way.

DEFINITION. Two maps g,h : R¥ — M with g(0) = h(0) = x are said
to be A-equivalent if for all germs ¢ € C°(M,R) we have pog—gpoh € A.
The equivalence class of a mapping ¢ : R¥ — M will be denoted by j4¢ and
will be called the A-velocity of g at 0.

If we denote by T4M the set of all A-velocities on M, then TAM is
a fibered manifold over M with the projection p : TAM — M, p(j*g) =
g(0). It is easy to verify that TAR = A. Further, for every f : M — N
we can define T4f : TAM — TAN by TAf(j4g) = j4(f o g). Then
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T4 : Mf — FM is a functor from the category of all smooth mani-
folds and all smooth maps to the category of fibered manifolds, which is
called the Weil functor corresponding to the Weil algebra A. For example,
Dr = Rz1,..., 2] /{z1,...,2,)" "1 is the Weil algebra of the functor Ty .
Then the tangent functor 7 = T} corresponds to D := D} = R[z] /(x?),
which is the algebra of dual numbers. Further, the tensor product D ® D
generates the iterated tangent functor T7T. Now we briefly recall some im-
portant properties of Weil functors (see [10]).

(i) TAM x N) = TAM x TAN, so that the Weil functor T4 preserves
products. Conversely, every product preserving functor F' on M f is a Weil
functor corresponding to the Weil algebra A = FR, i.e. F = TR,

(ii) The natural transformations 74 — TZ of two Weil functors are in
a canonical bijection with the homomorphisms A — B of Weil algebras.

(iii) The iteration T4 o T® of two Weil functors is a Weil functor which
corresponds to the tensor product A® B of the Weil algebras, i.e. T4 (T2 M)
=TA®B )L,

(iv) The exchange isomorphism A® B — B® A of Weil algebras induces
a natural equivalence k : T40oT? — TBoT4 which generalizes the canonical
involution of the second iterated tangent bundle TT M.

(v) There is an action of the elements of A on the tangent vectors of
TAM, which can be introduced as follows. Let p : R x TM — TM be
the multiplication of tangent vectors of M by reals. Applying the functor
T4 we have T4 : Ax TATM — TATM. Using the exchange isomorphism
ka2 TTAM — TATM we obtain the required action AxTTAM — TTAM.

3. Natural transformations 747T* — T*T“. Let A be a Weil algebra
of width k. Given an arbitrary linear function f : A — R, we define a
natural transformation sy : TAT* — T*T# in the following way. Every
X € TAT*M is an A-velocity X = j4g, where g : RF — T*M. Denote
by qu : T*M — M, pyr : TAM — M the bundle projections and by
(=, =) : TM xT*M — R the evaluation mapping. Then T%qy; : TAT*M —
TAM, so that v := T4qy(X) € TAM. Take an arbitrary Y € T,,T4M.
If Ky : TTAM — TATM is the canonical natural equivalence induced
by the exchange isomorphism D ® A — A ® D, then k(YY) € TATM is
an A-velocity of the form rp(Y) = j4h with h : R* — TM. We have
(g,h) : RF = R, j4 ((g,h)) € TAR = A, so that foj* ((g,h)) € R. Now we
can define a linear mapping TT4M — R by
(2) Y fo it ((g,h).
Taking into account the identification of T*T4M with linear maps TT4 M

— R, we have constructed an element of T*T“4 M, which will be denoted by
(sp)a(X). Clearly, sy : TAT* — T*T# is a natural transformation.
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If X € TAT*M, v = TAqu(X) € TAM and Y € T,T4M, then
pr-m(X) € T"M, pry(kn(Y)) € TM. We have (pr-n(X), pra (5 (Y)))
€ R and T4 ((prar(X), pras(kar(Y)))) € A. Considering the identification
of an element (sf)y(X) € T*TAM with a linear mapping TT4M — R, we
directly obtain

PROPOSITION 1. Let X € TAT*M, v = TAqn(X) and Y € T,TAM.
Then

(s))m(X)(Y) = f o T ({(pr-ar(X), pras(kn (Y))))

Denote by S4 the space of all natural transformations s; : TAT* —
T*T4 for linear functions f: A — R, i.e.

(3) Sa={sp:TAT* - T*T4*; fc A*}.

PROPOSITION 2. S4 is a vector space over R which is isomorphic to the
dual vector space of A.

Proof. Let sg, s, : TAT* — T*T# be two natural transformations de-
termined by linear functions f,g : A — R. For any X € TAT*M we have
qran ((s7)m (X)) = qran ((sg)m (X)), where grapy : T*TAM — TAM is
the bundle projection. In this way we can define addition (s +s,) and mul-
tiplication by reals (k-sy), k € R, by means of the corresponding operations
on the vector bundle structure T*TAM — TAM. Obviously, the functions
f+gand k- f, k€ R, induce the natural transformations sy +s, and k- sy,
respectively. m

ExAMPLE 1. We describe a basis of the vector space Spy of natural trans-
formations T7T* — T*T7] depending on linear functions D] — R. Consider
some local coordinates (z%) on M and denote by (p;) the additional coordi-
nates on T*M and by (yi,...,y%) the additional coordinates on T7 M. Then
the local coordinates on Ty T*M are (x%,p;, X4,..., X!, Pi1,. .., Piy). Fur-
ther, using expressions r;dz’ + stdy! +. ..+ s7dy’ we have local coordinates
(b yh, ..yl ri, sty ..., sE) on T*TT M. The Weil algebra of T7 is A = D} =
R[z]/(z"*1), so that elements of D are of the form ag+a1z+...+a,z" and
dim(D}) = r + 1. Consider now mappings g : R — T*M and h: R — TM
from the general definition of s;. Using our local coordinates we obtain the
coordinate form of j4((g, h)):

{g(t), h(t))|o = pida’,

d , A

Fn <g(t)7 h(t)> = Pi,ldCUZ —i—pidX{,

t |,

dT T . r . r )
- t),h(t)) = P, .dz* P, dX:+ ... X
| o) = (st + (7)) posaxt+ ot (max;
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In this way we have obtained r 4+ 1 natural transformations sg, s1,..., S :
T7T* — T*T] with coordinate forms
. — 1 _ T
So:ri=p 83 =0,...,8 =0,
. _ 1 _ 2 r __
sy =PF;1, s; =p;, s5=0,...,5;, =0,

r r
. _ 1 _ r—1 __ T __
Spiri =Py, s; = <1)Pi,r—17---75i = <r— 1)P7;,1, 8 = Pi-

We can see that every si, 1 < k < r, can also be interpreted as a natural
transformation 77 T* — T*T¥ and sy can be interpreted as a natural trans-
formation 171" — T*. To obtain a natural transformation 777" — T*1I7T
from Ty T* — T*Tf, k < r and from T7T* — T*, we can use the inclusion

Jk : TTM Xoppepy T*TFM — T*T{ M, 0<k<r,

which is defined as follows. For X € T/M and Y € T*TFM we have
Je(X,Y) € T*ITM, ie. jiu(X,Y) : TT{M — R. Taking an arbitrary
Z € TxTI M we put j,(X,Y) := (TpyF(Z),Y), where pyf : TrM — TFM
is the canonical projection.

EXAMPLE 2. We show that the space Spi of natural transformations
TIT* — T*T} is linearly generated by k + 1 natural transformations. The
Weil algebra of T} is Di = R [z1,...,2k] /{21, ..., 7k)? with elements of the
form ag + a121 + ... + agwk, so that dim(D}) = k + 1. Taking some local
coordinates (x') on M, we have the additional coordinates (z¢) on T} M,
a=1,...,k. Then the induced coordinates on TLT*M are (z*,p;, 2%, pi.a)-
Using expressions 7;dz’ +s¢dy?, we obtain local coordinates (z%,y%,, r;, s¢) on
T*T{M. For g : R¥ — T*M and h : R¥ — TM we can write (g(t1,...,t),
h(t1,...,tk))o = pidx’ and % olg, h) = piyda’ +pidxfy, v =1,...,k.
In this way we have obtained k + 1 natural transformations sg, s1,..., 8k :
TYT* — T*T} with coordinate forms

Soiri=pi S§ =0 forala=1,... k,

Sy iTi=Diny 81 =pi, 80 =0 forall B#£~, y=1,...,k

ExaMpPLE 3. The Weil algebra of the second iterated tangent functor
TT is A=D®D ¥R [z, 2] /(2%, 23) with elements a + bz1 + cxa + dz122.
Since dim(A) = 4, the vector space S4 is linearly generated by four natural
transformations.

4. The existence of a natural equivalence T4T* — T*T4. The nat-
ural transformation s, : 77T — T*17] from Example 1 is exactly the well
known natural equivalence of Cantrijn, Crampin, Sarlet and Saunders [1].
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On the other hand, none of the natural transformations sg, ..., sk : Tle* —
T*T} from Example 2 is a natural equivalence. We first clarify under which
conditions on a linear function f : A — R, the natural transformation
Sp: TAT* — T*T4 is an isomorphism. Given a linear function f on the Weil
algebra A, we have an associated symmetric bilinear mapping f AxA — R,
f(a,b) = f(a-b). If we denote by ay,...,a, € A a basis of A, the matrix

(ai;) of f is defined as a real matrix Wlth elements a;; = flai, aj;).

DEFINITION. A symmetric bilinear mapping ¢ : A x A — R is said to
be nonsingular if the matrix of ¢ is nonsingular.

Gancarzewicz, Mikulski and Pogoda [8] have studied relations between
a product preserving functor 7% and some operations on vector bundles. If
V is a free finite-dimensional A-module, then V*(4) denotes the A-module
of all A-linear mappings V' — A. Analogously, if 7 : E — M is an A-module
bundle, then the A-dual A-module bundle E*(4) is defined by E*(4) =
Usenm Ex (see [8]). By [8], every linear function f : A — R defines a

natural vector bundle homomorphism §f E*4) & F* a — foa. More-
over, this homomorphism is a vector bundle isomorphism if and only if the
symmetric bilinear mapping f : A x A — R, f (a b) = f(a-b), associated
with f is nonsingular.

In our definition of s; : TAT* — T*T4, a linear function f: A — R
comes into play in (2), and ff; from [8] is exactly the homomorphism
(TTAM)*A) — T*TAM. Thus, Propositions 4.2 and 4.4 of [8] yield di-
rectly

PROPOSITION 3. s¢ : TAT* — T*T?4 is a natural equivalence if and
only if the symmetric bilinear mapping f : A x A — R, f(a,b) = f(a-b), is
nonsingular.

Now we show that for k # 1 there is an obstruction to the existence of
a natural equivalence sy : 171" — T*T].

PROPOSITION 4. There is a natural equivalence sy : Ty T* — T*T} de-
pending on a linear function f : D) — R if and only if k = 1.

Proof. 1. Consider first the case k = 1. We have D} = R [z] /(z" 1) and
elements of D} are of the form ag + a1z + asx® +. .. +a,2". Hence the basis
of DY is {1,x,22,...,2"} and multiplication in D7 has the form (ag + a1z +
asx?+. . +a,2")(bo+bix+box®+. . +b.x") = ag(bo+. . .+bx")+arz(bo+. . .
+b2" Y + . 4 apaThy. If f 1 DY — R is a linear function given by
flap+ a1z + ...+ ayz") = a,, then the matrix of the associated symmetric
bilinear function fis
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0 0 01
0 0 1 0
0 1 0 0
1 0 0 0

The corresponding natural equivalence sy : T7T* — T™*T7 is exactly s, from
Example 1, which is nothing else but the canonical isomorphism of Cantrijn,
Crampin, Sarlet and Saunders.

II. For r = 1 and any k we have A = D} = Rlzy,...,z]/(@1,. .., 2k)?
and multiplication in D}, has the form (ag+a1z1+. . .+arzy)(bo+b1z1+. . .+
brxg) = ag(bo+bix1+. .. +bpxk)+aiz1bp+asxabo+. . .+arxrby. If we denote
by {1,x1,xs,..., 2k} the basis of A, the linear functions f; : A — R defined
by folap+ai1z1+...+arxk) = ao, ..., fr(ao+arx1 +...+agzr) = ai form
a basis of A*. One finds easily that the matrix of each symmetric bilinear
function fo, f1,..., fr is singular.

III. The Weil algebra of T} is A = D} = R [z1,...,zx] /(21,. .., 25)" T

Recall that a k-multiindex is a k-tuple @ = («1,...,a,) of nonnegative
integers. We write |o| = a1 + ... + a3 and z® = (27*,...,2%) for z =
(1,...,2k), z; € R. Then the elements of D}, can be expressed in the form

ap + aqx®, where |a] < r and ag,a, € R. If k > 1, then the basis of D}, can
be written as a set {1,2%; |a| < r} and the corresponding dual basis is given
by linear functions fo, fo : D — R, fo(ap+aaz®) = ao, fa(ao+aaz®) = aq,
la] < r. It is easy to verify that the matrix of each associated symmetric
bilinear function ]?0, ]A”;l is singular. =

PROPOSITION 5. For k > 1 there is no natural equivalence T;T* —
T*1Ty.

Proof. According to the general theory [10], natural transformations
T;T* — T*T} are in a canonical bijection with G7!-equivariant maps
of the corresponding standard fibers, where GG}, means the group of all in-
vertible r-jets of R into R™ with source and target zero. Denoting by (aé—)
the canonical coordinates in G},, the coordinates of the inverse element will
be denoted by (a?). Further, denote by (2%, p;, 2%, p;.o) the canonical coordi-
nates on T, 7™ M and by (2%, 92,74, 8&) the canonical coordinates on 17 M,
where a is a k-multiindex with || < r. One calculates easily p; = a/p; and

(4) fg:aé—xé—i—...

Clearly, for |a| = 1, the transformation law (4) is tensorial, while for [a| > 1
there are terms with 27 on the right-hand side of (4), |3| < |a|. Analogously,
7 = alyl, + ... and P = @/pja + ... Finally, for all |a| = r we find 3% =

al 5. This means that all s with |a| = 7 have a tensorial transformation
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law. On the other hand, among (p;, p; o) on the standard fibre (T1*)q, only
(pi) have a tensorial transformation law. m

5. Liftings of 1-forms and (0, 2)-tensor fields to Weil bundles. In
this section we investigate the role of natural transformations sy : TAT* —
T*T#4 in the theory of lifting of 1-forms and (0,2)-tensor fields to Weil
bundles. By a lifting of some tensor field G to a natural bundle F we un-
derstand a natural operator transforming the tensor field G' on a manifold
M into a tensor field of the same type on F M.

Given a function ¢ : M — R and a function f : A — R, we can define
the f-lift o : TAM — R of ¢ to the bundle TAM by ¢f = f o T4p.
Clearly, ¢ +— ¢f defines a natural operator transforming functions on a
manifold M into functions on TAM. If X : M — TM is a vector field on
M, then TAX : TAM — TATM and the composition 74X := r;/ o TAX :
TAM — TTAM is a vector field on T4 M. By [10], 74X is exactly the flow
prolongation of X, it is also called the complete lift.

Let w: M — T*M be a 1-form on M. Using the natural transformation
sy determined by a linear function f : A — R, we can also define the f-lift of
w to TAM. Indeed, Tw : TAM — TAT*M and the composition with the
natural transformation (sz)as : TAT*M — T*TAM gives rise to a 1-form
wl on TAM,

(5) whi= (s )y oTAw : TAM — T*TA M.

The f-lift of an evaluation mapping (w, X) : M — R is a function (w, X)7 :
TAM — R. We have

PROPOSITION 6. (w/, T4X) = (w, X)/.

Proof. Using Proposition 1 we obtain (wf, T4X) = ((s;)p 0o TAw, k) 0

TAX) = f oT# ((w, X)) which is nothing else but (w, X)/. =

We remark that this formula has been proved in the particular case
A=D?in [3].

A lform w : M — T*M on M can also be identified with a linear
mapping @ : TM — R, 0(X) = (w,X). If f: A — R is a linear function
on A, then the map Q= foTAD oky : TTAM — R is linear, so that
2 induces a 1-form 2 : TAM — T*TAM on TAM. On the other hand,
w! = (s4)a o TAw from (5) is also a 1-form on T4 M. We have

PROPOSITION 7. 2 = w/.

Proof. Recall that there is a canonical action A x TTAM — TTAM.
If X is a vector field on M and a € A, then we can introduce the a-lift
X@ . TAM — TTAM of X to TAM by X@ := g . TAM. From [7] it
follows that if G and H are two tensor fields of type (0,k) or (1,k) on
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TAM satisfying G(Xfal),...,X,gak)) = H(Xfal),...,X,gak)) for all vector
fields X1,..., X on M and all elements a1, ...,a; from A, then G = H. By
Proposition 6 we obtain 2(74X) = (foTAGT ok )(ky oTAX) = foTA@o
TAX = foTA@(X)) = foT4 ((w, X)) = (w, X)! = (wf, TAX). Using the
A-linearity of both f and T% we directly obtain 2(X (@) = (wf, X(@)) for
allac A. n

A (0,2)-tensor field on M can be interpreted as a linear mapping G :
TM x y TM — R. Using the exchange isomorphism ry; : TTAM — TATM
and a linear function f : A — R, Gancarzewicz, Mikulski and Pogoda [7]
introduced an f-lift G of G to the bundle T4M by

GT = foTAG o (kar X kipg) : TTAM Xpap; TTAM — R.

Further, each (0,2)-tensor field G on M induces a linear mapping G, :
TM — T*M by (Gr(y),z) = G(2,v), y,z € T, M. If G is a symplectic form
on M, then GGy, is an isomorphism. Denote by G{ :TTAM — T*TAM the
linear mapping corresponding to the f-lift G of G.

PROPOSITION 8. Gi :TTAM — T*TAM is of the form Gé =(sf)mo
TAGL OKRM-.

Proof. Clearly,
GHTAX, TAY) = f o TAG o (kpr X k) (TAX, TAY)
= foTAG(TA X, TAY)
— o TAG(X.Y)) = (G(X, V).
Analogously to the proof of Proposition 7 we have
((s9)m o TAGL 0 kar)(THY), TAX) = ((sp)mr o TH(Gr oY), kyf 0 TAX)
= (GL(Y), X)! = (G(X,Y))!
=GHTAX, TY).
On the other hand, (GI (TAY), TAX) = G/ (TAX,TAY). =

We remark that the above assertion has been proved in [5] for A = D.
By [7], if w is a 2-form on M, then dw’/ = (dw)?. We have

COROLLARY. Let w = dp; A dx* be the canonical symplectic form on
T*M and w' be the f-lift of w to TA(T*M). If sp : TAT* — T*T4 is a
natural equivalence, then w' is a symplectic form on TAT* M.

6. General description of some natural transformations 747" —
T*TA. In this section we show that for some particular cases of a Weil
algebra A, the space of all natural transformations 74T* — T*T4 can be
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characterized by means of a general geometrical description. It is our belief
that this description works also for many other Weil algebras.

DEFINITION. A natural function g on a natural bundle F is defined as
a system of functions gy : FM — M for any m-dimensional manifold
M satisfying gy = gy o F'f for every local diffeomorphism f : M — N.
A natural (or absolute) vector field X on F is a system of vector fields
Xpy : FM — TFM for every m-dimensional manifold M satisfying TF' f o
Xy = Xy o Ff for every local diffeomorphism f: M — N.

On the other hand, the space of all natural transformations from TAT*
into T*T4 is a C°°(TAT*)-module.

REMARK 1. By the general theory [10], absolute vector fields on T4 M
correspond to one-parameter groups of natural transformations of T4 into
itself. In particular, the natural transformations 7} — I} are in bijec-
tion with the elements of JJ(R¥,R¥)q and each of them has the form of
a reparametrization X — X o P, X € Tf M, P € Jj(R* R¥)q. For example,
all natural transformations of T'M into itself are homotheties X +— kX,
k € R, and the vector field tangent to them is the classical Liouville vector
field. In the case of an arbitrary Weil functor 74, denote by Aut(A) the
Lie algebra associated with the Lie group of all algebra automorphisms of
the Weil algebra A. In [10] it is proved that all absolute vector fields on
TAM are the generalized Liouville vector fields determined by all elements
D € Aut(A).

REMARK 2. We remark that the problem of finding all natural functions
on T*T# for an arbitrary Weil algebra A is rather complicated. First, Kolai
[9] has determined all natural functions on T*7T7. Recently Tomas [14] has
described all natural functions on T7*T4 for some particular cases of A.

ExXAMPLE 4. We describe all natural functions on 777™*. Denote by L
the generalized Liouville vector field on 77 M induced by the reparametriza-
tions x(t) — =z(kt), 0 # k € R, of a curve x : R — M. By Koléar [9],
all absolute vector fields on 77 are linearly generated by L; = L, Ly =
QolL,....,L, = Q"' oL, where Q : TIYM — TT7M is a natural lin-
ear morphism (affinor) defined by de Leén and Rodrigues [2], whose coor-
dinate expression is (dz?,dyt,dys, ..., dyt) — (0,dz® dyt, ... dyt_;). Let
Sp 2 T7T*M — T*T7 M be the natural equivalence from Example 1. Denot-
ing by qar : T*M — M the bundle projection, we have gy (s-(Y)) € TT M
for allY € T7T* M. Then every absolute vector field L; determines a natural
function ¢, : TTT*M — R,

@i(Y) = (sr(Y), Li(qry s (0 (Y)))).-
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By [9], all natural functions on T7T™* are of the form ¢(p1,...,¢,), where
¢ : R” — R is an arbitrary smooth function of r variables.

In general, let (sy)p @ TAT*M — T*TAM be a natural transforma-
tion induced by a linear function f : A — R. For Y € TAT*M we have
aran((s))m(Y)) € TAM and each absolute vector field X : TAM —
TTAM on TAM determines a natural function ¢x  : TAT*M — R by

(6) ex (V) = ((s5)m(Y), X(qran ((s5)n(Y)))-

Denote by @1, ..., all such functions determined by all functions f € A*
and all absolute vector fields X on T4 M and let ¢ : R — R be an arbitrary
smooth function. We have

PROPOSITION 9. Let A=D or A=D®D or A=D7 or A=D}. Then
all natural functions on TAT* are of the form o(¢1,. .., ).

Proof. For A = D] and A = D this follows from Example 4. Con-
sider now A = D} and write equations of all natural functions on T}7T*.
If (2%, pi, 2, pia,a = 1,...,k) are the canonical coordinates on T,}T*M,
then all natural functions on T} T* are of the form p(p;zl, o = 1,...,k)
with ¢ : R¥ — R being any smooth function (see [6]). On the other hand,
by Remark 1 we find easily the coordinate form of absolute vector fields on
TIM, LE = a:iﬁ(‘)/(?a:fl, a,B =1,...,k Now the assertion for A = D}, follows
from Example 2. For A = D ® D all natural functions on TTT™* are deter-
mined in [4] and the rest of the proof is quite similar to that for A =Dj. m

Finally we describe all natural transformations TAT* — T*T“ for some
particular cases of A by means of a simple and universal geometrical con-
struction. We will proceed in the following steps.

I. Denote by B the basis of A*. For every f € B we have a natural
transformation sy : TAT* — T*T4.

I1. Let Tr(A) be the space of all natural transformations T4M —
TAM.

III. Let V(A) be the space of all absolute vector fields on T4M (see
Remark 1).

IV. Natural transformations sy from I and absolute vector fields X €
V(A) from III determine natural functions ¢x ; : TAT*M — R (see (6)). If
©1,...,¢; are all such functions for all f € B and all absolute vector fields on
TAM, then (g1, .., ;) is a natural function on TAT*M for each smooth
function ¢ : R — R.

V. Let s1,...,5, : TAT* — T*T* be a basis of the vector space S
(see Proposition 2). Write s := k181 + ... + kS, where on the right-hand
side we have the sum in the vector bundle structure T*T4M — TAM and
ki : TAT*M — R are natural functions from IV of the form (o1, ..., ¢;).
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VI. All natural transformations TAN — TAN from II applied to N =
T*M determine a system of natural transformations TAT*M — TAT* M
over the identity of 7™ M. This system depends on certain real parameters.
If we replace them by arbitrary natural functions ¢ (g1, ..., ¢;) : TAT*M —
R, we obtain a new system 3 of natural transformations TAT*M — TAT* M.

VII. Write

(7) t:=s05:TAT*M — T*TAM.

PROPOSITION 10. Let A=D or A=D®D or A=D3? or A=D,. Then
all natural transformations TAT* — T*T4 are of the form (7).

Proof. Consider first A = D and denote by (2%, y%, 7, s¥ a=1,...,k)
the canonical coordinates on T{T*M. By [6], the coordinate form of all
natural transformations TpT* — T*T} is y!, = Agaciﬁ, s8¢ = B%p; and
r; = ABB; 5 + Cp;. Clearly, this is the coordinate form of ¢ described in
item VII. For A = D the assertion follows from [11], for A = D® D from [4]

and finally for A = D? from [3]. =
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