
ANNALES

POLONICI MATHEMATICI

LXXVII.2 (2001)

Natural transformations of the composition
of Weil and cotangent functors

by Miroslav Doupovec (Brno)

Abstract. We study geometrical properties of natural transformations TAT ∗ →
T ∗TA depending on a linear function defined on the Weil algebra A. We show that for
many particular cases of A, all natural transformations TAT ∗ → T ∗TA can be described
in a uniform way by means of a simple geometrical construction.

1. Introduction. By Tulczyjew [15], and Modugno and Stefani [13],
there is a natural equivalence TT ∗ → T ∗T of second order tangent and
cotangent functors. All natural transformations of this type were determined
by Kolář and Radziszewski [11]. The tangent functor T is a particular case
of the functor T rk of k-dimensional velocities of order r, which is defined by

(1) T rkM = Jr0 (Rk,M), T rk f(jr0g) = jr0(f ◦ g)

for all smooth manifoldsM and all smooth maps f : M → N . Then Cantrijn,
Crampin, Sarlet and Saunders [1] introduced a canonical natural equivalence
T r1 T

∗ → T ∗T r1 , which can be considered as a generalization of the natural
equivalence TT ∗ → T ∗T . In [3] we have classified all natural transformations
T 2

1 T
∗ → T ∗T 2

1 and in [4] we have determined all natural transformations
TTT ∗ → TT ∗T , which is a similar problem.

In general, let TA be a Weil functor corresponding to a Weil algebra
A. In the jet-like approach, a Weil functor TA can be interpreted as a gen-
eralization of the (k, r)-velocities functor T rk . By [10], Weil functors even
represent a general model of all product preserving bundle functors. The
aim of this paper is to study natural transformations TAT ∗ → T ∗TA. We
first define natural transformations sf : TAT ∗ → T ∗TA depending on linear
functions f : A→ R and describe some geometrical properties of such natu-
ral transformations. In particular, we discuss the role of sf in the theory of
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lifting of 1-forms and (0, 2)-tensor fields to Weil bundles. We also consider
the existence of a natural equivalence TAT ∗ → T ∗TA. Finally we construct
a fairly general model of natural transformations TAT ∗ → T ∗TA, which
simply characterizes all such natural transformations for some particular
cases of the Weil algebra A.

We remark that natural transformations T r1 T
∗ → T ∗T r1 are of funda-

mental importance in analytical mechanics [2], and a natural equivalence of
this type enables us to introduce a symplectic structure on T r1 T

∗M . In what
follows we will use the theory of natural operations in differential geometry
from [10]. All maps and manifolds are assumed to be infinitely differentiable.

2. Weil functors. We first recall the definition of a Weil functor TA

in a form generalizing the (k, r)-velocities functor T rk . Let R [x1, . . . , xk] be
the algebra of all polynomials of k variables. A Weil ideal in R [x1, . . . , xk]
is an arbitrary ideal A such that

〈x1, . . . , xk〉r+1 ⊂ A ⊂ 〈x1, . . . , xk〉2

where 〈x1, . . . , xk〉 ⊂ R [x1, . . . , xk] is the ideal of all polynomials with-
out constant term and 〈x1, . . . , xk〉r+1 is its (r + 1)th power, i.e. the ideal
of all polynomials vanishing up to order r at 0. The factor algebra A =
R [x1, . . . , xk] /A is then called the Weil algebra, the number k is said to be
the width of A and the minimum of all r’s is called the depth of A. If we re-
place R [x1, . . . , xk] by the algebra E(k) of all germs of smooth functions on
Rk at zero, then A generates an ideal Ã ⊂ E(k) and we have A = E(k)/Ã
as well.

Let M be a manifold. Clearly, the jet space T rkM = Jr0 (Rk,M) of all
k-dimensional velocities of order r can also be defined as follows: Two maps
g, h : Rk →M , g(0) = h(0) = x, satisfy jr0g = jr0h if and only if

ϕ ◦ g − ϕ ◦ h ∈ 〈x1, . . . , xk〉r+1

for every germ ϕ ∈ C∞x (M,R) of a smooth function on M at x. The equiv-
alence class of a mapping g : Rk → M is denoted by jr0g and called the
k-dimensional velocity of order r. This algebraic definition of T rkM can be
generalized in the following way.

Definition. Two maps g, h : Rk → M with g(0) = h(0) = x are said
to be A-equivalent if for all germs ϕ ∈ C∞x (M,R) we have ϕ ◦ g−ϕ ◦h ∈ Ã.
The equivalence class of a mapping g : Rk →M will be denoted by jAg and
will be called the A-velocity of g at 0.

If we denote by TAM the set of all A-velocities on M , then TAM is
a fibered manifold over M with the projection p : TAM → M , p(jAg) :=
g(0). It is easy to verify that TAR = A. Further, for every f : M → N
we can define TAf : TAM → TAN by TAf(jAg) = jA(f ◦ g). Then
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TA : Mf → FM is a functor from the category of all smooth mani-
folds and all smooth maps to the category of fibered manifolds, which is
called the Weil functor corresponding to the Weil algebra A. For example,
Drk = R [x1, . . . , xk] /〈x1, . . . , xk〉r+1 is the Weil algebra of the functor T rk .
Then the tangent functor T = T 1

1 corresponds to D := D1
1 = R [x] /〈x2〉,

which is the algebra of dual numbers. Further, the tensor product D ⊗ D
generates the iterated tangent functor TT . Now we briefly recall some im-
portant properties of Weil functors (see [10]).

(i) TA(M ×N) = TAM ×TAN , so that the Weil functor TA preserves
products. Conversely, every product preserving functor F on Mf is a Weil
functor corresponding to the Weil algebra A = FR, i.e. F = T FR.

(ii) The natural transformations TA → TB of two Weil functors are in
a canonical bijection with the homomorphisms A→ B of Weil algebras.

(iii) The iteration TA ◦ TB of two Weil functors is a Weil functor which
corresponds to the tensor product A⊗B of the Weil algebras, i.e. TA(TBM)
= TA⊗BM .

(iv) The exchange isomorphism A⊗B → B⊗A of Weil algebras induces
a natural equivalence κ : TA◦TB → TB◦TA, which generalizes the canonical
involution of the second iterated tangent bundle TTM .

(v) There is an action of the elements of A on the tangent vectors of
TAM , which can be introduced as follows. Let µ : R × TM → TM be
the multiplication of tangent vectors of M by reals. Applying the functor
TA we have TAµ : A× TATM → TATM . Using the exchange isomorphism
κM : TTAM → TATM we obtain the required actionA×TTAM → TTAM .

3. Natural transformations TAT ∗ → T ∗TA. Let A be a Weil algebra
of width k. Given an arbitrary linear function f : A → R, we define a
natural transformation sf : TAT ∗ → T ∗TA in the following way. Every
X ∈ TAT ∗M is an A-velocity X = jAg, where g : Rk → T ∗M . Denote
by qM : T ∗M → M , pM : TAM → M the bundle projections and by
〈−,−〉 : TM×T ∗M → R the evaluation mapping. Then TAqM : TAT ∗M →
TAM , so that v := TAqM (X) ∈ TAM . Take an arbitrary Y ∈ TvT

AM .
If κM : TTAM → TATM is the canonical natural equivalence induced
by the exchange isomorphism D ⊗ A → A ⊗ D, then κM (Y ) ∈ TATM is
an A-velocity of the form κM (Y ) = jAh with h : Rk → TM . We have
〈g, h〉 : Rk → R, jA (〈g, h〉) ∈ TAR = A, so that f ◦ jA (〈g, h〉) ∈ R. Now we
can define a linear mapping TTAM → R by

(2) Y 7→ f ◦ jA (〈g, h〉) .
Taking into account the identification of T ∗TAM with linear maps TTAM
→ R, we have constructed an element of T ∗TAM , which will be denoted by
(sf )M (X). Clearly, sf : TAT ∗ → T ∗TA is a natural transformation.
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If X ∈ TAT ∗M , v = TAqM (X) ∈ TAM and Y ∈ TvT
AM , then

pT ∗M (X) ∈ T ∗M , pTM (κM (Y )) ∈ TM . We have 〈pT ∗M (X), pTM(κM (Y ))〉
∈ R and TA (〈pT ∗M (X), pTM (κM(Y ))〉) ∈ A. Considering the identification
of an element (sf )M (X) ∈ T ∗TAM with a linear mapping TTAM → R, we
directly obtain

Proposition 1. Let X ∈ TAT ∗M , v = TAqM (X) and Y ∈ TvT
AM .

Then
(sf )M (X)(Y ) = f ◦ TA (〈pT ∗M (X), pTM(κM (Y ))〉) .

Denote by SA the space of all natural transformations sf : TAT ∗ →
T ∗TA for linear functions f : A→ R, i.e.

(3) SA = {sf : TAT ∗ → T ∗TA; f ∈ A∗}.
Proposition 2. SA is a vector space over R which is isomorphic to the

dual vector space of A.

Proof. Let sf , sg : TAT ∗ → T ∗TA be two natural transformations de-
termined by linear functions f, g : A → R. For any X ∈ TAT ∗M we have
qTAM ((sf )M (X)) = qTAM ((sg)M (X)), where qTAM : T ∗TAM → TAM is
the bundle projection. In this way we can define addition (sf +sg) and mul-
tiplication by reals (k ·sf ), k ∈ R, by means of the corresponding operations
on the vector bundle structure T ∗TAM → TAM . Obviously, the functions
f + g and k · f , k ∈ R, induce the natural transformations sf + sg and k · sf ,
respectively.

Example 1. We describe a basis of the vector space SDr1 of natural trans-
formations T r1 T

∗ → T ∗T r1 depending on linear functions Dr1 → R. Consider
some local coordinates (xi) on M and denote by (pi) the additional coordi-
nates on T ∗M and by (yi1, . . . , y

i
r) the additional coordinates on T r1M . Then

the local coordinates on T r1 T
∗M are (xi, pi,Xi

1, . . . ,X
i
r, Pi,1, . . . , Pi,r). Fur-

ther, using expressions ridxi + s1
i dy

i
1 + . . .+ sri dy

i
r we have local coordinates

(xi, yi1, . . . , y
i
r, ri, s

1
i , . . . , s

r
i ) on T ∗T r1M . The Weil algebra of T r1 is A = Dr1 =

R[x]/〈xr+1〉, so that elements of Dr1 are of the form a0 +a1x+ . . .+arx
r and

dim(Dr1) = r + 1. Consider now mappings g : R → T ∗M and h : R → TM
from the general definition of sf . Using our local coordinates we obtain the
coordinate form of jA(〈g, h〉):

〈g(t), h(t)〉|0 = pidx
i,

d

dt

∣∣∣∣
0
〈g(t), h(t)〉 = Pi,1dx

i + pidX
i
1,

. . .

dr

dtr

∣∣∣∣
0
〈g(t), h(t)〉 =

(
r

0

)
Pi,rdx

i +
(
r

1

)
Pi,r−1dX

i
1 + . . .+

(
r

r

)
pidX

i
r.
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In this way we have obtained r + 1 natural transformations s0, s1, . . . , sr :
T r1 T

∗ → T ∗T r1 with coordinate forms

s0 : ri = pi, s
1
i = 0, . . . , sri = 0,

s1 : ri = Pi,1, s
1
i = pi, s

2
i = 0, . . . , sri = 0,

. . .

sr : ri = Pi,r, s
1
i =

(
r

1

)
Pi,r−1, . . . , s

r−1
i =

(
r

r − 1

)
Pi,1, s

r
i = pi.

We can see that every sk, 1 ≤ k ≤ r, can also be interpreted as a natural
transformation T r1 T

∗ → T ∗T k1 and s0 can be interpreted as a natural trans-
formation T r1 T

∗ → T ∗. To obtain a natural transformation T r1 T
∗ → T ∗T r1

from T r1 T
∗ → T ∗T k1 , k ≤ r and from T r1 T

∗ → T ∗, we can use the inclusion

jk : T r1M ×Tk1 M T ∗T k1 M → T ∗T r1M, 0 ≤ k ≤ r,
which is defined as follows. For X ∈ T r1M and Y ∈ T ∗T k1 M we have
jk(X,Y ) ∈ T ∗T r1M , i.e. jk(X,Y ) : TT r1M → R. Taking an arbitrary
Z ∈ TXT r1M we put jk(X,Y ) := 〈Tpr,kM (Z), Y 〉, where pr,kM : T r1M → T k1 M
is the canonical projection.

Example 2. We show that the space SD1
k

of natural transformations
T 1
kT
∗ → T ∗T 1

k is linearly generated by k + 1 natural transformations. The
Weil algebra of T 1

k is D1
k = R [x1, . . . , xk] /〈x1, . . . , xk〉2 with elements of the

form a0 + a1x1 + . . . + akxk, so that dim(D1
k) = k + 1. Taking some local

coordinates (xi) on M , we have the additional coordinates (xiα) on T 1
kM ,

α = 1, . . . , k. Then the induced coordinates on T 1
kT
∗M are (xi, pi, xiα, pi,α).

Using expressions ridxi+sαi dy
i
α we obtain local coordinates (xi, yiα, ri, s

α
i ) on

T ∗T 1
kM . For g : Rk → T ∗M and h : Rk → TM we can write 〈g(t1, . . . , tk),

h(t1, . . . , tk)〉|0 = pidx
i and d

dtγ

∣∣
0〈g, h〉 = pi,γdx

i + pidx
i
γ , γ = 1, . . . , k.

In this way we have obtained k + 1 natural transformations s0, s1, . . . , sk :
T 1
kT
∗ → T ∗T 1

k with coordinate forms

s0 : ri = pi, s
α
i = 0 for all α = 1, . . . , k,

sγ : ri = pi,γ , s
γ
i = pi, s

β
i = 0 for all β 6= γ, γ = 1, . . . , k.

Example 3. The Weil algebra of the second iterated tangent functor
TT is A = D⊗D ∼= R [x1, x2] /〈x2

1, x
2
2〉 with elements a+ bx1 + cx2 + dx1x2.

Since dim(A) = 4, the vector space SA is linearly generated by four natural
transformations.

4. The existence of a natural equivalence TAT ∗ → T ∗TA. The nat-
ural transformation sr : T r1 T

∗ → T ∗T r1 from Example 1 is exactly the well
known natural equivalence of Cantrijn, Crampin, Sarlet and Saunders [1].
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On the other hand, none of the natural transformations s0, . . . , sk : T 1
kT
∗ →

T ∗T 1
k from Example 2 is a natural equivalence. We first clarify under which

conditions on a linear function f : A → R, the natural transformation
sf : TAT ∗ → T ∗TA is an isomorphism. Given a linear function f on the Weil
algebra A, we have an associated symmetric bilinear mapping f̃ : A×A→ R,
f̃(a, b) = f(a · b). If we denote by a1, . . . , ap ∈ A a basis of A, the matrix
(aij) of f̃ is defined as a real matrix with elements aij = f̃(ai, aj).

Definition. A symmetric bilinear mapping ϕ : A × A → R is said to
be nonsingular if the matrix of ϕ is nonsingular.

Gancarzewicz, Mikulski and Pogoda [8] have studied relations between
a product preserving functor TA and some operations on vector bundles. If
V is a free finite-dimensional A-module, then V ∗(A) denotes the A-module
of all A-linear mappings V → A. Analogously, if π : E →M is an A-module
bundle, then the A-dual A-module bundle E∗(A) is defined by E∗(A) =⋃
x∈M E

∗(A)
x (see [8]). By [8], every linear function f : A → R defines a

natural vector bundle homomorphism ξfE : E∗(A) → E∗, α 7→ f ◦ α. More-
over, this homomorphism is a vector bundle isomorphism if and only if the
symmetric bilinear mapping f̃ : A × A → R, f̃(a, b) = f(a · b), associated
with f is nonsingular.

In our definition of sf : TAT ∗ → T ∗TA, a linear function f : A→ R
comes into play in (2), and ξfE from [8] is exactly the homomorphism
(TTAM)∗(A) → T ∗TAM . Thus, Propositions 4.2 and 4.4 of [8] yield di-
rectly

Proposition 3. sf : TAT ∗ → T ∗TA is a natural equivalence if and
only if the symmetric bilinear mapping f̃ : A×A→ R, f̃(a, b) = f(a · b), is
nonsingular.

Now we show that for k 6= 1 there is an obstruction to the existence of
a natural equivalence sf : T rkT

∗ → T ∗T rk .

Proposition 4. There is a natural equivalence sf : T rkT
∗ → T ∗T rk de-

pending on a linear function f : Drk → R if and only if k = 1.

Proof. I. Consider first the case k = 1. We have Dr1 = R [x] /〈xr+1〉 and
elements of Dr1 are of the form a0 + a1x+ a2x

2 + . . .+ arx
r. Hence the basis

of Dr1 is {1, x, x2, . . . , xr} and multiplication in Dr1 has the form (a0 + a1x+
a2x

2+. . .+arxr)(b0+b1x+b2x2+. . .+brxr) = a0(b0+. . .+brxr)+a1x(b0+. . .
+ br−1x

r−1) + . . . + arx
rb0. If f : Dr1 → R is a linear function given by

f(a0 + a1x+ . . .+ arx
r) = ar, then the matrix of the associated symmetric

bilinear function f̃ is
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


0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . . .
0 1 . . . 0 0
1 0 . . . 0 0


 .

The corresponding natural equivalence sf : T r1 T
∗ → T ∗T r1 is exactly sr from

Example 1, which is nothing else but the canonical isomorphism of Cantrijn,
Crampin, Sarlet and Saunders.

II. For r = 1 and any k we have A = D1
k = R[x1, . . . , xk]/〈x1, . . . , xk〉2

and multiplication in D1
k has the form (a0+a1x1+. . .+akxk)(b0+b1x1+. . .+

bkxk) = a0(b0+b1x1+. . .+bkxk)+a1x1b0+a2x2b0+. . .+akxkb0. If we denote
by {1, x1, x2, . . . , xk} the basis of A, the linear functions fi : A→ R defined
by f0(a0 +a1x1 + . . .+akxk) = a0, . . . , fk(a0 +a1x1 + . . .+akxk) = ak form
a basis of A∗. One finds easily that the matrix of each symmetric bilinear
function f̃0, f̃1, . . . , f̃k is singular.

III. The Weil algebra of T rk is A = Drk = R [x1, . . . , xk] /〈x1, . . . , xk〉r+1.
Recall that a k-multiindex is a k-tuple α = (α1, . . . , αk) of nonnegative
integers. We write |α| = α1 + . . . + αk and xα = (xα1

1 , . . . , xαkk ) for x =
(x1, . . . , xk), xi ∈ R. Then the elements of Drk can be expressed in the form
a0 + aαx

α, where |α| ≤ r and a0, aα ∈ R. If k > 1, then the basis of Drk can
be written as a set {1, xα; |α| ≤ r} and the corresponding dual basis is given
by linear functions f0, fα : Drk → R, f0(a0+aαxα) = a0, fα(a0+aαxα) = aα,
|α| ≤ r. It is easy to verify that the matrix of each associated symmetric
bilinear function f̃0, f̃α is singular.

Proposition 5. For k > 1 there is no natural equivalence T rkT
∗ →

T ∗T rk .

Proof. According to the general theory [10], natural transformations
T rkT

∗ → T ∗T rk are in a canonical bijection with Gr+1
m -equivariant maps

of the corresponding standard fibers, where Grm means the group of all in-
vertible r-jets of Rm into Rm with source and target zero. Denoting by (aij)
the canonical coordinates in G1

m, the coordinates of the inverse element will
be denoted by (ãji ). Further, denote by (xi, pi, xiα, pi,α) the canonical coordi-
nates on T rkT

∗M and by (xi, yiα, ri, s
α
i ) the canonical coordinates on T ∗T rkM ,

where α is a k-multiindex with |α| ≤ r. One calculates easily pi = ãjipj and

(4) xiα = aijx
j
α + . . .

Clearly, for |α| = 1, the transformation law (4) is tensorial, while for |α| > 1
there are terms with xjβ on the right-hand side of (4), |β| < |α|. Analogously,

yiα = aijy
j
α + . . . and pαi = ãjipj,α + . . . Finally, for all |α| = r we find sαi =

ãji s
α
j . This means that all sαi with |α| = r have a tensorial transformation
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law. On the other hand, among (pi, pi,α) on the standard fibre (T rkT
∗)0, only

(pi) have a tensorial transformation law.

5. Liftings of 1-forms and (0, 2)-tensor fields to Weil bundles. In
this section we investigate the role of natural transformations sf : TAT ∗ →
T ∗TA in the theory of lifting of 1-forms and (0, 2)-tensor fields to Weil
bundles. By a lifting of some tensor field G to a natural bundle F we un-
derstand a natural operator transforming the tensor field G on a manifold
M into a tensor field of the same type on FM .

Given a function ϕ : M → R and a function f : A → R, we can define
the f -lift ϕf : TAM → R of ϕ to the bundle TAM by ϕf := f ◦ TAϕ.
Clearly, ϕ 7→ ϕf defines a natural operator transforming functions on a
manifold M into functions on TAM . If X : M → TM is a vector field on
M , then TAX : TAM → TATM and the composition T AX := κ−1

M ◦TAX :
TAM → TTAM is a vector field on TAM . By [10], T AX is exactly the flow
prolongation of X, it is also called the complete lift.

Let ω : M → T ∗M be a 1-form on M . Using the natural transformation
sf determined by a linear function f : A→ R, we can also define the f -lift of
ω to TAM . Indeed, TAω : TAM → TAT ∗M and the composition with the
natural transformation (sf )M : TAT ∗M → T ∗TAM gives rise to a 1-form
ωf on TAM ,

(5) ωf := (sf )M ◦ TAω : TAM → T ∗TAM.

The f -lift of an evaluation mapping 〈ω,X〉 : M → R is a function 〈ω,X〉f :
TAM → R. We have

Proposition 6. 〈ωf , T AX〉 = 〈ω,X〉f .

Proof. Using Proposition 1 we obtain 〈ωf , T AX〉 = 〈(sf )M ◦TAω, κ−1
M ◦

TAX〉 = f ◦ TA (〈ω,X〉) which is nothing else but 〈ω,X〉f .

We remark that this formula has been proved in the particular case
A = D2

1 in [3].
A 1-form ω : M → T ∗M on M can also be identified with a linear

mapping ω̃ : TM → R, ω̃(X) = 〈ω,X〉. If f : A → R is a linear function
on A, then the map Ω̃ := f ◦ TAω̃ ◦ κM : TTAM → R is linear, so that
Ω̃ induces a 1-form Ω : TAM → T ∗TAM on TAM . On the other hand,
ωf := (sf )M ◦ TAω from (5) is also a 1-form on TAM . We have

Proposition 7. Ω = ωf .

Proof. Recall that there is a canonical action A × TTAM → TTAM .
If X is a vector field on M and a ∈ A, then we can introduce the a-lift
X(a) : TAM → TTAM of X to TAM by X(a) := a · T AM . From [7] it
follows that if G and H are two tensor fields of type (0, k) or (1, k) on
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TAM satisfying G(X(a1)
1 , . . . ,X

(ak)
k ) = H(X(a1)

1 , . . . ,X
(ak)
k ) for all vector

fields X1, . . . ,Xk on M and all elements a1, . . . , ak from A, then G = H. By
Proposition 6 we obtain Ω̃(T AX) = (f ◦TAω̃◦κM )(κ−1

M ◦TAX) = f ◦TAω̃◦
TAX = f ◦TA(ω̃(X)) = f ◦TA (〈ω,X〉) = 〈ω,X〉f = 〈ωf , T AX〉. Using the
A-linearity of both f and TAω̃ we directly obtain Ω̃(X(a)) = 〈ωf ,X(a)〉 for
all a ∈ A.

A (0, 2)-tensor field on M can be interpreted as a linear mapping G :
TM×M TM → R. Using the exchange isomorphism κM : TTAM → TATM
and a linear function f : A → R, Gancarzewicz, Mikulski and Pogoda [7]
introduced an f -lift Gf of G to the bundle TAM by

Gf := f ◦ TAG ◦ (κM × κM ) : TTAM ×TAM TTAM → R.

Further, each (0, 2)-tensor field G on M induces a linear mapping GL :
TM → T ∗M by 〈GL(y), z〉 = G(z, y), y, z ∈ TxM . If G is a symplectic form
on M , then GL is an isomorphism. Denote by GfL : TTAM → T ∗TAM the
linear mapping corresponding to the f -lift Gf of G.

Proposition 8. GfL : TTAM → T ∗TAM is of the form GfL = (sf )M ◦
TAGL ◦ κM .

Proof. Clearly,

Gf (T AX, T AY ) = f ◦ TAG ◦ (κM × κM )(T AX, T AY )

= f ◦ TAG(TAX,TAY )

= f ◦ TA(G(X,Y )) = (G(X,Y ))f .

Analogously to the proof of Proposition 7 we have

〈(sf )M ◦ TAGL ◦ κM )(T AY ), T AX〉 = 〈(sf )M ◦ TA(GL ◦ Y ), κ−1
M ◦ TAX〉

= 〈GL(Y ),X〉f = (G(X,Y ))f

= Gf (T AX, T AY ).

On the other hand, 〈GfL(T AY ), T AX〉 = Gf (T AX, T AY ).

We remark that the above assertion has been proved in [5] for A = D.
By [7], if ω is a 2-form on M , then dωf = (dω)f . We have

Corollary. Let ω = dpi ∧ dxi be the canonical symplectic form on
T ∗M and ωf be the f -lift of ω to TA(T ∗M). If sf : TAT ∗ → T ∗TA is a
natural equivalence, then ωf is a symplectic form on TAT ∗M .

6. General description of some natural transformations TAT ∗ →
T ∗TA. In this section we show that for some particular cases of a Weil
algebra A, the space of all natural transformations TAT ∗ → T ∗TA can be
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characterized by means of a general geometrical description. It is our belief
that this description works also for many other Weil algebras.

Definition. A natural function g on a natural bundle F is defined as
a system of functions gM : FM → M for any m-dimensional manifold
M satisfying gM = gN ◦ Ff for every local diffeomorphism f : M → N .
A natural (or absolute) vector field X on F is a system of vector fields
XM : FM → TFM for every m-dimensional manifold M satisfying TFf ◦
XM = XN ◦ Ff for every local diffeomorphism f : M → N .

On the other hand, the space of all natural transformations from TAT ∗

into T ∗TA is a C∞(TAT ∗)-module.

Remark 1. By the general theory [10], absolute vector fields on TAM
correspond to one-parameter groups of natural transformations of TA into
itself. In particular, the natural transformations T rk → T rk are in bijec-
tion with the elements of Jr0 (Rk,Rk)0 and each of them has the form of
a reparametrization X 7→ X ◦P , X ∈ T rkM , P ∈ Jr0 (Rk,Rk)0. For example,
all natural transformations of TM into itself are homotheties X 7→ kX,
k ∈ R, and the vector field tangent to them is the classical Liouville vector
field. In the case of an arbitrary Weil functor TA, denote by Aut(A) the
Lie algebra associated with the Lie group of all algebra automorphisms of
the Weil algebra A. In [10] it is proved that all absolute vector fields on
TAM are the generalized Liouville vector fields determined by all elements
D ∈ Aut(A).

Remark 2. We remark that the problem of finding all natural functions
on T ∗TA for an arbitrary Weil algebra A is rather complicated. First, Kolář
[9] has determined all natural functions on T ∗T r1 . Recently Tomáš [14] has
described all natural functions on T ∗TA for some particular cases of A.

Example 4. We describe all natural functions on T r1 T
∗. Denote by L

the generalized Liouville vector field on T r1M induced by the reparametriza-
tions x(t) 7→ x(kt), 0 6= k ∈ R, of a curve x : R → M . By Kolář [9],
all absolute vector fields on T r1 are linearly generated by L1 = L, L2 =
Q ◦ L, . . . , Lr = Qr−1 ◦ L, where Q : TT r1M → TT r1M is a natural lin-
ear morphism (affinor) defined by de León and Rodrigues [2], whose coor-
dinate expression is (dxi, dyi1, dy

i
2, . . . , dy

i
r) 7→ (0, dxi, dyi1, . . . , dy

i
r−1). Let

sr : T r1 T
∗M → T ∗T r1M be the natural equivalence from Example 1. Denot-

ing by qM : T ∗M →M the bundle projection, we have qT r1M (sr(Y )) ∈ T r1M
for all Y ∈ T r1 T ∗M . Then every absolute vector field Li determines a natural
function ϕi : T r1 T

∗M → R,

ϕi(Y ) = 〈sr(Y ), Li(qT r1M (sr(Y )))〉.
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By [9], all natural functions on T r1 T
∗ are of the form ϕ(ϕ1, . . . , ϕr), where

ϕ : Rr → R is an arbitrary smooth function of r variables.

In general, let (sf )M : TAT ∗M → T ∗TAM be a natural transforma-
tion induced by a linear function f : A → R. For Y ∈ TAT ∗M we have
qTAM ((sf )M (Y )) ∈ TAM and each absolute vector field X : TAM →
TTAM on TAM determines a natural function ϕX,f : TAT ∗M → R by

(6) ϕX,f (Y ) = 〈(sf )M (Y ),X(qTAM ((sf )M (Y ))〉.
Denote by ϕ1, . . . , ϕl all such functions determined by all functions f ∈ A∗
and all absolute vector fields X on TAM and let ϕ : Rl → R be an arbitrary
smooth function. We have

Proposition 9. Let A = D or A = D⊗D or A = Dr1 or A = D1
k. Then

all natural functions on TAT ∗ are of the form ϕ(ϕ1, . . . , ϕl).

Proof. For A = Dr1 and A = D this follows from Example 4. Con-
sider now A = D1

k and write equations of all natural functions on T 1
kT
∗.

If (xi, pi, xiα, pi,α, α = 1, . . . , k) are the canonical coordinates on T 1
kT
∗M ,

then all natural functions on T 1
kT
∗ are of the form ϕ(pixiα, α = 1, . . . , k)

with ϕ : Rk → R being any smooth function (see [6]). On the other hand,
by Remark 1 we find easily the coordinate form of absolute vector fields on
T 1
kM , Lαβ = xiβ∂/∂x

i
α, α, β = 1, . . . , k. Now the assertion for A = D1

k follows
from Example 2. For A = D ⊗ D all natural functions on TTT ∗ are deter-
mined in [4] and the rest of the proof is quite similar to that for A = D1

k.

Finally we describe all natural transformations TAT ∗ → T ∗TA for some
particular cases of A by means of a simple and universal geometrical con-
struction. We will proceed in the following steps.

I. Denote by B the basis of A∗. For every f ∈ B we have a natural
transformation sf : TAT ∗ → T ∗TA.

II. Let Tr(A) be the space of all natural transformations TAM →
TAM .

III. Let V(A) be the space of all absolute vector fields on TAM (see
Remark 1).

IV. Natural transformations sf from I and absolute vector fields X ∈
V(A) from III determine natural functions ϕX,f : TAT ∗M → R (see (6)). If
ϕ1, . . . , ϕl are all such functions for all f ∈ B and all absolute vector fields on
TAM , then ϕ(ϕ1, . . . , ϕl) is a natural function on TAT ∗M for each smooth
function ϕ : Rl → R.

V. Let s1, . . . , sr : TAT ∗ → T ∗TA be a basis of the vector space SA
(see Proposition 2). Write s := k1s1 + . . . + krsr, where on the right-hand
side we have the sum in the vector bundle structure T ∗TAM → TAM and
ki : TAT ∗M → R are natural functions from IV of the form ϕ(ϕ1, . . . , ϕl).
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VI. All natural transformations TAN → TAN from II applied to N =
T ∗M determine a system of natural transformations TAT ∗M → TAT ∗M
over the identity of T ∗M . This system depends on certain real parameters.
If we replace them by arbitrary natural functions ϕ(ϕ1, . . . , ϕl) : TAT ∗M →
R, we obtain a new system s of natural transformations TAT ∗M → TAT ∗M .

VII. Write

(7) t := s ◦ s : TAT ∗M → T ∗TAM.

Proposition 10. Let A = D or A = D⊗D or A = D2
1 or A = D1

k. Then
all natural transformations TAT ∗ → T ∗TA are of the form (7).

Proof. Consider first A = D1
k and denote by (xi, yiα, ri, s

α
i , α = 1, . . . , k)

the canonical coordinates on T 1
kT
∗M . By [6], the coordinate form of all

natural transformations T 1
kT
∗ → T ∗T 1

k is yiα = Aβαx
i
β , sαi = Bαpi and

ri = AβαB
αpi,β + Cpi. Clearly, this is the coordinate form of t described in

item VII. For A = D the assertion follows from [11], for A = D⊗D from [4]
and finally for A = D2

1 from [3].
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616 69 Brno, Czech Republic
E-mail: doupovec@um.fme.vutbr.cz
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