ANNALES POLONICI MATHEMATICI LXXVII.2 (2001)

Natural transformations of the composition of Weil and cotangent functors

by Miroslav Doupovec (Brno)

Abstract. We study geometrical properties of natural transformations $T^AT^* \to T^*T^A$ depending on a linear function defined on the Weil algebra A. We show that for many particular cases of A, all natural transformations $T^AT^* \to T^*T^A$ can be described in a uniform way by means of a simple geometrical construction.

1. Introduction. By Tulczyjew [15], and Modugno and Stefani [13], there is a natural equivalence $TT^* \to T^*T$ of second order tangent and cotangent functors. All natural transformations of this type were determined by Kolář and Radziszewski [11]. The tangent functor T is a particular case of the functor T_k^r of k-dimensional velocities of order r, which is defined by

(1)
$$T_k^r M = J_0^r(\mathbb{R}^k, M), \quad T_k^r f(j_0^r g) = j_0^r (f \circ g)$$

for all smooth manifolds M and all smooth maps $f: M \to N$. Then Cantrijn, Crampin, Sarlet and Saunders [1] introduced a canonical natural equivalence $T_1^rT^* \to T^*T_1^r$, which can be considered as a generalization of the natural equivalence $TT^* \to T^*T$. In [3] we have classified all natural transformations $T_1^2T^* \to T^*T_1^2$ and in [4] we have determined all natural transformations $TTT^* \to TT^*T$, which is a similar problem.

In general, let T^A be a Weil functor corresponding to a Weil algebra A. In the jet-like approach, a Weil functor T^A can be interpreted as a generalization of the (k,r)-velocities functor T^r_k . By [10], Weil functors even represent a general model of all product preserving bundle functors. The aim of this paper is to study natural transformations $T^AT^* \to T^*T^A$. We first define natural transformations $s_f: T^AT^* \to T^*T^A$ depending on linear functions $f: A \to \mathbb{R}$ and describe some geometrical properties of such natural transformations. In particular, we discuss the role of s_f in the theory of

²⁰⁰⁰ Mathematics Subject Classification: 58A32, 58A20.

Key words and phrases: Weil algebra, Weil functor, jet, natural transformation.

The author was supported by a grant of the GA CR No 201/99/0296.

lifting of 1-forms and (0,2)-tensor fields to Weil bundles. We also consider the existence of a natural equivalence $T^AT^* \to T^*T^A$. Finally we construct a fairly general model of natural transformations $T^AT^* \to T^*T^A$, which simply characterizes all such natural transformations for some particular cases of the Weil algebra A.

We remark that natural transformations $T_1^r T^* \to T^* T_1^r$ are of fundamental importance in analytical mechanics [2], and a natural equivalence of this type enables us to introduce a symplectic structure on $T_1^r T^* M$. In what follows we will use the theory of natural operations in differential geometry from [10]. All maps and manifolds are assumed to be infinitely differentiable.

2. Weil functors. We first recall the definition of a Weil functor T^A in a form generalizing the (k,r)-velocities functor T_k^r . Let $\mathbb{R}[x_1,\ldots,x_k]$ be the algebra of all polynomials of k variables. A Weil ideal in $\mathbb{R}[x_1,\ldots,x_k]$ is an arbitrary ideal \mathcal{A} such that

$$\langle x_1, \dots, x_k \rangle^{r+1} \subset \mathcal{A} \subset \langle x_1, \dots, x_k \rangle^2$$

where $\langle x_1,\ldots,x_k\rangle\subset\mathbb{R}\left[x_1,\ldots,x_k\right]$ is the ideal of all polynomials without constant term and $\langle x_1,\ldots,x_k\rangle^{r+1}$ is its (r+1)th power, i.e. the ideal of all polynomials vanishing up to order r at 0. The factor algebra $A=\mathbb{R}\left[x_1,\ldots,x_k\right]/\mathcal{A}$ is then called the *Weil algebra*, the number k is said to be the *width* of A and the minimum of all r's is called the *depth* of A. If we replace $\mathbb{R}\left[x_1,\ldots,x_k\right]$ by the algebra E(k) of all germs of smooth functions on \mathbb{R}^k at zero, then \mathcal{A} generates an ideal $\widetilde{\mathcal{A}}\subset E(k)$ and we have $A=E(k)/\widetilde{\mathcal{A}}$ as well.

Let M be a manifold. Clearly, the jet space $T_k^r M = J_0^r(\mathbb{R}^k, M)$ of all k-dimensional velocities of order r can also be defined as follows: Two maps $g, h : \mathbb{R}^k \to M$, g(0) = h(0) = x, satisfy $j_0^r g = j_0^r h$ if and only if

$$\varphi \circ g - \varphi \circ h \in \langle x_1, \dots, x_k \rangle^{r+1}$$

for every germ $\varphi \in C_x^{\infty}(M,\mathbb{R})$ of a smooth function on M at x. The equivalence class of a mapping $g: \mathbb{R}^k \to M$ is denoted by $j_0^r g$ and called the k-dimensional velocity of order r. This algebraic definition of $T_k^r M$ can be generalized in the following way.

DEFINITION. Two maps $g,h:\mathbb{R}^k\to M$ with g(0)=h(0)=x are said to be A-equivalent if for all germs $\varphi\in C^\infty_x(M,\mathbb{R})$ we have $\varphi\circ g-\varphi\circ h\in\widetilde{\mathcal{A}}$. The equivalence class of a mapping $g:\mathbb{R}^k\to M$ will be denoted by j^Ag and will be called the A-velocity of g at 0.

If we denote by T^AM the set of all A-velocities on M, then T^AM is a fibered manifold over M with the projection $p:T^AM\to M$, $p(j^Ag):=g(0)$. It is easy to verify that $T^A\mathbb{R}=A$. Further, for every $f:M\to N$ we can define $T^Af:T^AM\to T^AN$ by $T^Af(j^Ag)=j^A(f\circ g)$. Then

- $T^A: \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is a functor from the category of all smooth manifolds and all smooth maps to the category of fibered manifolds, which is called the *Weil functor* corresponding to the Weil algebra A. For example, $\mathbb{D}_k^r = \mathbb{R}\left[x_1,\ldots,x_k\right]/\langle x_1,\ldots,x_k\rangle^{r+1}$ is the Weil algebra of the functor T_k^r . Then the tangent functor $T = T_1^1$ corresponds to $\mathbb{D} := \mathbb{D}_1^1 = \mathbb{R}\left[x\right]/\langle x^2\rangle$, which is the algebra of dual numbers. Further, the tensor product $\mathbb{D}\otimes\mathbb{D}$ generates the iterated tangent functor TT. Now we briefly recall some important properties of Weil functors (see [10]).
- (i) $T^A(M \times N) = T^AM \times T^AN$, so that the Weil functor T^A preserves products. Conversely, every product preserving functor F on $\mathcal{M}f$ is a Weil functor corresponding to the Weil algebra $A = F\mathbb{R}$, i.e. $F = T^{F\mathbb{R}}$.
- (ii) The natural transformations $T^A \to T^B$ of two Weil functors are in a canonical bijection with the homomorphisms $A \to B$ of Weil algebras.
- (iii) The iteration $T^A \circ T^B$ of two Weil functors is a Weil functor which corresponds to the tensor product $A \otimes B$ of the Weil algebras, i.e. $T^A(T^BM) = T^{A \otimes B}M$.
- (iv) The exchange isomorphism $A \otimes B \to B \otimes A$ of Weil algebras induces a natural equivalence $\kappa: T^A \circ T^B \to T^B \circ T^A$, which generalizes the canonical involution of the second iterated tangent bundle TTM.
- (v) There is an action of the elements of A on the tangent vectors of T^AM , which can be introduced as follows. Let $\mu: \mathbb{R} \times TM \to TM$ be the multiplication of tangent vectors of M by reals. Applying the functor T^A we have $T^A\mu: A \times T^ATM \to T^ATM$. Using the exchange isomorphism $\kappa_M: TT^AM \to T^ATM$ we obtain the required action $A \times TT^AM \to TT^AM$.
- 3. Natural transformations $T^AT^* \to T^*T^A$. Let A be a Weil algebra of width k. Given an arbitrary linear function $f:A\to\mathbb{R}$, we define a natural transformation $s_f:T^AT^*\to T^*T^A$ in the following way. Every $X\in T^AT^*M$ is an A-velocity $X=j^Ag$, where $g:\mathbb{R}^k\to T^*M$. Denote by $q_M:T^*M\to M$, $p_M:T^AM\to M$ the bundle projections and by $\langle -,-\rangle:TM\times T^*M\to\mathbb{R}$ the evaluation mapping. Then $T^Aq_M:T^AT^*M\to T^AM$, so that $v:=T^Aq_M(X)\in T^AM$. Take an arbitrary $Y\in T_vT^AM$. If $\kappa_M:TT^AM\to T^ATM$ is the canonical natural equivalence induced by the exchange isomorphism $\mathbb{D}\otimes A\to A\otimes \mathbb{D}$, then $\kappa_M(Y)\in T^ATM$ is an A-velocity of the form $\kappa_M(Y)=j^Ah$ with $h:\mathbb{R}^k\to TM$. We have $\langle g,h\rangle:\mathbb{R}^k\to\mathbb{R},\,j^A\,(\langle g,h\rangle)\in T^A\mathbb{R}=A$, so that $f\circ j^A\,(\langle g,h\rangle)\in\mathbb{R}$. Now we can define a linear mapping $TT^AM\to\mathbb{R}$ by

(2)
$$Y \mapsto f \circ j^A (\langle g, h \rangle).$$

Taking into account the identification of T^*T^AM with linear maps $TT^AM \to \mathbb{R}$, we have constructed an element of T^*T^AM , which will be denoted by $(s_f)_M(X)$. Clearly, $s_f: T^AT^* \to T^*T^A$ is a natural transformation.

If $X \in T^A T^*M$, $v = T^A q_M(X) \in T^A M$ and $Y \in T_v T^A M$, then $p_{T^*M}(X) \in T^*M$, $p_{TM}(\kappa_M(Y)) \in TM$. We have $\langle p_{T^*M}(X), p_{TM}(\kappa_M(Y)) \rangle \in \mathbb{R}$ and $T^A(\langle p_{T^*M}(X), p_{TM}(\kappa_M(Y)) \rangle) \in A$. Considering the identification of an element $(s_f)_M(X) \in T^*T^A M$ with a linear mapping $TT^A M \to \mathbb{R}$, we directly obtain

Proposition 1. Let $X \in T^AT^*M$, $v = T^Aq_M(X)$ and $Y \in T_vT^AM$. Then

$$(s_f)_M(X)(Y) = f \circ T^A(\langle p_{T^*M}(X), p_{TM}(\kappa_M(Y))\rangle).$$

Denote by S_A the space of all natural transformations $s_f: T^A T^* \to T^* T^A$ for linear functions $f: A \to \mathbb{R}$, i.e.

(3)
$$S_A = \{s_f : T^A T^* \to T^* T^A; f \in A^*\}.$$

PROPOSITION 2. S_A is a vector space over \mathbb{R} which is isomorphic to the dual vector space of A.

Proof. Let $s_f, s_g: T^AT^* \to T^*T^A$ be two natural transformations determined by linear functions $f,g:A\to\mathbb{R}$. For any $X\in T^AT^*M$ we have $q_{T^AM}\left((s_f)_M(X)\right)=q_{T^AM}\left((s_g)_M(X)\right)$, where $q_{T^AM}:T^*T^AM\to T^AM$ is the bundle projection. In this way we can define addition (s_f+s_g) and multiplication by reals $(k\cdot s_f), k\in\mathbb{R}$, by means of the corresponding operations on the vector bundle structure $T^*T^AM\to T^AM$. Obviously, the functions f+g and $k\cdot f, k\in\mathbb{R}$, induce the natural transformations s_f+s_g and $k\cdot s_f$, respectively.

EXAMPLE 1. We describe a basis of the vector space $S_{\mathbb{D}_1^r}$ of natural transformations $T_1^rT^* \to T^*T_1^r$ depending on linear functions $\mathbb{D}_1^r \to \mathbb{R}$. Consider some local coordinates (x^i) on M and denote by (p_i) the additional coordinates on T^*M and by (y_1^i,\ldots,y_r^i) the additional coordinates on T_1^rM . Then the local coordinates on $T_1^rT^*M$ are $(x^i,p_i,X_1^i,\ldots,X_r^i,P_{i,1},\ldots,P_{i,r})$. Further, using expressions $r_idx^i+s_1^idy_1^i+\ldots+s_r^idy_r^i$ we have local coordinates $(x^i,y_1^i,\ldots,y_r^i,r_i,s_1^i,\ldots,s_r^i)$ on $T^*T_1^rM$. The Weil algebra of T_1^r is $A=\mathbb{D}_1^r=\mathbb{R}[x]/\langle x^{r+1}\rangle$, so that elements of \mathbb{D}_1^r are of the form $a_0+a_1x+\ldots+a_rx^r$ and $\dim(\mathbb{D}_1^r)=r+1$. Consider now mappings $g:\mathbb{R}\to T^*M$ and $h:\mathbb{R}\to TM$ from the general definition of s_f . Using our local coordinates we obtain the coordinate form of $j^A(\langle g,h\rangle)$:

$$\langle g(t), h(t) \rangle |_{0} = p_{i} dx^{i},$$

$$\frac{d}{dt} \Big|_{0} \langle g(t), h(t) \rangle = P_{i,1} dx^{i} + p_{i} dX_{1}^{i},$$

$$\frac{d^r}{dt^r}\Big|_0\langle g(t),h(t)\rangle = \binom{r}{0}P_{i,r}dx^i + \binom{r}{1}P_{i,r-1}dX_1^i + \ldots + \binom{r}{r}p_idX_r^i.$$

In this way we have obtained r+1 natural transformations $s_0,s_1,\ldots,s_r:T_1^rT^*\to T^*T_1^r$ with coordinate forms

$$s_0: r_i = p_i, \ s_i^1 = 0, \dots, s_i^r = 0,$$

 $s_1: r_i = P_{i,1}, \ s_i^1 = p_i, \ s_i^2 = 0, \dots, s_i^r = 0,$

$$s_r: r_i = P_{i,r}, \ s_i^1 = \binom{r}{1} P_{i,r-1}, \dots, s_i^{r-1} = \binom{r}{r-1} P_{i,1}, \ s_i^r = p_i.$$

We can see that every s_k , $1 \le k \le r$, can also be interpreted as a natural transformation $T_1^r T^* \to T^* T_1^k$ and s_0 can be interpreted as a natural transformation $T_1^r T^* \to T^*$. To obtain a natural transformation $T_1^r T^* \to T^* T_1^k$, $t \le r$ and from $t \ge T^* T_1^r$, we can use the inclusion

$$j_k: T_1^r M \times_{T_1^k M} T^* T_1^k M \to T^* T_1^r M, \quad 0 \le k \le r,$$

which is defined as follows. For $X \in T_1^rM$ and $Y \in T^*T_1^kM$ we have $j_k(X,Y) \in T^*T_1^rM$, i.e. $j_k(X,Y) : TT_1^rM \to \mathbb{R}$. Taking an arbitrary $Z \in T_XT_1^rM$ we put $j_k(X,Y) := \langle Tp_M^{r,k}(Z),Y \rangle$, where $p_M^{r,k} : T_1^rM \to T_1^kM$ is the canonical projection.

Example 2. We show that the space $S_{\mathbb{D}^1_k}$ of natural transformations $T_k^1T^* \to T^*T_k^1$ is linearly generated by k+1 natural transformations. The Weil algebra of T_k^1 is $\mathbb{D}^1_k = \mathbb{R}\left[x_1,\ldots,x_k\right]/\langle x_1,\ldots,x_k\rangle^2$ with elements of the form $a_0+a_1x_1+\ldots+a_kx_k$, so that $\dim(\mathbb{D}^1_k)=k+1$. Taking some local coordinates (x^i) on M, we have the additional coordinates (x^i) on T_k^1M , $\alpha=1,\ldots,k$. Then the induced coordinates on $T_k^1T^*M$ are $(x^i,p_i,x_\alpha^i,p_{i,\alpha})$. Using expressions $r_idx^i+s_i^\alpha dy_\alpha^i$ we obtain local coordinates $(x^i,y_\alpha^i,r_i,s_i^\alpha)$ on $T^*T_k^1M$. For $g:\mathbb{R}^k\to T^*M$ and $h:\mathbb{R}^k\to TM$ we can write $\langle g(t_1,\ldots,t_k),h(t_1,\ldots,t_k)\rangle|_0=p_idx^i$ and $\frac{d}{dt_\gamma}|_0\langle g,h\rangle=p_{i,\gamma}dx^i+p_idx_\gamma^i,\ \gamma=1,\ldots,k$. In this way we have obtained k+1 natural transformations $s_0,s_1,\ldots,s_k:T_k^1T^*\to T^*T_k^1$ with coordinate forms

$$s_0: r_i = p_i, \ s_i^{\alpha} = 0 \quad \text{ for all } \alpha = 1, \dots, k,$$

$$s_{\gamma}: r_i = p_{i,\gamma}, \ s_i^{\gamma} = p_i, \ s_i^{\beta} = 0 \quad \text{ for all } \beta \neq \gamma, \ \gamma = 1, \dots, k.$$

EXAMPLE 3. The Weil algebra of the second iterated tangent functor TT is $A = \mathbb{D} \otimes \mathbb{D} \cong \mathbb{R} [x_1, x_2] / \langle x_1^2, x_2^2 \rangle$ with elements $a + bx_1 + cx_2 + dx_1x_2$. Since $\dim(A) = 4$, the vector space S_A is linearly generated by four natural transformations.

4. The existence of a natural equivalence $T^AT^* \to T^*T^A$. The natural transformation $s_r: T_1^rT^* \to T^*T_1^r$ from Example 1 is exactly the well known natural equivalence of Cantrijn, Crampin, Sarlet and Saunders [1].

On the other hand, none of the natural transformations $s_0, \ldots, s_k : T_k^1 T^* \to T^* T_k^1$ from Example 2 is a natural equivalence. We first clarify under which conditions on a linear function $f: A \to \mathbb{R}$, the natural transformation $s_f: T^A T^* \to T^* T^A$ is an isomorphism. Given a linear function f on the Weil algebra A, we have an associated symmetric bilinear mapping $\widetilde{f}: A \times A \to \mathbb{R}$, $\widetilde{f}(a,b) = f(a \cdot b)$. If we denote by $a_1, \ldots, a_p \in A$ a basis of A, the matrix (a_{ij}) of \widetilde{f} is defined as a real matrix with elements $a_{ij} = \widetilde{f}(a_i,a_j)$.

DEFINITION. A symmetric bilinear mapping $\varphi: A \times A \to \mathbb{R}$ is said to be *nonsingular* if the matrix of φ is nonsingular.

Gancarzewicz, Mikulski and Pogoda [8] have studied relations between a product preserving functor T^A and some operations on vector bundles. If V is a free finite-dimensional A-module, then $V^{*(A)}$ denotes the A-module of all A-linear mappings $V \to A$. Analogously, if $\pi: E \to M$ is an A-module bundle, then the A-dual A-module bundle $E^{*(A)}$ is defined by $E^{*(A)} = \bigcup_{x \in M} E_x^{*(A)}$ (see [8]). By [8], every linear function $f: A \to \mathbb{R}$ defines a natural vector bundle homomorphism $\xi_E^f: E^{*(A)} \to E^*$, $\alpha \mapsto f \circ \alpha$. Moreover, this homomorphism is a vector bundle isomorphism if and only if the symmetric bilinear mapping $\widetilde{f}: A \times A \to \mathbb{R}$, $\widetilde{f}(a,b) = f(a \cdot b)$, associated with f is nonsingular.

In our definition of $s_f: T^AT^* \to T^*T^A$, a linear function $f: A \to \mathbb{R}$ comes into play in (2), and ξ_E^f from [8] is exactly the homomorphism $(TT^AM)^{*(A)} \to T^*T^AM$. Thus, Propositions 4.2 and 4.4 of [8] yield directly

PROPOSITION 3. $s_f: T^AT^* \to T^*T^A$ is a natural equivalence if and only if the symmetric bilinear mapping $\widetilde{f}: A \times A \to \mathbb{R}$, $\widetilde{f}(a,b) = f(a \cdot b)$, is nonsingular.

Now we show that for $k \neq 1$ there is an obstruction to the existence of a natural equivalence $s_f: T_k^r T^* \to T^* T_k^r$.

PROPOSITION 4. There is a natural equivalence $s_f: T_k^r T^* \to T^* T_k^r$ depending on a linear function $f: \mathbb{D}_k^r \to \mathbb{R}$ if and only if k = 1.

Proof. I. Consider first the case k=1. We have $\mathbb{D}_1^r=\mathbb{R}\left[x\right]/\langle x^{r+1}\rangle$ and elements of \mathbb{D}_1^r are of the form $a_0+a_1x+a_2x^2+\ldots+a_rx^r$. Hence the basis of \mathbb{D}_1^r is $\{1,x,x^2,\ldots,x^r\}$ and multiplication in \mathbb{D}_1^r has the form $(a_0+a_1x+a_2x^2+\ldots+a_rx^r)(b_0+b_1x+b_2x^2+\ldots+b_rx^r)=a_0(b_0+\ldots+b_rx^r)+a_1x(b_0+\ldots+b_{r-1}x^{r-1})+\ldots+a_rx^rb_0$. If $f:\mathbb{D}_1^r\to\mathbb{R}$ is a linear function given by $f(a_0+a_1x+\ldots+a_rx^r)=a_r$, then the matrix of the associated symmetric bilinear function \widetilde{f} is

$$\begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 1 & \dots & 0 & 0 \\ 1 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

The corresponding natural equivalence $s_f: T_1^r T^* \to T^* T_1^r$ is exactly s_r from Example 1, which is nothing else but the canonical isomorphism of Cantrijn, Crampin, Sarlet and Saunders.

II. For r=1 and any k we have $A=\mathbb{D}_k^1=\mathbb{R}[x_1,\ldots,x_k]/\langle x_1,\ldots,x_k\rangle^2$ and multiplication in \mathbb{D}_k^1 has the form $(a_0+a_1x_1+\ldots+a_kx_k)(b_0+b_1x_1+\ldots+b_kx_k)=a_0(b_0+b_1x_1+\ldots+b_kx_k)+a_1x_1b_0+a_2x_2b_0+\ldots+a_kx_kb_0$. If we denote by $\{1,x_1,x_2,\ldots,x_k\}$ the basis of A, the linear functions $f_i:A\to\mathbb{R}$ defined by $f_0(a_0+a_1x_1+\ldots+a_kx_k)=a_0,\ldots,f_k(a_0+a_1x_1+\ldots+a_kx_k)=a_k$ form a basis of A^* . One finds easily that the matrix of each symmetric bilinear function $\widetilde{f}_0,\widetilde{f}_1,\ldots,\widetilde{f}_k$ is singular.

III. The Weil algebra of T_k^r is $A = \mathbb{D}_k^r = \mathbb{R}\left[x_1, \dots, x_k\right]/\langle x_1, \dots, x_k\rangle^{r+1}$. Recall that a k-multiindex is a k-tuple $\alpha = (\alpha_1, \dots, \alpha_k)$ of nonnegative integers. We write $|\alpha| = \alpha_1 + \dots + \alpha_k$ and $x^{\alpha} = (x_1^{\alpha_1}, \dots, x_k^{\alpha_k})$ for $x = (x_1, \dots, x_k), x_i \in \mathbb{R}$. Then the elements of \mathbb{D}_k^r can be expressed in the form $a_0 + a_{\alpha}x^{\alpha}$, where $|\alpha| \leq r$ and $a_0, a_{\alpha} \in \mathbb{R}$. If k > 1, then the basis of \mathbb{D}_k^r can be written as a set $\{1, x^{\alpha}; |\alpha| \leq r\}$ and the corresponding dual basis is given by linear functions $f_0, f_{\alpha} : \mathbb{D}_k^r \to \mathbb{R}$, $f_0(a_0 + a_{\alpha}x^{\alpha}) = a_0$, $f_{\alpha}(a_0 + a_{\alpha}x^{\alpha}) = a_{\alpha}$, $|\alpha| \leq r$. It is easy to verify that the matrix of each associated symmetric bilinear function $\widetilde{f}_0, \widetilde{f}_{\alpha}$ is singular. \blacksquare

Proposition 5. For k>1 there is no natural equivalence $T_k^rT^*\to T^*T_k^r$.

Proof. According to the general theory [10], natural transformations $T_k^r T^* \to T^* T_k^r$ are in a canonical bijection with G_m^{r+1} -equivariant maps of the corresponding standard fibers, where G_m^r means the group of all invertible r-jets of \mathbb{R}^m into \mathbb{R}^m with source and target zero. Denoting by (a_j^i) the canonical coordinates in G_m^1 , the coordinates of the inverse element will be denoted by (\widetilde{a}_i^j) . Further, denote by $(x^i, p_i, x^i_\alpha, p_{i,\alpha})$ the canonical coordinates on $T_k^r T^* M$ and by $(x^i, y^i_\alpha, r_i, s^\alpha_i)$ the canonical coordinates on $T^* T_k^r M$, where α is a k-multiindex with $|\alpha| \leq r$. One calculates easily $\overline{p}_i = \widetilde{a}_i^j p_j$ and

$$(4) \overline{x}_{\alpha}^{i} = a_{j}^{i} x_{\alpha}^{j} + \dots$$

Clearly, for $|\alpha|=1$, the transformation law (4) is tensorial, while for $|\alpha|>1$ there are terms with x^j_β on the right-hand side of (4), $|\beta|<|\alpha|$. Analogously, $\overline{y}^i_\alpha=a^i_jy^j_\alpha+\ldots$ and $\overline{p}^\alpha_i=\widetilde{a}^j_ip_{j,\alpha}+\ldots$ Finally, for all $|\alpha|=r$ we find $\overline{s}^\alpha_i=\widetilde{a}^j_is^\alpha_j$. This means that all s^α_i with $|\alpha|=r$ have a tensorial transformation

law. On the other hand, among $(p_i, p_{i,\alpha})$ on the standard fibre $(T_k^r T^*)_0$, only (p_i) have a tensorial transformation law.

5. Liftings of 1-forms and (0,2)**-tensor fields to Weil bundles.** In this section we investigate the role of natural transformations $s_f: T^AT^* \to T^*T^A$ in the theory of lifting of 1-forms and (0,2)-tensor fields to Weil bundles. By a *lifting* of some tensor field G to a natural bundle F we understand a natural operator transforming the tensor field G on a manifold G into a tensor field of the same type on FM.

Given a function $\varphi:M\to\mathbb{R}$ and a function $f:A\to\mathbb{R}$, we can define the f-lift $\varphi^f:T^AM\to\mathbb{R}$ of φ to the bundle T^AM by $\varphi^f:=f\circ T^A\varphi$. Clearly, $\varphi\mapsto\varphi^f$ defines a natural operator transforming functions on a manifold M into functions on T^AM . If $X:M\to TM$ is a vector field on M, then $T^AX:T^AM\to T^ATM$ and the composition $T^AX:=\kappa_M^{-1}\circ T^AX:T^AM\to TT^AM$ is a vector field on T^AM . By [10], T^AX is exactly the flow prolongation of X, it is also called the *complete lift*.

Let $\omega: M \to T^*M$ be a 1-form on M. Using the natural transformation s_f determined by a linear function $f: A \to \mathbb{R}$, we can also define the f-lift of ω to T^AM . Indeed, $T^A\omega: T^AM \to T^AT^*M$ and the composition with the natural transformation $(s_f)_M: T^AT^*M \to T^*T^AM$ gives rise to a 1-form ω^f on T^AM ,

(5)
$$\omega^f := (s_f)_M \circ T^A \omega : T^A M \to T^* T^A M.$$

The f-lift of an evaluation mapping $\langle \omega, X \rangle : M \to \mathbb{R}$ is a function $\langle \omega, X \rangle^f : T^A M \to \mathbb{R}$. We have

Proposition 6. $\langle \omega^f, \mathcal{T}^A X \rangle = \langle \omega, X \rangle^f$.

Proof. Using Proposition 1 we obtain $\langle \omega^f, \mathcal{T}^A X \rangle = \langle (s_f)_M \circ \mathcal{T}^A \omega, \kappa_M^{-1} \circ \mathcal{T}^A X \rangle = f \circ \mathcal{T}^A (\langle \omega, X \rangle)$ which is nothing else but $\langle \omega, X \rangle^f$.

We remark that this formula has been proved in the particular case $A = \mathbb{D}^2_1$ in [3].

A 1-form $\omega: M \to T^*M$ on M can also be identified with a linear mapping $\widetilde{\omega}: TM \to \mathbb{R}$, $\widetilde{\omega}(X) = \langle \omega, X \rangle$. If $f: A \to \mathbb{R}$ is a linear function on A, then the map $\widetilde{\Omega}:=f\circ T^A\widetilde{\omega}\circ\kappa_M:TT^AM\to\mathbb{R}$ is linear, so that $\widetilde{\Omega}$ induces a 1-form $\Omega:T^AM\to T^*T^AM$ on T^AM . On the other hand, $\omega^f:=(s_f)_M\circ T^A\omega$ from (5) is also a 1-form on T^AM . We have

Proposition 7. $\Omega = \omega^f$.

Proof. Recall that there is a canonical action $A \times TT^AM \to TT^AM$. If X is a vector field on M and $a \in A$, then we can introduce the a-lift $X^{(a)}: T^AM \to TT^AM$ of X to T^AM by $X^{(a)}:=a \cdot T^AM$. From [7] it follows that if G and H are two tensor fields of type (0,k) or (1,k) on

 T^AM satisfying $G(X_1^{(a_1)},\ldots,X_k^{(a_k)})=H(X_1^{(a_1)},\ldots,X_k^{(a_k)})$ for all vector fields X_1,\ldots,X_k on M and all elements a_1,\ldots,a_k from A, then G=H. By Proposition 6 we obtain $\widetilde{\Omega}(\mathcal{T}^AX)=(f\circ T^A\widetilde{\omega}\circ\kappa_M)(\kappa_M^{-1}\circ T^AX)=f\circ T^A\widetilde{\omega}\circ T^AX=f\circ T^A(\widetilde{\omega}(X))=f\circ T^A(\langle\omega,X\rangle)=\langle\omega,X\rangle^f=\langle\omega^f,\mathcal{T}^AX\rangle$. Using the A-linearity of both f and $T^A\widetilde{\omega}$ we directly obtain $\widetilde{\Omega}(X^{(a)})=\langle\omega^f,X^{(a)}\rangle$ for all $a\in A$.

A (0,2)-tensor field on M can be interpreted as a linear mapping $G: TM \times_M TM \to \mathbb{R}$. Using the exchange isomorphism $\kappa_M: TT^AM \to T^ATM$ and a linear function $f: A \to \mathbb{R}$, Gancarzewicz, Mikulski and Pogoda [7] introduced an f-lift G^f of G to the bundle T^AM by

$$G^f := f \circ T^A G \circ (\kappa_M \times \kappa_M) : TT^A M \times_{T^A M} TT^A M \to \mathbb{R}.$$

Further, each (0,2)-tensor field G on M induces a linear mapping G_L : $TM \to T^*M$ by $\langle G_L(y), z \rangle = G(z,y), y,z \in T_xM$. If G is a symplectic form on M, then G_L is an isomorphism. Denote by $G_L^f: TT^AM \to T^*T^AM$ the linear mapping corresponding to the f-lift G^f of G.

Proposition 8. $G_L^f: TT^AM \to T^*T^AM$ is of the form $G_L^f=(s_f)_M \circ T^AG_L \circ \kappa_M$.

Proof. Clearly,

$$G^{f}(\mathcal{T}^{A}X, \mathcal{T}^{A}Y) = f \circ T^{A}G \circ (\kappa_{M} \times \kappa_{M})(\mathcal{T}^{A}X, \mathcal{T}^{A}Y)$$
$$= f \circ T^{A}G(T^{A}X, T^{A}Y)$$
$$= f \circ T^{A}(G(X, Y)) = (G(X, Y))^{f}.$$

Analogously to the proof of Proposition 7 we have

$$\langle (s_f)_M \circ T^A G_L \circ \kappa_M)(T^A Y), T^A X \rangle = \langle (s_f)_M \circ T^A (G_L \circ Y), \kappa_M^{-1} \circ T^A X \rangle$$
$$= \langle G_L(Y), X \rangle^f = (G(X, Y))^f$$
$$= G^f(T^A X, T^A Y).$$

On the other hand, $\langle G_L^f(\mathcal{T}^A Y), \mathcal{T}^A X \rangle = G^f(\mathcal{T}^A X, \mathcal{T}^A Y)$.

We remark that the above assertion has been proved in [5] for $A = \mathbb{D}$. By [7], if ω is a 2-form on M, then $d\omega^f = (d\omega)^f$. We have

COROLLARY. Let $\omega = dp_i \wedge dx^i$ be the canonical symplectic form on T^*M and ω^f be the f-lift of ω to $T^A(T^*M)$. If $s_f: T^AT^* \to T^*T^A$ is a natural equivalence, then ω^f is a symplectic form on T^AT^*M .

6. General description of some natural transformations $T^AT^* \to T^*T^A$. In this section we show that for some particular cases of a Weil algebra A, the space of all natural transformations $T^AT^* \to T^*T^A$ can be

characterized by means of a general geometrical description. It is our belief that this description works also for many other Weil algebras.

DEFINITION. A natural function g on a natural bundle F is defined as a system of functions $g_M: FM \to M$ for any m-dimensional manifold M satisfying $g_M = g_N \circ Ff$ for every local diffeomorphism $f: M \to N$. A natural (or absolute) vector field X on F is a system of vector fields $X_M: FM \to TFM$ for every m-dimensional manifold M satisfying $TFf \circ X_M = X_N \circ Ff$ for every local diffeomorphism $f: M \to N$.

On the other hand, the space of all natural transformations from T^AT^* into T^*T^A is a $C^{\infty}(T^AT^*)$ -module.

REMARK 1. By the general theory [10], absolute vector fields on T^AM correspond to one-parameter groups of natural transformations of T^A into itself. In particular, the natural transformations $T_k^r \to T_k^r$ are in bijection with the elements of $J_0^r(\mathbb{R}^k, \mathbb{R}^k)_0$ and each of them has the form of a reparametrization $X \mapsto X \circ P$, $X \in T_k^rM$, $P \in J_0^r(\mathbb{R}^k, \mathbb{R}^k)_0$. For example, all natural transformations of TM into itself are homotheties $X \mapsto kX$, $k \in \mathbb{R}$, and the vector field tangent to them is the classical Liouville vector field. In the case of an arbitrary Weil functor T^A , denote by Aut(A) the Lie algebra associated with the Lie group of all algebra automorphisms of the Weil algebra A. In [10] it is proved that all absolute vector fields on T^AM are the generalized Liouville vector fields determined by all elements $D \in Aut(A)$.

REMARK 2. We remark that the problem of finding all natural functions on T^*T^A for an arbitrary Weil algebra A is rather complicated. First, Kolář [9] has determined all natural functions on $T^*T_1^r$. Recently Tomáš [14] has described all natural functions on T^*T^A for some particular cases of A.

Example 4. We describe all natural functions on $T_1^rT^*$. Denote by L the generalized Liouville vector field on T_1^rM induced by the reparametrizations $x(t)\mapsto x(kt),\ 0\neq k\in\mathbb{R},\$ of a curve $x:\mathbb{R}\to M.$ By Kolář [9], all absolute vector fields on T_1^r are linearly generated by $L_1=L,\ L_2=Q\circ L,\dots,L_r=Q^{r-1}\circ L,$ where $Q:TT_1^rM\to TT_1^rM$ is a natural linear morphism (affinor) defined by de León and Rodrigues [2], whose coordinate expression is $(dx^i,dy_1^i,dy_2^i,\dots,dy_r^i)\mapsto (0,dx^i,dy_1^i,\dots,dy_{r-1}^i).$ Let $s_r:T_1^rT^*M\to T^*T_1^rM$ be the natural equivalence from Example 1. Denoting by $q_M:T^*M\to M$ the bundle projection, we have $q_{T_1^rM}(s_r(Y))\in T_1^rM$ for all $Y\in T_1^rT^*M$. Then every absolute vector field L_i determines a natural function $\varphi_i:T_1^rT^*M\to\mathbb{R},$

$$\varphi_i(Y) = \langle s_r(Y), L_i(q_{T_1^rM}(s_r(Y))) \rangle.$$

By [9], all natural functions on $T_1^r T^*$ are of the form $\varphi(\varphi_1, \ldots, \varphi_r)$, where $\varphi : \mathbb{R}^r \to \mathbb{R}$ is an arbitrary smooth function of r variables.

In general, let $(s_f)_M: T^AT^*M \to T^*T^AM$ be a natural transformation induced by a linear function $f: A \to \mathbb{R}$. For $Y \in T^AT^*M$ we have $q_{T^AM}((s_f)_M(Y)) \in T^AM$ and each absolute vector field $X: T^AM \to TT^AM$ on T^AM determines a natural function $\varphi_{X,f}: T^AT^*M \to \mathbb{R}$ by

(6)
$$\varphi_{X,f}(Y) = \langle (s_f)_M(Y), X(q_{T^AM}((s_f)_M(Y)) \rangle.$$

Denote by $\varphi_1, \ldots, \varphi_l$ all such functions determined by all functions $f \in A^*$ and all absolute vector fields X on T^AM and let $\varphi : \mathbb{R}^l \to \mathbb{R}$ be an arbitrary smooth function. We have

PROPOSITION 9. Let $A = \mathbb{D}$ or $A = \mathbb{D} \otimes \mathbb{D}$ or $A = \mathbb{D}_1^r$ or $A = \mathbb{D}_k^1$. Then all natural functions on T^AT^* are of the form $\varphi(\varphi_1, \ldots, \varphi_l)$.

Proof. For $A = \mathbb{D}_1^r$ and $A = \mathbb{D}$ this follows from Example 4. Consider now $A = \mathbb{D}_k^1$ and write equations of all natural functions on $T_k^1 T^*$. If $(x^i, p_i, x_\alpha^i, p_{i,\alpha}, \alpha = 1, ..., k)$ are the canonical coordinates on $T_k^1 T^* M$, then all natural functions on $T_k^1 T^*$ are of the form $\varphi(p_i x_\alpha^i, \alpha = 1, ..., k)$ with $\varphi : \mathbb{R}^k \to \mathbb{R}$ being any smooth function (see [6]). On the other hand, by Remark 1 we find easily the coordinate form of absolute vector fields on $T_k^1 M$, $L_\beta^\alpha = x_\beta^i \partial/\partial x_\alpha^i$, $\alpha, \beta = 1, ..., k$. Now the assertion for $A = \mathbb{D}_k^1$ follows from Example 2. For $A = \mathbb{D} \otimes \mathbb{D}$ all natural functions on TTT^* are determined in [4] and the rest of the proof is quite similar to that for $A = \mathbb{D}_k^1$.

Finally we describe all natural transformations $T^AT^* \to T^*T^A$ for some particular cases of A by means of a simple and universal geometrical construction. We will proceed in the following steps.

- I. Denote by \mathcal{B} the basis of A^* . For every $f \in \mathcal{B}$ we have a natural transformation $s_f: T^AT^* \to T^*T^A$.
- II. Let $\mathrm{Tr}(A)$ be the space of all natural transformations $T^AM \to T^AM$.
- III. Let V(A) be the space of all absolute vector fields on T^AM (see Remark 1).
- IV. Natural transformations s_f from I and absolute vector fields $X \in V(A)$ from III determine natural functions $\varphi_{X,f}: T^AT^*M \to \mathbb{R}$ (see (6)). If $\varphi_1, \ldots, \varphi_l$ are all such functions for all $f \in \mathcal{B}$ and all absolute vector fields on T^AM , then $\varphi(\varphi_1, \ldots, \varphi_l)$ is a natural function on T^AT^*M for each smooth function $\varphi: \mathbb{R}^l \to \mathbb{R}$.
- V. Let $s_1, \ldots, s_r : T^A T^* \to T^* T^A$ be a basis of the vector space S_A (see Proposition 2). Write $s := k_1 s_1 + \ldots + k_r s_r$, where on the right-hand side we have the sum in the vector bundle structure $T^* T^A M \to T^A M$ and $k_i : T^A T^* M \to \mathbb{R}$ are natural functions from IV of the form $\varphi(\varphi_1, \ldots, \varphi_l)$.

VI. All natural transformations $T^AN \to T^AN$ from II applied to $N=T^*M$ determine a system of natural transformations $T^AT^*M \to T^AT^*M$ over the identity of T^*M . This system depends on certain real parameters. If we replace them by arbitrary natural functions $\varphi(\varphi_1,\ldots,\varphi_l):T^AT^*M\to\mathbb{R}$, we obtain a new system \overline{s} of natural transformations $T^AT^*M\to T^AT^*M$. VII. Write

$$(7) t := s \circ \overline{s} : T^A T^* M \to T^* T^A M.$$

PROPOSITION 10. Let $A = \mathbb{D}$ or $A = \mathbb{D} \otimes \mathbb{D}$ or $A = \mathbb{D}_1^2$ or $A = \mathbb{D}_k^1$. Then all natural transformations $T^AT^* \to T^*T^A$ are of the form (7).

Proof. Consider first $A=\mathbb{D}^1_k$ and denote by $(x^i,y^i_\alpha,r_i,s^\alpha_i,\alpha=1,\ldots,k)$ the canonical coordinates on $T^1_kT^*M$. By [6], the coordinate form of all natural transformations $T^1_kT^*\to T^*T^1_k$ is $y^i_\alpha=A^\beta_\alpha x^i_\beta,\ s^\alpha_i=B^\alpha p_i$ and $r_i=A^\beta_\alpha B^\alpha p_{i,\beta}+Cp_i$. Clearly, this is the coordinate form of t described in item VII. For $A=\mathbb{D}$ the assertion follows from [11], for $A=\mathbb{D}\otimes\mathbb{D}$ from [4] and finally for $A=\mathbb{D}^1_1$ from [3].

References

- [1] F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, *The canonical isomorphism between* T^kT^*M and T^*T^kM , C. R. Acad. Sci. Paris 309 (1989), 1509–1514.
- M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Math. Stud. 158, North-Holland, Amsterdam, 1989.
- [3] M. Doupovec, Natural transformations between $T_1^2T^*M$ and $T^*T_1^2M$, Ann. Polon. Math. 56 (1991), 67–77.
- [4] —, Natural transformations between TTT*M and TT*TM, Czech. Math. J. 43(118) (1993), 599–613.
- [5] —, Natural liftings of (0, 2)-tensor fields to the tangent bundle, Arch. Math. (Brno) 30 (1994), 215–225.
- [6] M. Doupovec and J. Kurek, Liftings of covariant (0,2)-tensor fields to the bundle of k-dimensional 1-velocities, Rend. Circ. Mat. Palermo (2) Suppl. 43 (1996), 111–121.
- [7] J. Gancarzewicz, W. M. Mikulski and Z. Pogoda, Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1–41.
- [8] —, —, —, Product preserving functors and vector bundles, IMUJ preprint 1997/24, Kraków.
- [9] I. Kolář, On cotangent bundles of some natural bundles, Rend. Circ. Mat. Palermo
 (2) Suppl. 37 (1994), 115–120.
- [10] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993.
- [11] I. Kolář and Z. Radziszewski, Natural transformations of second tangent and cotangent functors, Czechoslovak Math. J. 38 (113) (1998), 274–279.
- [12] W. M. Mikulski, The natural operations lifting 1-forms on manifolds to the bundle of A-velocities, Monatsh. Math. 119 (1995), 63–77.
- [13] M. Modugno and G. Stefani, Some results on second tangent and cotangent spaces, Quaderni dell'Instituto di Matematica dell'Università di Lecce Q.16 (1978).

- [14] J. Tomáš, Natural T-functions on the cotangent bundles of some Weil bundles, in: Differential Geometry and Applications, Satellite Conference of ICM in Berlin (Brno, 1998), Masaryk Univ. Brno, 1999, 293–302.
- [15] W. M. Tulczyjew, Hamiltonian systems, Lagrangian systems and the Legendre transformation, Sympos. Math. 14 (1974), 247–258.

Department of Mathematics FSI VUT Brno Technická 2 616 69 Brno, Czech Republic E-mail: doupovec@um.fme.vutbr.cz

Reçu par la Rédaction le 17.1.2000

(1132)