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Abstract. We investigate the effect of the topology of the boundary 0f2 and of the
graph topology of the coefficient Q on the number of solutions of the nonlinear Neumann
problem (14).

1. Introduction. In this paper we investigate the existence of solutions
for the Neumann problem

—d?Au+u = Q(y)uP, ye N,

1
(1a) u >0 foryé€ (2, Ou(y)
on

where 2 C RY is a bounded domain with C3-boundary 02, d > 0 is a
parameter, 1 <p < (N +2)/(N —2), N > 3, and n is the unit outer normal
to 0f2. It is assumed that the coefficient @ is positive, Holder continuous
with exponent o € (0,1) on 2 and Q # Const on 952.

Problem (1,4) stems from the studies of pattern formation in biology. In
particular, it can be viewed as the steady state problem for a chemotac-
tic aggregation model proposed by Keller and Segel [6]. Problem (14) also
appears in the study of activator-inhibitor systems in biological pattern for-
mation theory due to Gierer and Meinhardt [5]. In the case of Q(z) = 1
on {2 problem (1) has an extensive literature [6], [8]-[12], [14], [15]. In [11]
and [12] Ni and Takagi proved that for every d > 0 sufficiently small, prob-
lem (14) has a nonconstant least energy solution u4. The solutions ug with d
small exhibit concentration phenomena. Namely, each solution u, attains its
unique maximum at Py on the boundary and P; — P,, where P, is located

=0 forye€df,
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on the “most curved” part of 92, that is, the mean curvature attains its
maximum at this point. Wei [15] constructed a solution u4 on some energy
level which has only one local maximum point x4 € 92 and x4 — x,, where
X, is a critical point of H(x). He also established a partial converse showing
that each nondegenerate critical point x, of H(z) generates a solution ugy
having only one maximum point x4, with z; — x,. Li [8] showed that the
nondegeneracy assumption can be replaced by C!-stability.

The effect of the topology of 92 on the existence of multiple solutions
was studied by Wang [14]. He proved that for small d > 0 problem (1),
with Q(y) = 1, has at least cat(942) distinct single-peak solutions, where
cat(0£2) is the Lusternik—Schnirelman category of 02.

The main purpose of this work is to investigate the effect of the graph
topology of the coefficient @@ and the topology of the boundary 942 on the
existence of multiple solutions. It is assumed that the coefficient @) attains
its maximum on the boundary 92. We show the existence of the least energy
solutions ug, d > 0. These solutions achieve their maxima at x4 € 942 for
d sufficiently small and x4 — ., with Q(z,) = max, .5 Q(x). However, if
Q(z) = Const on 042, then the influence of the mean curvature is stronger.
In this case solutions concentrate at points on 92 where H(z) attains its
maximum. In Section 4 we extend the result of Wang [14] to the problem
(14) and show that at levels close to the least energy level problem (1,) has
at least cat(0f2) solutions.

Section 5 is devoted to the construction of multi-peak solutions. We aim
to show that local minima of the restriction of @) to 0f2 generate multi-peak
solutions. Our approach is a modification of the construction of multi-peak
solutions from [4]. In Section 6 we study the effect of the graph topology
of the coefficient () on the existence of multiple solutions. We express the
multiplicity of solutions in terms of the Lusternik—Schnirelman category of
the set where @) attains its maximum on the boundary 0Q. As in [14] it
can be shown that solutions obtained in Section 4 are one-peak solutions,
that is, they have at most one local maximum. However, we were unable to
locate their concentration points. On the other hand, solutions constructed
in Section 6, which are one-peak solutions, have maxima concentrating at
points of 02 where () attains its maximum.

2. Least energy solutions. Solutions of problem (14) will be found as
critical points of the variational functional Iy : H'(£2) — R defined by

1 1
L(w) = 5 (@ Vul* +u*) do = —= | Q(@)lul"*" du,
2 ip)

where H!'(£2) is a Sobolev space equipped with the norm
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lul® = §(IVu(@)]? +u(2)?) da.

It is easy to check that the functional I; has a mountain pass structure:

(i) there exist constants ¢ > 0 and S > 0 such that I;(u) > ( for
Jull = ¢;
(ii) there exists ¢ € H'(§2), with ||@|| > o, such that I4(¢) < 0;
(iii) I, satisfies the Palais—Smale condition: if {u,} C H({2) is such
that I4(uy) is bounded and I'(u,) — 0 in H(£2) then {u,} is relatively
compact in H1(£2).

Let I' = {y € C([0,1], H'(£2)) : v(0) = 0, (1) = ¢}. By the mountain

pass principle [1] for each d > 0 there exists ug € H*({2) such that

Ii(ug) = cq = wuelfr tlél[oa,)f] Li(~(1)).
Using the Hopf maximum principle we can assume that ug > 0 on {2 (see
[9, p. 9]). Repeating the argument from [9, pp. 12, 13] one can show that
Cq — O(dN)

Let P € 0f2. In order to examine the behaviour of u4 near the boundary
042 we introduce the diffeomorphism which straightens the boundary portion
near the point P (see [10], [11]). We may assume that P is the origin and the
inner normal to 342 at P is pointing in the direction of the positive x y-axis.
Then there exists a smooth function ¢¥p(2’), 2’ = (x1,...,2n-1), defined
for |2’| small such that (a) ¥p(0) = 0, V¢op(0) = 0, and (b) 02NN =
{(@,zn) :zn =¢p(2)} and QNN ={(2',2n) : xn > Yp(a’)}, where N
is a neighbourhood of P.

For y € RY near 0, we define a mapping = = ®p(y) = (Pp1(y),. .-,
Pp N (y)) by

)
SPP,j (y) _ Yj YN al‘j )
ynv +¥p(y), =N

Since V¢p(0) = 0, we have V&@p(0) = I. Therefore ¢p has an inverse
mapping y = &' (z) for |z| < &', with &' > 0 small. We set Up(z) = &5 (z).
We notice that

(2) |@p(y)| < Cly|

for some constant C' > 0 and small |y|. Following the ideas from [12] and
[14] we define a comparison function for I4. Towards this end let wys be the
ground state solution [7] of

—Au+u=MuP inRY,
(3) N
u >0 on R™.

j=1,...,N -1,
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By rescaling we have wy; = M~Y/®=Dy, where w; > 0 is spherically
symmetric: wi(x) = wq(|z|), dwy/dr < 0 for |z| > 0. It is known that w;
and its first order derivatives exponentially decay at infinity, that is,

(4) wi(z), [Vw (z)] < Ce™™=l on RV,
for some constants C' > 0 and p > 0. For o > 0 we set
1 for 0 <t <o,
Co(t) =1 2—07 't for p<t<2p,
0 for t > 2p,

and
M

w," (2) = Cryallz))wn(2),
where k£ > 0 is chosen so that the domain of definition of @ p contains the ball
Bz, = B(0,3k). Further, let D; = &p(B}}) for j = 1,2, with Bjf = B.NRY.
We observe that D1 C Dy C 2. We define a comparison function by

(5) oM (z) = {wy (Yp(x)/d) in Do,

0 elsewhere.

In what follows we shall use for a fixed P € £2 the following functional:

1 Q(P
IQ(P)(U) = 3 S(|VU‘2 —l—u2) dx — ﬁ S |u|p+1 der.
§2 9]

3. Behaviour of the least energy solutions for small d > 0. We
begin by estimating I4 at ¢q.

LEMMA 1. Suppose P € 0f2. Let ¢pq = ng(P) be defined by (5). Then

dN
M([¢a] = sup La(tda) = <-loep)(wap)) Ad,

>0
where Ag >0 and Ag — 1 as d — 0.
Proof. We commence by observing that there exists ¢,(d) > 0 (unique)
such that
M(¢a] = La(to(d)da).

To simplify we assume that P = the origin of the coordinates. Since

iId(tﬁbd)

=0
dt ’

t=to(d)

we have

§ (2| Va|? + ¢2) da\ /P~
= (SRR )
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Hence

(6)  Talto(d)da)
_p-1 (S.o(d?\wdr?+¢3>dw>2“?‘”

V(& Vgal* + 67) da

T2 D\ |, Qe de )
It follows from (3.14) and (3.15) in [12] that
(7) &\ |Veal® do = d ( wQ(O) dx+0(d)),
2
(8) §¢P+1dx - N( whis e +0(d)),
(9) ( wQ(O) dx + O(d))

Using (8) we now write

{ Q)¢5 d = Q(0) | ¢4 do + | (Q(2) — Q(0))¢ ™ dar

9] 0] 0]

= Q)Y ( | whiy dz+0(@)) + [(Qx) - Q(0)¢ ™ da.
RY 0

The second integral on the right side can be estimated using (A.3) of Lem-

ma A.lin [12]:

| 1Q(x) — Q(0)|¢% ™ da
0

/s p+1
A

Do

p+1
a Y
=1 § oo (4) dedpatldy
B,
< LodVre | [y wP® (y)PT (1 - Gdyy + O(d?[y[?)) dy,
Bar

where @ = A¥(0) and C is a constant from (2) and L is a Holder constant

for Q. Using the fact that w;(z) < Ce #*I on RY, we derive from the last
two estimates that

(10) [ Q)¢ do = aN (Q(O) | whis, do+ O(do‘)).

(0] R+
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The result follows from (6), (7), (9) and (10) with

(SM (IVwg)? + wg ) dz + O(d) > 2/(p—1)
d = .
[ QO)whty dx + O(d)

LEMMA 2. If ug attains its local maximum at x4 € 02, then
ug(zq) > M—l/(p—1)7

where M = max, 5 Q(x). Also, there exists a constant n > 0 independent
of x4 and d such that ug(z) > n for x € B(xq,d) N 2 if d is sufficiently
small.

Proof. Suppose that ug(zq) < M~Y/®=1 If 24 € £, then
d* Mg = ug = Q(w)uf = ua(l = Q@)ug") > ua(1 = Muj™) >0

in a small ball with centre at x,;. However, this contradicts the inequality
d?Aug(zq) < 0. Hence, 24 € 92 and ug(z) < ug(ry) for z € 2 close to
x4. According to the Hopf boundary point lemma we have dugq(xq)/0n > 0,
which does not match the boundary condition. The second assertion follows
from the Harnack inequality (see Lemma 4.3 in [9] and p. 830 in [12]).

We are now in a position to locate the maximum points of ug.

THEOREM 1. Suppose that max,cpo Q(x) = max, .5 Q(x). Let uq(Py)
= max, . uq(x). Then Py € 92 for small d > 0 and Py — P with Q(P) =
maxzean Q).

Proof. We follow some ideas from [12]. The proof will be divided in
several steps.

STEP I. There exists a constant C' > 0 such that dist(Py, 0f2) < Cd. In
the contrary case we can find a decreasing sequence d; — 0 such that

dist(P;, 012
by = BUED)
J
as j — oo, where P; = Py,. We define a function v; on B, by
vj(2) = uq,(P; +djz) for z € B,,.

We may assume that P; — P. Using the Schauder estimates we can show
as in [12] that v; — wg(p) in C2_(RY), where Wep) is the ground state
solution of equation (3) with M = Q(P). Since M, < Q(z) < My on §2 for
some constants 0 < My < My and wgp)(2) = Q(P)~/ =Dy, (2), we see
that

wo(p)(2), [Vwgp (2)] < Coe ™ on RV,
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for some constants ¢ > 0 and C, > 0 independent of P. For the mountain
pass level we have the following estimate from below for each R > 0:

p—1
11 > (z)PTd
( ) e |szS|<de 2(]? + 1) Q(x)UdJ (l‘) !

N p—1 1
= d; | S<R 30T 1)Q(Pj +d;z)v;(2)"" dz

1 _
=dN S P Q(P)wopy(2)PT dz
J Q(P)
ser 201

-1
+dY | QP+ dy)u(2)P T de

|z|<R 2(p+ 1)
-1 _
—a §2é+Umemﬂgwﬂw
|z|<R
-1 _
—4 |ZS<R 2(]; Ty AP Ivam (@ ds
-1
+dY | QP+ 4R ) w27 dz
|z|<R
-1 _
+dyZi32€%+U(QU?+dﬂ0—CKP»wqﬁﬂ@pHd&

Let us denote the last two integrals on the right side of this inequality
by Jp and Jo, respectively. Let R > 0 be a fixed and large number and
set dg = Coe #F/2. We choose j, = jo(R) sufficiently large so that
[vj = wom)llo2Bom) < dr for j = jo. Thus

(12) |J1] < CrdY RN dp

for some constant C; > 0 and all j > j,. Since Q(P; + d;z) — Q(P)
uniformly on B(0,2R), we have

(13) ] < Cad¥o(1)

for some constant Co > 0 and j > j,. Inserting estimates (12) and (13) into

(11) we get

N p—1 By, p+1 . N
ca; > d; (Bgfwéﬁ;Iichpyﬂmp)dx CiR dR-+o(n>.

Next, we observe that
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p—1 5} 1
S s Q(P)wgp (2)PH da
so.m 2P+

_ b— 1 D +1
= Iop) (woer) — | sty 1) QP e () dx
|z|>R

—uR
> o) (wop)) — Cse™
for some constant C3 > 0. Combining the last two estimates we derive the
following estimate from below for the level cg;:

e, > dY (I(p) (W) — Ce ™ + o(1))
for some constants g > 0 and C' > 0. On the other hand, by Lemma 1 we

have
N

e, < M[da,] < —-Ioep)(wo(r) Ag,

for each P € 0f2. Combining the last two estimates and letting first j — oo
and then R — oo we obtain

p—1 +1 p—1 p+1
s | QP)wpp dr < | Q(P)wgy(py dz
2(p+1) RSN Yo 4(p+1) RSN Yawp)
for each P € 912. Since wg(py = Q(P)~/P~Dw, for each P, we see that
this inequality is equivalent to

Q(P) > 2= V2Q(P)
for each P € 92. This contradicts the fact that @ achieves its maximum on
the boundary.

STEP II. We show that P; € 912 for d > 0 small. Arguing indirectly
we may assume that P; = Py, € (2 for some decreasing sequence d; — 0.
By Step I, P; — P € 012 and we assume that P = 0. Let y = ¥(z) be
a diffeomorphism which straightens the boundary 0f2 near P. We assume
that the closed ball Boy, is contained in the domain of definition of @ = ¥—1
for some k > 0 and let Q; = ¥(P;) € B! for all j. We set v;(y) = u;(®(y))
for y € E;; and we extend v; to Boy, by the reflection

_ Vi ify e B ,

R U
where By, = Do N{y € RY : yy < 0}. Finally, we set w;(z) = 7;(Q;+d;z)
for z € Ek/dj. Let Q; = (¢}, a;jd;), where ¢; € € RV and a; > 0. As in [12]
using the Schauder estimates one can show that w; — wgp) in CR (RM),
where wg(py is a ground state solution of (3) with M = Q(P). Here we have

used the fact that @; — 0. Since the ground state has only one maximum
we deduce from Lemma 4.2 in [12], repeating the argument from p. 837 in
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[12], that w; attains only one maximum in a ball B(0, R), where R > 0 is
chosen so that R > «; for all j. If o; > 0, then it follows from the definition
of v; that QF = (q;-, —ajd;) is also another local maximum point of w; in
B(0, R), which is impossible.

STeEP III. We show that ug has at most one local maximum. In the
contrary case there exists a decreasing sequence d; such that ug; has two
local maxima at P; and P]( . By the previous part of the proof P;, P]( € 042.
We may assume that |P; — Pj|/d; — oo as j — o0, since in the contrary case
the scaled function from Step II has two local maxima in the ball B(0, R).
Assume P; — P € 9. We now introduce the diffeomorphism y = ¥(x)
which straightens a part of the boundary 92 around P; and define, as in
Step II, v, v; and w;. Using the Schauder estimates we show that, up to
a subsequence, w; — wg(p) in C2 _(RY) and wg(p is the ground state
solution of (3) with M = Q(P). Since u; = ugq, satisfies (3) we see that

ca, = § Q) () d

52(p+1)
p—1 1 p—1 +1
= X ———Q(z)uj(x)P dz + S ——Q(x)u;(x)P" dx
a2 +1) o p, 2p+1)
= Il + 127
where Dy = @(Bggq,). As in Step I (see also p. 832 in [12]) we check that
r—1 =
(14) I, > dﬂ | mQ(P)wQ(p) (2)PTdz — C1RNdg — Oad,

By

for some constants C; > 0 and Cy > 0. It follows from Lemma 2 that u; is
bounded away from zero on Bg,(P}) N §2, uniformly in j. Consequently,

= p-l z)u;(z)PH da
(15) h= | @t de

for some constant 7 > 0 independent of j. Estimates (14) and (15) give the
following estimate of c4; from below:

1 _
(16) ca, 2 dj' <§IQ(P> (wo(p)) +n— Ce ™ — Czdj>~

Here we have used the exponential decay of Wo(p)- On the other hand, by
Lemma 1 we have

1
ca, < Miga) < & Glacm o) + 0@ ).

The last estimate contradicts (16) if d; is sufficiently small and R sufficiently
large.
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STEP IV. In the final step we show that if uq(P;) = max, g uq(z),
then P; — P*, where Q(P*) = max,con Q(z), P* € 0f2. Obviously, by the
previous steps Py € 0f2. Suppose that P; — P* € 9f2. As in the paper [12]
(see pp. 837-838 there) we can establish the following estimate of ¢4 from
below:

1
ca > d¥ <§fQ(P*>(wQ(P*)) —Ce M+ 0(1)>,

where C' > 0 and p > 0 are constants independent of R and o(1) — 0 as
d — 0. Using this and the estimate from Lemma 1 we get

Pl Py e tdz— CeR
@)Y RSN“H(Z)”+ dz — Ce™" +o(1)
<GP [ s o)

RN
for every P € 0f2. Letting d — 0 and then R — oo we obtain

Q(P*)~V=b) < Q(p)~V/ -1
for each P € 92 and the claim follows.

Inspection of the proof of Step 1 of Theorem 1 shows that if Q(x) <
hQ(y) for all z € 2 and y in O for some constant 1 < h < 2(P=1/2 then
the points P; where ugy achieve their maxima concentrate at a boundary
point of {2. However, it is not clear whether P; € 02 for small d under this
assumption on Q).

If Q(x) = M on 082 and Q(z) < M for all x € 2, where M > 0 is a
constant, then according to Theorem 1, uy4 concentrates on the boundary.
The question is how to locate a point of 92 at which the concentration
occurs. We show that, under an additional assumption on the behaviour of
Q(x) near the boundary, the concentration occurs at a point where the mean
curvature of 9f2 attains its maximum. We need the following asymptotic
formula for c¢g.

PROPOSITION 1. Suppose that Q(z) < M on 2 and Q(x) = M on 012
for some constant M > 0, and moreover,

(17) 1Q(z) — M| = O(dist(z, 002)")
for x close to 02 and some constant k > 1. Then
(18) ca = dN{In(war) — (N = D)y M~ YD H(Py) + o(d)}

as d — 0, where uq(P;) = max,ecn uq(z), H(P) denotes the mean curvature
of 012 at P and )

TN

S w'(|2])?2n dz > 0.
RY

(The quantity o(d) in (18) is independent of Py.)
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The proof of Proposition 1 is identical to that of Proposition 2.1 in [11].
In the Appendix we provide a sketch of the proof.
Similarly, we have

(19)  Mloa] £ a¥{ G TasCn) = (N = Dy HPIH0 ) 1 ofa)

for all P € 912.

THEOREM 2. Suppose that the assumptions of Proposition 1 hold and
let Ed(Pd) = maxzcn uq(x). Then Py € 052 for small d and P; — P, with
H(P) = MaXpecoN H(P)

Proof. Since c¢q < M|[¢pq], it follows from (18) and (19) that H(P;) >
H(P) + o(d) for d sufficiently small and all P € 9f2. Letting d — 0 we get

H(P) > H(P) for all P € 912.

4. Multiple single peak solutions. In this section we calculate a lower
bound on the number of single peak solutions to problem (14) in terms of
the category of 0f2. Explicitly, we show there are at least cat(0f2) distinct
nonconstant solutions provided d is sufficiently small.

Assume throughout this section that Q € C?(£2) and 0 < M; =ming, Q(z)
< Ms = maxg Q(x) = maxpn Q(x).

It is convenient for our purposes to consider a different functional than
I;(u) as used in the previous section. We look for minima of the functional

Ea(u) = \(d*|Vul]® + vu*) do
Q
constrained to the manifold

VO(Q) = {u e H'(Q): | Q@)ul dx = 1}.
(7}

One may check that if u is a critical point of E4 on VlQ(Q) then v =
[E4(u)]"/P~Yy is a solution of (14). Furthermore, we have the following
relation between I; and Ey:
_p-1 p+1)/(p—1
Iq(v) = W[Ed(u)}( =D,
Therefore, an absolute minimum of E; corresponds to the least energy of 1.
Let
cg= min FEy(u),
weVR(2)

which is easily seen to be achieved on VlQ(Q). Also, a critical point of Fy
with absolute minimum critical value corresponds to a critical point of I,
and therefore a least energy solution of (14).
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There exists a one-to-one correspondence between the solutions of (14)
of arbitrary sign, and the solutions of the rescaled problem

{ —Au+u = Qq(x)uP, x € 2,4,

ou(x
% =0, WS 891/(1,

where 2,4 = {z € RY : dz € 2} and Qq4(x) = Q(dz). This correspondence
is given by

(11/a)

o(u)(z) = dN/ Py (dx).
The functional associated with problem (1,,4) is
Byatw) = | (Vo +u?)do
2174

for u € Vi (21/a) = {u € H'(21,4) : Yo, Qal)lulr ™ dz = 1}.

By direct computation as shown in [14], Lemma 1.1, we have the follow-
ing

LEMMA 3. For any u € VlQ(Q)7

Byyalo(w)] = d= N/ @D B ()

and therefore

min El/d = @~ Ne=D/GHD) i Ei(u).
Vi2(21/a) Ve (Q)

The following notation is needed: for & > 0 and r > 1 define

Vo(£2,) = {u c H'Y(2,): S lu|PT da = a},
2,

V2(2) = {ue H'(2): § Qur@)lul"™ do = o},

02,
) = i Er )
m(r, a) uel\gl(l}h) (u)
mo(r,a)= min  E.(u),
weVE(12,)
m(+,a) = min{ S (IVul? +u?)dz : u € H'(RY), S lu|PT do = a},
RY RY
m(oo, o) = min{ S (|Vu|?* +u?) dx : w € H'(RY), X lu[P™! dx = 04}.
RN RN

Let wy be the ground state solution of (3) with M = 1 and let w =
wy /||wy||e+1. The following result is Lemma 1.2 of [14].
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LEMMA 4. For r > 1 and o > 0:

(i) m(o0,1) = fen (IVO[* + |0]) da;

(ii) m(r,a) = o P+ Dm(r, 1) where r may be + or co as well;
(iii) m(o0,2) = 2m(+,1).

Now we define a comparison function in order to find an asymptotic
estimate of ¢4. Let o > 0 be fixed throughout this section (different from p
in Section 2) such that the neighbourhood

N,(00) = {z € RN : dist(z,00) < o}
is homotopic to 92. Define

1 fro<i<y
10 fort>2

and |n'(t)| < 2. For P € 012 let wgpy = wp be the ground state solution of
(3) with M = Q(P) and set

Ya(P) () = n('g”;P)wP(l’ ;p>

for € 2. The comparison function is defined as

B Ya(P)()
¢a(P)(x) = QY@ () [a(P)|Lr+1(2)

Clearly, pq(P) € Vi2(£2). For u € V,2(£2) we define a “barycenter” function
as

Bw) = | QE)lul* .

(9}

It is clear that 3(u) € comv(£2) for u € V,2(£2). Furthermore, using the
arguments of Proposition 2 below, one may show
B(¢a(P)) =P +o(1l) asd—0.

PROPOSITION 2. For P € 0f2,

EA¢APU):dN@—U“p“>Qn<+Q§%ﬁ>+wxu>
as d — 0.

Proof. Upon substitution and expansion we obtain

! Ya ’ Ya
N m é<d2 v<Ql/(p+1)> + =
(I + I + I3),

Ed(¢d(P)) Ql/(p+1)

2
>d:1;

= 72
|WdHLp+1



132 J. Chabrowski et al.

where

Pz~ Pl/o) r— P
§z Q) (‘V“”’( a >

2

1
Q1/<p+1>'va v <Q1/<p—+1> >] o

1
OL/(+1)

2
- P
+w§3<:C 7 >>da:,

+ 2772701D

\Y

1
_ 12 2,2 2,2
2

2 , 1
T 2QUe MpNI V(Ql/(wrl) ﬂ o

where we have dropped the arguments of 7 and wp in I> and I3 for clarity.
We examine each integral in turn.

Using the substitution z = (z — P)/d we obtain

2
n”(lzld/e
I =dV S Q(dz—(|—|]|3)é/()l’“)(’va(z)2+wp(z)2)dz'
(2=P)1,q

As w and |Vw| decay exponentially and @ is bounded, for any € > 0 there
exists R > 0 such that
e
(2=P)1/aN(|z|2R)

l\DI(‘f)

For this R, (2 — P)1/4 N (|2| < R) — B}(0) in measure as d — 0. By the
mean value theorem we find that

Q(dz + P)¥/ 1) = Q(P)?/®+D) L O(d).

Choosing d < p/R sufficiently small we get

S |[Vwp|? + wh B S |[Vwp|? + wh
Q(P + dz)?/(p+1) ' Q(P)Y (1)

R

<€
x —_—
-2

(2—=P)1,aNn(]2|<R)

and therefore

Vwp|? + w?
zlsz<§—| - Pd+()>
oy QUP)HEHD

+

Using the same substitution as above we estimate Is to be
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I2:dN

2
S [ o Vi -V,

P 2/(p+1)
(£2=P)1/a 0Q(P + dz)

2?72wp 1
Q(P + dz)?/(p+1) Vwp -V (Q(P + dz)l/(p+1) >] o

2U}p 1
<dN[ | d pr-V<7>dz
= /(1) 1/(p+1)
(2P yan(lzl<oray G TRV @

+

4’LUP
I [QQ(P + dz)2/(»+1) [Vwe|

+ !
(2—P)1/aN(e/d<|2|<20/d)
2wy,

1
QP+ dzymrm vV or eV (Ql/(pH_) )} dz} '

Since wp and |Vwp| decay exponentially and the terms involving @) are
bounded independently of d, we have

I, < dV(o(1)).

+

Precisely the same reasoning shows that

I < d"(o(1))

2
>d:U

_ N [Vwp|? +wp
=d (SN QP dxr +o(1) |.
R+

and so
(20) d?
i

2

I T

O/ +D)

(0¥
v(Ql/(p+1))

Now we estimate [|1q|7 ,41:

z—P z— P\, 1Y/
ol = | §oret (2 )t (252 )]

9]

— 2N/ (p+1) { S nPt1 <@>w€fl(2) dz

]2/(p+1)
(2—P)1/a e

— 2N/ (p+1) [ S w’]’jl(z) dz
(2—=P)1an(|2|<0/d)

_p 2/(p+1)
+ | (e a:]
(2—P)yjan(0/d<|2|<20/d) e
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2/(p+1)
:dQN/(pH)[ S wh ™ (2) dz—l—o(l)} "
RY
hence
2/(p+1)
@) Wl = VL] § @] o)
RY

From equations (20) and (21) we find

Vwp|?+w?

Eq(¢a(P)) = dNOM O do + 0(1))

a(¢a - d2N/ @+ ([ Wit (@) da]?/ P+ + o(1))
+

dN(—1)/(p+1) (SRf |Vwp|* + w? ))
Q(P)2/v+1) (SR{X wffl)?/(p—&-l)

dN(@=1)/(p+1)
= Qe M

_ N(p—1)/(p+1) 1 .
= gNP=D/(p+1 <m<+, Q<P)>+0(1)> as d — 0.

PROPOSITION 3. For ¢q = minyq ) Ei(u), we have

1
cqg = dNP=D/ (P (m <+, ﬁ> + o(1)>.

2

(1) +o(1))

Proof. As ¢4(P) € VlQ(Q) for any P € 042, choosing P € 0f2 with
Q(P) = M> we find that

dN(@—1)/(p+1)

ca < (m(+,1) + o(1)).

= a2/
MQ/(P )
Suppose this inequality is strict, so that
lim inf 4~ NE-D/G+0,, o D
d=0 YRIG

Then there is a subsequence d,, — 0 and u, € V,?(£2) such that

and
1
lim d;NE-D/PHVE, (u,) = A < m(—i—, —>
n—oo M2

Q’/(p+1)

By rescaling v, = o(u,) =d un(dpz) we have

m = 1
11 d;N(pfl)/(p‘Fl)Edn (Un) — llm El/d (Un) = A <m <_|_’ _) .
n—00 n— 00 n M,
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It is obvious that A = lim,, mg(1/d,,1) as v, solves the rescaled problem
(114, ). Defining
Hn = Xn($)Qn(x)|Un|p+l’

where X, is the characteristic function of £2,,4, = 2,, and Qn(z) = Q(d,x),
we get

f
RN
as v, € VlQ(Qn). Therefore we may apply the Concentration-Compactness
principle.
Following the arguments of [14, Lemma 2.1] and replacing the function
v, there with Q}/ (p +1)vn we find that Vanishing of the sequence u, does
not occur.
If Dichotomy occurs, then there exists A € (0, 1) such that for

On(t) = sup | XxuQulonP™dz and O(t) = lim 6,(t),
yERNBt(y) n—oo

we have lim;_, o, ©(t) = A. For any € > 0 there exists Ry such that O(Ry) >
A —¢/6 and there exist {y,} C RY and ng > 0 such that for n > ny,

@n(R()) - 6/6 < S XnQn|vn‘p+1 dx

Brg (yn)
and
|O(Ro) — On(Ro)| < /6.
Therefore
A= S <OR) SOMR)+ =< | xaQalval " dr+ 2
Brq (yn)
and so

| n@Quloal ™ de > A= 3
Br (yn)
for all n > ng. We may also choose R,, — oo such that
0,(2R,) < A +¢/2.
With n as defined above, let £ =1 — 7 and
] el L R Rt o IO

0 n

It is standard to show that
1= § QuilehP* + o3Py de| < e
RN
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for all n > ng. Thus for all n > ny,

‘ S Qu|vl [P+ dx—)\‘ < % and ‘ S Qulol P de — (1= \)| < %
RN RN
Hence
| Qulvlrtde =X +e) with [e]] < e,
RN
[ Qulv2pPtidz=1-A-¢2  with || <e.
RN

By choosing Ry sufficiently large and keeping ¢ fixed we get

V (IVunl? + o) d = | (IV0R 2+ oy P) da = | (IV03 2 + 02 [?) da > —2e.
2n 2n 2n

Thus

(22) A= lim | (|Voa|* + |vn]?) da

n

> lim ( [ Vol + [0l 1?) do + §(|w,3|2+yv3|2)da:) e
> lim (mg(1/dn, A +¢L) + mo(1/dy, 1 — A +¢€2)) — 2
> lim (A — )P mg(1/d,, 1)

+(1=A=e)¥P imn(1/d,, 1)) — 2¢
= A=)V A L (1 —A—e)2/ P4 _ 9,

Now A > 0 from the following reasoning: as the embedding H'(§2,) —
LP*Y(£2,) is compact, there is a constant depending only on the cone con-
dition of §2,, such that anHiﬁl < ¢nFE1/q, (vn). As the cone condition is
independent of n, we have ¢,, = ¢. As v, € VlQ(Qn) it is trivial to see that
anHiﬁl >1/My > 0. Thus Ey g4, (v,) > ¢/Ms and A = lim,, Ey /4, (vs) > 0.

So dividing the final equation in (22) by A gives

1> (A=)l (1 — A — )2+ _ 9
and letting £ — 0 we get the contradiction
1> \¥/0+) (1— )\)2/(p+1) > 1.

Therefore Dichotomy does not occur.

With Vanishing and Dichotomy ruled out the sequence p,, must be tight,
so there exists a sequence {y,} C RY such that for any ¢ > 0 there exists
R > 0 such that
(23) | xnQulvnffde>1-c.

Br(Yn)
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ASSERTION 1. There exists C' > 0 such that dist(y,,082,) < C.

If not, then dist(y,,df2,) — oo. From (23), y, € 2,. For € > 0 fixed,
let R > 0 be such that (23) holds. Choose n large such that Bog(y,) C 2,

and define
wna) = (2 Y o),

which clearly belongs to H!(2,). Choosing R larger if necessary, we have
V(IVonl® + [on)?) da = | (1Vwn|? + [wn]?) do > —2.
.Qn Qn
Let
An = S XnQn|wn|p+1 dr>1—¢
RN

and define
_ A

9= SRN |wn P dz
Then Q,, € [My, Ms] and so
V(Voal? + o) da > § (1Vwn | + [wa|?) da — 2¢

hW A%/(PJFl)
Zm(oo,_—) — 2e = Wm(oo, 1) _25

(1 _8)2/(p+1) 1 ( +1
WQ(}? )/ (p )m(‘h 1) — 2
(1 —¢)2/+D)

> WQ(p’l)/(pH)m(—i—, 1) — 2
M2

1
— (1 — &)2/(+D9o(—1)/(p+1) — ) — 2.
(I—-¢) m| +, W, €

Letting n — oo and € — 0 gives
1 1
el A > 2(—1)/(p+1) il
m(+; M2> > - m +’ M2 )
a contradiction. Therefore there exists C' > 0 such that
dist(yn, 082,) < C.

Choose t,, € 912, with dist(y,,t,) < C and let t,, = d,t, € 912. Let T,
be a unitary matrix such that O, =T . (£2, —t,) has ¥y~ as an inner normal
direction to 8(~2n at 0.

We need the following result of [14] (Assertion 3):
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ASSERTION 2. For any fized Ry > 0, as n — o0,
Tn(Qn — fn) N Br, (0)

converges to B;l (0) in the following sense: There exists K1 > 0 and for
each 6 > 0 there exists ng such that

{z e Bf (0) : N > 6}y C To(2, —t,)  for alln > ng,

and

LN {2 € T (2, —1,) N Bp, (0) : 2V < 6} < K16
where LV {. ..} is N-dimensional Lebesgue measure.
The next result is Assertion 4 of [14]:
ASSERTION 3. |[vp||pe(0,) is uniformly bounded independently of n.

Now we complete the proof of Proposition 3. As u, is tight, for each
e > 0 there exists R > 0 such that (23) holds. Since dist(y,,0%2,) < C,
setting Ry = R+ C gives

S XnQn|Un‘p+1 dr >1—e.
BR1 (%n)
By Assertions 2 and 3, for the given € choose d; > 0 such that
1
Kl(slMQHUnHi—;(Qn) < E.
Then there exists ns, such that
| xaQulvn P da
BRl (En)
= S Qu(T e + 1) |vn (T e+ 2,) [P da
{zeBE, (0):2N>61}
+ | Qn(Ty, o + 1) (Ty e+ ,) [P dae
{z€BR, (0):2N <861 }NT, (2n+En)

>1—¢ foralln>ns,.

As K161M2H’Un||i—;l(n ) < € the second integral is less than e by the second

part of Assertion 2. Thus

| Qu(T 'z +8)|on (T e + 8,) [P de > 1 — 2
{IGB?{I (0):zN>61}

for all n > ns,. Define 25, = (0,...,0,07) and

Un(x) = n(lzl/Ra)on (T (@ + ws,) + )
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for x € ]Rf , which is well defined by the first part of Assertion 2 for n
sufficiently large. Choose R; so large to ensure that

V (Vo +02) do — | (V3. +72) dz > —2¢

2 RY
and let
\, = | Qu(T e + 1) (T e +8,) [P de > 1 — 2e.
{zeB}, (0):2N>6:}
Defining
Q=
" Ty T ds
we get

A= lim | (|Vv,|* +02)dz > lim | (|V5,[* +52) do — 2¢
2, RN

M 2/(p+1)
Z hrrlnm<+, Q_) — 2e = h’rl;n Wm(—i—, 1) — 2¢

1

_9)2/(p+1) ____ ~
> (1-2) 22D

m(+,1) — 2e.

Letting € — 0 gives the contradiction

+ =N > A> + L
m m

" M; o "My )’
which completes the proof.

An obvious modification of the arguments used in the above proof reveals
the following.

LEMMA 5. Let d,,—0 as n— oo and assume a sequence vy, EVIQ(Ql/dn)
satisfies

1
[ (Vo + oo - m(+ 7 )
My
174,

as n — oo. Then there exists a subsequence vy, points y, € RN and a
constant C independent of n such that for n sufficiently large,

Ve IR >0  lim | Qulva P rde>1—¢
e Br(yn)N$21 /4,
and
dist(yn, 082,) < C.

Now we are in a position to prove
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PROPOSITION 4. For p > 0 such that N,(0S2) is homotopic to 012, there
exist e1 > 0 and di > 0 such that for any d € (0, d4],

Bu) € N,(012)

cqgt+erdN@—1/(p+1)
for all uw e B! .

Proof. Suppose not. Then for each ¢ > 0 and d > 0 there exists u €

(p—1)/(p+1)
Eé”e‘iN PV Gith B(u) & N,(02). We may choose subsequences d,, —
0, €, — 0 and functions

Ca, +endN @D/ (p+1)
un c Eddn n

with B(uy) € N,(042). Using Proposition 3 we have

n—oo

1
lim d;N(p_l)/pHEdn (up) = m<+, —)
Rescaling, we find v, (z) = dyjy/(pﬂ)un(dna:) € V&(£2,) and
1
lim X (Vo +v2)de = m( +, — |.
n=co 3 M,

By Lemma 5, there is a subsequence v,,, points y, € RY and C' > 0 such
that for any € > 0 there exists R > 0 such that

lim S Qulvp|PT de>1—¢

n—oo

BR(yn)nQn

and
dist(yn, 082,) < C.

We may choose t,, € 92 such that dist(yy,t,/d,) < C and t,, — t € 012
Without loss of generality we may assume that 3(u,) — 0 € RV,
By direct calculation,

ﬁ(un)l .

p+1 dr =
S Qnlvn P x dx 7

‘Q'IL
As B(u,) & N,o(012), we have t # 0, so without loss of generality, ¢t =
(t, ..., ) with ! > 0.
For € > 0 arbitrary, let Ry > 0 such that

lim S Qn]vn\pH dr>1—e¢.
" BRl (tn/dn)mgn

Let s = min{y' : (y',...,y") € 02}. For n large we then have
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1
ﬁ(sn) — S Qn’vn|p+1$1 dx
n Qn
= QT [ Qule et de
QnﬁBRl(tn/dn) Qn_BRl(tn/dn)
tl
S(Bom) ) ot
n 2,NBr, (tn/dn)
L et

'anBRl (tn/dn)

t) E
> 1— =
> <dn R1>( £) dna

SO
B(un)t > (til —dp,Ry)(1—¢) — |s]e.
Letting n — oo and € — 0 gives the contradiction 0 > ¢! > 0.

We recall that the Lusternik—Schnirelman category of a subset A C 012,
denoted by catyn(A), equals k if A can be covered by k closed contractible
sets in 02, but not k£ — 1 such sets. We set caty(0(2) = cat(012).

Lemmas 6 and 7 below are proved exactly as in [14].

LEMMA 6. Let €1 be given as in Proposition 3. For any € € (0,¢1) there
exists d. > 0 such that

cat(E541ee) > 2 cat(012)
where eg = dN®@=D/(p+1) ¢,
LEMMA 7. Let u be a critical point of Eq(u) with
Ey(u) < 2(p=1)/(p+ D).
Then u does not change sign.
Now we prove the main result of this section.

THEOREM 3. If d is sufficiently small, then (14) has at least cat(0f2)
distinct solutions.

Proof. From Proposition 3,

1
Cq = dN(pfl)/(p+1) (m <+, E) + 0(1))

as d — 0. For &1 as in Proposition 3, choose ¢ € (0, ;] such that

1
olp=1)/(p+1) _q )
go < ( ym| +, YA
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Then there exists dy such that for all d € (0, dy),
cg + dVED/ D, o op=1)/(p+1)

For this €9 € (0, 1], there exists, by Lemma 6, a dj, > 0 such that
cat(E§154) > 2 cat(0£2)

for all d € (0, d}), where eq = dVNP—1/(P+1) gy,

Applying the minimax method here yields at least 2cat(9f2) critical
points of Ey4. From Lemma 7 none of the solutions change sign and so there
are at least cat(0f2) solutions of (14).

5. Multi-peak solutions. This section is devoted to the construction
of multi-peak solutions. We aim to show that local minima of the restriction
of Q to 02 generate multi-peak solutions. Our approach is a modification
of the construction from [4].

For a fixed integer k > 1 we set o = (g, ...,ax) € RF, o = (2!, ..., 2%)
€ RV where ' e RN, i=1,...,k. For R > 0 we define

¥
Dyr = {:ca: €, i=1,...,k, M%‘l"”]’ > R, z’;éj}.
We denote by U the ground state solution of (3) with M = 1. We use the
notation Uy ,(y) = U((y — 2)/d). It is convenient for our purposes to define
a scalar product in H*(£2) by

(u,v)q = S (d*VuVv + uv) dx

2]
and let [Jullg = (u, u>i/2. For every x = (z!,...,2%) € 002 x ... x 002, we set
Eqzrx = {v € Hl(Q) (Ug piyV)a = <M,v> =0,
’ 0T; d
i=1,...,k, jzl,...,N—l},
where {7;1,...,7;, n—1} form an orthogonal basis of the tangent space to

092 at 2°. Let Q, = mingcpp Q(x) and set
Misr={(o,z,v): |y — Q;l/(p71)| <6, i=1,...,k,
2 € Dapy 0 € Eaps Jolla < 64V/2)

for some constant § > 0. We define a functional Jy : Mg s5r — R by

k
Ja(a, z,v) = Id(z a;Ug i + v).
i=1

The proof of the following lemma is similar to that of Proposition 7 in [2].
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LEMMA 8. There exist constants do > 0, 6 > 0 and R > 0 such that for
every d € (0,d,], every u € H'(£2) satisfying

k
u— Uy,il <d5dN/?
H Z d,r qa=
=1
for some x = (z1,...,2%) € D4 r admits a unique decomposition

k
u = Zad’iUd7zfi + vy,
i=1
where (g, Tq,vq) € Ma s k-
The next result is a consequence of Lemma 8 and shows that in or-
der to find critical points of I; it is sufficient to find critical points of the
functional Jj.

PROPOSITION 5. There exist do > 0, 6 > 0 and R > 0 such that for
every d € (0,ds], a point (a,z,v) € Mys g is a critical point of Jq if and
only if

k
U= ZaiUd,xi +v
i=1
s a critical point of 1.

It is known [13] that critical points of I, of the form u = Zle a;Ug zi +v
are positive. According to Proposition 4 to find a critical point («,z,v) €
Md’(syR of Jg it is enough to find (o, x,v) € Mgs r and constants A;, By;,
l=1,...,k,i=1,...,N —1, such that
(24) 0Ja(a, z,v) Z:l <8waz v>,

87’1 i — 07,0715 d
j=1

i=1,...,N—1,1=1,....k,

0Ja(a, x,v)
25 ——= =0 l=1,...k
( ) 8041 ) ) y vy
k N—1
aJdaxv Uy .1
26 AUy 4 B :
(26) Z d,z? +le f td on,

!
In the first step we solve equations (25) and (26) for each fixed z € Dy g.
Then we solve (24).

PROPOSITION 6. There exist do > 0, 6 > 0 and R > 0 such that for
each d € (0,6, there exists a C*-map (q(z),va(x)) : Dar — R¥ X Eqp
satisfying
0Ja(va(x), , va(x))

6@1

(27) =0, I=1,...,k
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<8Jd(ad($a)1,}$,vd($))’w>d _0

for each w € Eq 1, and moreover,

—1/(p-1), _ 140 |z" — /| _
- y_o(d+;exp<_ A R R
i#£]

1+o0|z" — 27
_ N/2 Z _ 1z" =z
||Ud||d = O<d <d+ exp< B d ))

i#j

(28)

for some constant o > 0.

Results of this nature are known and we refer to [4], [13]. Let (aq,vq) be
the mapping from Proposition 6. Then there exists x4 € Dg g such that

Ja(aa(za), za, va(zq)) = sup{Ja(aq(z), z,v4(x)) : & € Dg r}.

To proceed further we need some estimates of Jy. Let H(z) be the mean
curvature of 0f2.

LEMMA 9. Let x € 012 and set
1
K(x)= 5 H(x) § U 0y dy.

RN-1
Then
V QUL (y) dy = ¥ Q(2)(A — dK () + O(d%)) + O(dN ),
Q
where A = 3§, UPT(y) dy and o is a Hélder exponent for Q.

Proof. For simplicity we assume that x = 0. We choose the coordinate
system so that

QN B0)={yny > f(y)}, 920 B, (0)={yn = ()},

where 7 > 0 is a small constant and f(y’) satisfies
(N1
fW) =5 ewi+0(y'f) fory' € BN 0)={y: Iy <7}
i=1

Then H(0) = (N — 1)1 Zf\:ll 0;. Letting 24, = {y : dy + 2 € 2},
24 = 240 and using the result from [4] (see also [8]) we get
J Q)ULS" (v) dy = Q(0) § UZ5" (v) dy + §(Qy) — QO)UES (v) dy
Q Q Q
=d"Q(0)(A — dK(0) + O(d?))

+{(Q(y) — QU)ULE (y) dy.
2
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It follows from the Hoélder condition for @ that

@) - QUL ) dy| < C | Iyl U (v) dy
Q Q
= Cd e | |y|*UPT (y) dy
24
< caVrte |yl Urt (y) dy
RN
for some constant C' > 0 and the result follows.
We also need the following asymptotic relation (see Lemma A.2 in [4]):
(29) V(@2 VU? + U3 ,) do = dN (A — dK () + dM (z) + O(d?)),
Q
where K (z) is as in Lemma 9 and
oU(y',0)

/
dy.
o ly'| dy

M) = JH@) | UW0)
RNfl
PROPOSITION 7. Let x4 be a point in Dq r where Jq attains its mawi-
mum. Then A ‘
|z — 2]
d
zh — 2t € 00 as d — 0 and z* satisfies Q(x%) = ming, Q(x), i =1,... k.

Proof. Expanding J4(c,x,v) around (Q,z,0), where Q = (le/(pfl)’
- Q;l/(P—l))

— o0 asd—0, i#j,

and using Proposition 6 we get
Ja(aa(z), z,v4())
_ i gl
= Jq4(Q,x,0) + O<dN <d2 + Zexp(—(l + a)%)))
i£]
Since x4 is a point in Dy p where the maximum is achieved we have
Ja(aa(rq), x4, va(rq)) > Ja(aa(za), za, va(za))

for every zq € Dy r. Thus

(30)  Ja(@,za, )+0<dN<d2+ZeXp< HU)M)))

7]

i
> Ja(Q, 24,0) + O<dN<d2 + Zexp( (1+ O‘)@))).
i#j
Let e;, i+ = 1,...,k, be tangent vectors to 92 at z,, with e; # e; for
i # j, and z;(t) be a curve in 942 satisfying z;(0) = xo, 2/(0) = e;, where
Q7o) = Qo. Let 24 = 2(d"/?), i =1,..., k. Then
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|24 — 2 e —ej] 4 0(1)
d - d1/2
Therefore zq € Dy g if d > 0 is sufficiently small. It follows from Lemma 9
and (29) that

(31) Jd(@7zd70)
1)< /(p—1)
_ —1/(p—1 .
-3 X e v
=1

— 00 as d — 0.

2 p+1

V=D,
d_p+1 ‘ZQ &7 ay

k
1 —2/(p—1
= 52 QU3
=1

ZQ (p+1)/(p—1) S Q( )Uerl dy+0<dN 7Co/d1/2)

p+1 p

_ dN (ZQ 2/(p— ”(A dK(25) +dM(z )+O(d2))>

p+1ZQ )Qo PP (A — dK (2]) + O(d?)) + O(dN*+)

— %(Qg”(?*”(/x — dK (x0) + dM(z) + O(d*/?)))
kdN

p+1

1 1

= (5 - i oA o

T Q5 PTHA — dEK (x) + O(dP?)) + O(dN+)

for some constant ¢, > 0. For J4(Q, z4,0) we have the estimate

2

k
_ 1 _ _
Jd<Q,xd,0>:§HZQo S
—1/(p— 1) .
—— \Z@ "

k
_ z( o 2/<P—1>||Ud,zg 2
=1

ety pt1
L [5242( Wiy A

p+1
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1 —2/(p—1)
+ 5 ;Qo P <Ud,z§7Ud7zg>d
(Za¥)

k
—— [Jaw| X vy,

_Z S QO*(P+1)/(ZU*1)Q( )UP-H dy}

i=1 (2

p+1
dy

x>

We denote the last two terms on the right side by P; and —ﬁPg, respec-
tively. For P; we have the estimate (see [4])

1 —2/(p—1)
Pr=53 Q" Uy, Uy )a

i#j
= 3@ N7 Uy
1<J
1—0)|zt, — 27
dN+1 _( d d )
+ O( Zexp( ¥

i#]
To estimate P, we make repeated use of the inequality
|la+ b — a? — b — pa”~'b — pab? |
- {Cap/szﬂ if2<p<3,
— L C(aP72b% + a?bP2) if p > 3,
and we get

k k

_ _ p+1 _ _

Py = SQ(y)‘ > QU dy - ZSQ QUL dy
k9]

7( _ k o
=Q, p+1)/(p 1)8 (ZUd zd)

1=

k
_ Q;(P-&-l)/(p—l)z S Qly Up+1
(]

=2
+(p+1)Qs PV [ Q) (Z Usey) Uy dy
0 1=

k
+(p+1)Qs "IV QU LS Uy dy
2 =2

+ 0 ey (- Ll

i#j
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= (p+ QT Z(Z Usey) Uy 1y

2 =1 i1=75+1
+(p+ 1)Qg(p+1)/(p—1) S Z dw] dy
2 1<j
14 o0)|z, — 27
9] dN _( d d .
+ < Zexp( d

i
Since

2/(p I)ZS dw] dy — Q*(erl)/(pfl)S Z dx] dy

1<j 2 1<j

_ o /- 1)5( )Z a2t Ud.as, Ay <0,

2 1<J

we derive the following estimate:

(32)  Ju(Q,14,0)

k  =—2/(0-2) (p+1)/(p—1)
<N |E P P p—
<d [2/1@0 pHAE:Q Q)

‘(%——> ZQOW VK >+0<d2>} +0(aN+)

p+1

k—1

_Qy L) S QQJ)Z( Z Uy ) 003, 4y
9}

j=1 i1=j5+1

o4 (LE =)

1#]
Inserting estimates (31) and (32) into (30) we get

k -2/(p—1)
33 ———AQ. P
( ) p+1

<-— AQ; @D/ I)ZQ
=1

k—1

k
QTN Q) (D Vi) Vi
2 J+1

j=1 1=

O<Zexp <(1 i U)’fl - xff‘)) +O(d).

i#j
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Since
k—1
d_NQ;(p+1)/(p_1) S Q(y) Z( Z Ug.oi ) d,l dy
2 j=1 i=j+1
(1+0/2)|z) — o)
> Co —
> ;Xp( )

for some ¢, > 0 and for large R > 0 we deduce from (33) that

ZQ )+ O(d +coZexp( <1+2)7d

i#j ‘
|z — 3]
— ——t < .
+O<Zexp< (14 0) y < kQo
i#j
Taking R sufﬁciently large we deduce that

i
(34) ZQ )+ 0(d*) +clzexp< <1+%)w>gmo.
i#]

Since Q(z4) > Qo, i =1,..., k, we see that
2%, —:Ed|
;1—>0 d

and necessarily % — x; as d — 0. Letting d — 0 in (34) we get

> Qi) < kQ(ze) = k min Q(x)

and the result follows.
From Propositions 6 and 7 we deduce the following existence result:
THEOREM 4. For each positive integer k, there exists a do = do(k) such
that for each d € (0,d,], problem (14) has a solution of the form
k .
Ug = ZaélUd@fl + v,
i=1
where
o = QYPTY =1k,
| — 2]
d
as d — 0 and z%, satisfies Q(z') = mingn Q(z), k = 1,...,1. In particular,

if Qlagn has only one global minimum point at ., then xil — T as d — 0,
1=1,...,k.

— o0 fori#j, —abf—a
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6. Effect of the graph topology of the coefficient (). In this section
we examine the effect of the graph topology of the coefficient ) on the
number of one-peak solutions. We follow some ideas from the paper [3],
where the effect of the graph topology of ) was studied for the Dirichlet
problem. Let @, = max,csn Q(z) and set

M={x€d:Q(z)=Qn} and M,={z e d:dist(z, M) < p},

where o > 0 is a small number. The sets Ey , 1, with £ = 1, introduced in
Section 5, are now denoted by E, ,, that is,

Eq. = {v € H' () : (Ugp,v)a = <8Ud’x,v> =0,i=1,...,N — 1},
87]' d

where {7;},i=1,..., N — 1, is an orthogonal basis of the tangent space to
082 at x. For each § > 0 small enough we define

Map = {(a,2,0) : Ja— QP V| <6, € My, v e By, |[v]la <6dV/?},

For (o, z,v) € Mg, we set

Ja(a,z,v) = Ii(aUqg 4 + v).
As in Section 5 we have the following result:
PROPOSITION 8. There exist do > 0,5 > 0 such that for every d € (0,d,)

a point (o, z,v) € Mg, is a critical point of the functional Jq(cv, x,v) if and
only if aUq 4 + v is a critical point of 1.

Consequently, to find a critical point (o, x,v) € Mg, we need to solve
the following problem: find constants A, B;, i =1,...,N —1, and (a, z,v) €
Mg, such that

0Jq 0?Uy. . .
(35) = B'< ~wv), i=1,...,N—1,
87’i = J 87’,‘87'3' d
0Jq
(36) o
N—1
aJd 8Ud T
— = AUy, E B ’
(37) 5 Ude + 2 i,

We need a result analogous to Proposition 6.

PROPOSITION 9. There exist do > 0, 6 > 0 such that for every d €
(0,ds), there exists a C'-mapping (ca(z),va(z)) : My — Rx E4, satisfying

0Ju(afw), v vale)) _ o <aJd(ad(:c),x,vd(:c))’w> _0
d

oo ov
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for every w € E4, and
laa(z) = Qu P~V = 0(@"***),  Jualla = O(@™**1).
Proof. Let J*(z,w) = J(o,z,v) = Ii(aUqy + v), where w = (8,v) =
(o — Qr}l/(p_d),v). As in [4] (see also [13]) we expand J*(z,w) at w = 0:
J*(w, ) = J*(0,2) + (fam w)a + 3(Qazw, w) + Ry z(w),
where fq, € R X Eg , is given by

(fae,w)a = [Q;l/(p_l)HUd,wHﬁ — QPP QUL dy| 8
%)

_Qr;p/(pfl) S Q(y)Ufj,zv dy
Q

= Jl /6+ JQ(U)a

Qa,» is a linear map from R X Fg, to R x B4, and Ry, is the higher order
term satisfying

i min(p—i,3—1 .
RY (w) = O(Jw|F™~570) i=0,1,2.

Repeating the argument from [4] we show that ()4, is invertible and HQ;;H
< C, where C is independent of d and x. Obviously, equations (36) and (37)
are equivalent to

faz + Qaaw + Ry, (w) = 0.

From the implicit function theorem this equation has a solution wy € R x
E4 ., and wy satisfies

lwalla < Cllfal-

We now estimate || f4 .|| For the term J; of 3 we have (we eventually drop
the d, z subscript)

Ji = QP |Ugull3 — Qur/ @~V { Qy) UL dy
(9]

= QM| (@YU + U%) dy - Q. § QUy)Ut dy|

2 [0}
— g | (U2 - %UP“)dy + | ?lvup? dy}
L) Qo )

— 0=/ {1 - U? — %U”“)d
Qm | ( o y

Lo m
+ | 2 4y - SdzUAUdy}
ov
o082 (9]
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— Q;l/(P*l) |: S(_dZAUd,J: + Ud,:z: _ Ug,g;) dy
9]

U
+ | (1 - %)Uﬁf dy + | U da].
(9} o

After scaling z = (y — x)/d we find the first integral to be 0. The third
integral is O(dV*1). For the second integral we have the estimate

_% p+1 _ N _ T 2
é( 0. )Ud@ dy = dV (A — dK (z) + O(d?))

_dN%(A — dK (z) + O(d?)) + O(d"*+*)

m

= dNA<1 — %) + O(dNF) 4 o(aN ).

The estimates for ag and ||vg||4 easily follow.

Problem (1)4 is reduced to finding € M, such that equation (34) is
satisfied.

PROPOSITION 10. Let (ag,vq) be the mapping from Proposition 9. Then

Ja(aq(x), z,v4(x)) = dV [26212;(11)1) (1 B pi 1 %?) * O(d)]’

where A is the constant defined in Lemma 9.
Proof. 1t follows from Proposition 9 that

S d2|adVUd,x + Vvd\2 dr + S (adwa + vd)2 dx
2 2

= a3||Uas|l3 + [vall3 + (Uaw v) = o3| Uas||3 + OdV2).
Next we have

S Q(y)|aaUae + vaP™ dy
17

= | QW)|aala "t dy
2

+ @+ 1) | QW)laalUss + 0(y)val” " (@aUa. + 6(y)va) dy,
2

where 0 < 6 < 1. Hence
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\ QW)laaUaz + 0(y)val|val dy
2

< 22| Q()|aaUa.o|"lval dy + 27 | Q(y)[val”*" dy
2 2

/(p+1) 1/(p+1)
<2 H@XQ(S |OédUd,z!p+1dy)p ’ (S !vd!p“dy) ’
$2
2 2

+2? S log|PT da
Q
= O(de/(p+1)+N/2+1) + O(d(N/2+1)(p+1)).

Inserting the above estimates into Iq(aqUq,» + v4) we get

7 | QWlaala " dy
ip)
+O(@*#2) + (0(d) + (@) O(/*+)

a? 1
= 200,13 - —— | Q)laalu. P dy + 0@ ).
2 p+1 h

2
(67
La(@aUae +va) = 5 [Uaalls -

Applying Lemma 9 and the estimate (29) we obtain

Ui+ v) = SN (A~ dK(@) + M (z) + O(d?))]

abtt
_;ﬁ AN Q(x)(A — dK (2) + O(d?))]

+ O(dN+a) 4 O(dN+1)

2 p—1
oy N _ 200,
=3 d A(l P Q(av))

+ OéﬁQdN (d(M(x) — K(z)) + O(d?))
QP! N i - .
+Zﬁd Q(z)(dK (z) + O(d*)) + O(d™ %) + O(d™ 1)

The result follows by applying the estimate |ag — Qr}l/(p_l)\ = O(dN/?te)
from Proposition 9.

To proceed further we define a functional F' : M, — R by F(z) =
Ja(ag(z), x,v4(x)), where (g, vq) is the mapping from Proposition 9. Let
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A 2
— N 1_ S
aqg=d [2621211/(]0_1) < T 1> +d },

where 0 < s < 1. We show that there exists d; > 0 sufficiently small such
that the flow defined by

%t(t) — —grad F(Y(t)),

Yo=Y(0) e F ={z e M,: F(x) <aq}
does not leave M, for 0 < d < d;.

LEMMA 10. There exists di > 0 such that for every d € (0,dy) and every
x € OM, we have F(z) > aq.

Proof. Arguing by contradiction assume that there are sequences d,, — 0
and {z,} C OM, such that F(z,) < aq,. We then have

A 2 Qxy) A 2 <
2Qu 7Y (1 1l Qu ) Ol = 5 D (1 ot 1> i

We may assume that x,, — x, € OM,. Letting n — 0 in the last inequality
we deduce that Q(z,)/Qm > 1, which contradicts the fact that z, € oM,

and Q(70) < Q.

LEMMA 11. There exists do > 0 small enough such that M C F® for
0<d<d,.

Proof. In the contrary case there exist sequences d,, — 0 and {x,,} C M
such that F(z,) > aq,. From this we get

A 2 Qz,
d"N[2Q2/<p—1> (1_p+1 é?) —|—O(dn)}

A 2
>d,{Y[ 5 1(1— >+d;],
QQm/(pf) p+1

which is impossible since Q(z,) = Qm and 0 < s < 1.

THEOREM 4. Suppose that Q(x) # Const on 0f2. Then there exists a
constant 0 > 0 such that problem (14) has cat g, (M) solutions for 0 < d <
min(dy, ds), of the following type:

uqg = aqUq z, + vg

1/(p—1)

where as d — 0, ag — Qm , |valla — 0 and x4 — x5 € M.

Proof. In view of Lemmas 10 and 11 we conclude that
#{x € M, : DF(x) =0} > catpy, (F) > catpg, (M)

and the result readily follows.



Shape and multiplicity of solutions 155

Appendix. We only describe the main steps of the proof of Proposi-
tion 1 and for more details we refer to the paper [11]. Let & p, be the mapping
defined in Section 2 associated with P; € 0f2, where u4 attains its maximum
on {2. In what follows we assume P; = P and write v, @, ®;, ¥, ¥; instead
of ¥p,, Pp,, Ppr,.j, Yp,, ¥p,,j, respectively. We assume that @ is defined on
an open set containing the closed ball B3, = B(0,3k), where k > 0 is a
small constant. We set

| ua(®(dz)) for z € ng/d,
wa(z) = ug(P(dz', —dzy)) for z € ng/d

As in [12] we check that wy — wy in C2_(RY). We need a first order
approximation in d of wy. Towards this end we set

(Ay) wq(z) = wa(z) + dwg(z).
The function wy satisfies the equation
N 8wd
DI ACE v +de* ——wﬁ@( (d=))w} =0

i,j=1 Jj=1

in Bs /d, Where the coefficients a;; and b} are expressed in terms of the
derivatives of ¥ (see p. 835 in [12]), and moreover,
k

%(z',O) —0 for || < %
Let x € C%(R) be a cut-off function satisfying 0 < x(¢) < 1 on R, x(t) =0
if [t| > 3/2 and x(t) = 1if [t| < 1. We set xr(2) = x(|2|/R) for z € RV and
Wr(2) = xr(2)wa(z). We see that Wr € C?(RY), Wgr(z) = wq(z) on Bg
and Wr(z) = 0 on RY — Byg. From now on we assume that R = k/d. We
let dpr(z) = Wgr(z) —wn(z), and we see that ¢r(z) = wg on By/q. The
function ¢g satisfies the equation

Lor + Ar¢r + gr + h(¢gr) = 0,
where
L=A-1-pMuwh ',

aXR 8wd
JZ 0z; 823

Axr + ArXR)Wa — Z ai; +

1,j=1

M) = HQU(d=))xufy — Mk, + pMud; o),

gr = S ARwWN —

d E(
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and
0? 0
AR = dxar(2 (QIZN\ ]Z:I Y ij 92207, — Qg SgHZN%>
N-1 N
0? 0
xen ( Py @i (%) 0z;0z; * Z 9 0 >’
where )
0“9q
i = =A
wdv J 82’1‘821‘ (O> and Qq ¢d( )

Using Lemmas 4.2 and 4.3 from [11] we can formulate the existence result
for the following problem:

N-1

8211]]\/[

(As) A — ¢+ Muh; ¢+ 22| lezbd”aziazj
— aq(sgnz )awM—O in RY
d\SgN 2N v )

(Ay) d(z) =0 as|z]| — 0.

PROPOSITION Aj. Problem (A3)—(A4) has a unique solution ¢ € C?(RYN)
satisfying
8wM
sz

Sgb dz=0  forj=1,...,N.
RN

Furthermore, ¢ decays exponentially at infinity:
lp(2)] < Ce Hl for z € RV,

for some constants C > 0 and p > 0 independent of d. The function ¢ is
even in zy and

(As) lim ™ sup fuwa(2) — (war(2) + do())| = 0.
d— 2€By /4

Sketch of proof. Since wq(z) — (war(z) + do(2)) = d(¢r(z) — ¢(z)) on
Bp, for the proof of the last assertion (Aj) it is sufficient to show that
sup |[pr(z) — ¢(z)| — 0 as R — oo. This is established by writing the follow-
ing decomposition:

6r(z) = 32 a;(R)6;(2) + Cal2).

where

Ownr < N )1/2
(2) = co——, Co =
¢;(2) 0z; S]RN wh,(|z])? dz
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and showing that a;(R) — 0 and (r(2) — ¢ as R — oo (see Lemmas 4.7-4.9
in [11]).

Now we are in a position to establish the asymptotic formula (18) for cg4.
Multiplying (A3z) by wjs and integrating over RY we obtain

(Ag) | (0 — Mt pdz = 2vau0 /@D
RY
+ a2 ® D | w, owy
RY z

(for details see Lemma 3.1 in [11]). Since wy satisfies (1) we have, using
formula (Ag) from [12],

p—1

g = §Z2(p+ 1)Q(:c)u§+1 dx
:éﬂé}%@@mﬁ%m+g%ﬂé;BQ@mwa
= I§ 2(3; 111)Q(x)u§+1 dx + O(e /)
= § 2&;11)%(2)”%(1 — agdz, + O(d?|2]?))

&

1

:Il—i—Ig—i—O(e*“/d).

We estimate I; using Proposition A;:

p—1 "y +1 N+2
L = M Pl —
O T 1)d § wq(2)P7 (1 —dagzy)dz +d
k/d
p—1

- 2(p + 1)dN § M (war +d(¢+ 0(1)))P (1 — dagzy) dz + O(dV+?)

k/d

-1 d
:dN[ P \ Muwhftde+S(p—1) | Muf¢ds

2(p+1) 2
Bl Bl
p—1 p+1
—ay Mw' T zn dz + o(d }

k/d
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-1 d
—gN [229_ S Mwﬁjldz—{—i(p—l) S Muwh, ¢ dz

(P+1) o o
p— 1 p+1

N
R+

It then follows from (Ag) and an obvious modification of formula (3.13) in
[12] that

I = dV {1 (war) — vdagM =2 @D 4 o(1)dN.
Finally, using (17) we check that Iy = o(1)d" and the result follows.
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