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Abstract. We investigate the effect of the topology of the boundary ∂Ω and of the
graph topology of the coefficient Q on the number of solutions of the nonlinear Neumann
problem (1d).

1. Introduction. In this paper we investigate the existence of solutions
for the Neumann problem

(1d)




−d2∆u+ u = Q(y)up, y ∈ Ω,

u > 0 for y ∈ Ω, ∂u(y)
∂n

= 0 for y ∈ ∂Ω,

where Ω ⊂ RN is a bounded domain with C3-boundary ∂Ω, d > 0 is a
parameter, 1 < p < (N + 2)/(N − 2), N ≥ 3, and n is the unit outer normal
to ∂Ω. It is assumed that the coefficient Q is positive, Hölder continuous
with exponent α ∈ (0, 1) on Ω and Q 6≡ Const on ∂Ω.

Problem (1d) stems from the studies of pattern formation in biology. In
particular, it can be viewed as the steady state problem for a chemotac-
tic aggregation model proposed by Keller and Segel [6]. Problem (1d) also
appears in the study of activator-inhibitor systems in biological pattern for-
mation theory due to Gierer and Meinhardt [5]. In the case of Q(x) ≡ 1
on Ω problem (1d) has an extensive literature [6], [8]–[12], [14], [15]. In [11]
and [12] Ni and Takagi proved that for every d > 0 sufficiently small, prob-
lem (1d) has a nonconstant least energy solution ud. The solutions ud with d
small exhibit concentration phenomena. Namely, each solution ud attains its
unique maximum at Pd on the boundary and Pd → P◦, where P◦ is located
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on the “most curved” part of ∂Ω, that is, the mean curvature attains its
maximum at this point. Wei [15] constructed a solution ud on some energy
level which has only one local maximum point xd ∈ ∂Ω and xd → x◦, where
x◦ is a critical point of H(x). He also established a partial converse showing
that each nondegenerate critical point x◦ of H(x) generates a solution ud
having only one maximum point xd, with xd → x◦. Li [8] showed that the
nondegeneracy assumption can be replaced by C1-stability.

The effect of the topology of ∂Ω on the existence of multiple solutions
was studied by Wang [14]. He proved that for small d > 0 problem (1d),
with Q(y) ≡ 1, has at least cat(∂Ω) distinct single-peak solutions, where
cat(∂Ω) is the Lusternik–Schnirelman category of ∂Ω.

The main purpose of this work is to investigate the effect of the graph
topology of the coefficient Q and the topology of the boundary ∂Ω on the
existence of multiple solutions. It is assumed that the coefficient Q attains
its maximum on the boundary ∂Ω. We show the existence of the least energy
solutions ud, d > 0. These solutions achieve their maxima at xd ∈ ∂Ω for
d sufficiently small and xd → x◦, with Q(x◦) = maxx∈Ω Q(x). However, if
Q(x) = Const on ∂Ω, then the influence of the mean curvature is stronger.
In this case solutions concentrate at points on ∂Ω where H(x) attains its
maximum. In Section 4 we extend the result of Wang [14] to the problem
(1d) and show that at levels close to the least energy level problem (1d) has
at least cat(∂Ω) solutions.

Section 5 is devoted to the construction of multi-peak solutions. We aim
to show that local minima of the restriction of Q to ∂Ω generate multi-peak
solutions. Our approach is a modification of the construction of multi-peak
solutions from [4]. In Section 6 we study the effect of the graph topology
of the coefficient Q on the existence of multiple solutions. We express the
multiplicity of solutions in terms of the Lusternik–Schnirelman category of
the set where Q attains its maximum on the boundary ∂Q. As in [14] it
can be shown that solutions obtained in Section 4 are one-peak solutions,
that is, they have at most one local maximum. However, we were unable to
locate their concentration points. On the other hand, solutions constructed
in Section 6, which are one-peak solutions, have maxima concentrating at
points of ∂Ω where Q attains its maximum.

2. Least energy solutions. Solutions of problem (1d) will be found as
critical points of the variational functional Id : H1(Ω)→ R defined by

Id(u) =
1
2

�

Ω

(d2|∇u|2 + u2) dx− 1
p+ 1

�

Ω

Q(x)|u|p+1 dx,

where H1(Ω) is a Sobolev space equipped with the norm
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‖u‖2 =
�

Ω

(|∇u(x)|2 + u(x)2) dx.

It is easy to check that the functional Id has a mountain pass structure:

(i) there exist constants % > 0 and β > 0 such that Id(u) ≥ β for
‖u‖ = %;

(ii) there exists φ ∈ H1(Ω), with ‖φ‖ > %, such that Id(φ) < 0;
(iii) Id satisfies the Palais–Smale condition: if {un} ⊂ H1(Ω) is such

that Id(un) is bounded and I ′d(un) → 0 in H−1(Ω) then {un} is relatively
compact in H1(Ω).

Let Γ = {γ ∈ C([0, 1],H1(Ω)) : γ(0) = 0, γ(1) = φ}. By the mountain
pass principle [1] for each d > 0 there exists ud ∈ H1(Ω) such that

Id(ud) = cd = inf
γ∈Γ

max
t∈[0,1]

Id(γ(t)).

Using the Hopf maximum principle we can assume that ud > 0 on Ω (see
[9, p. 9]). Repeating the argument from [9, pp. 12, 13] one can show that
cd = O(dN ).

Let P ∈ ∂Ω. In order to examine the behaviour of ud near the boundary
∂Ω we introduce the diffeomorphism which straightens the boundary portion
near the point P (see [10], [11]). We may assume that P is the origin and the
inner normal to ∂Ω at P is pointing in the direction of the positive xN -axis.
Then there exists a smooth function ψP (x′), x′ = (x1, . . . , xN−1), defined
for |x′| small such that (a) ψP (0) = 0, ∇ψP (0) = 0, and (b) ∂Ω ∩ N =
{(x′, xN ) : xN = ψP (x′)} and Ω ∩N = {(x′, xN ) : xN > ψP (x′)}, where N
is a neighbourhood of P .

For y ∈ RN near 0, we define a mapping x = ΦP (y) = (ΦP,1(y), . . . ,
ΦP,N (y)) by

ΦP,j(y) =




yj − yN

ψP (y′)
∂xj

, j = 1, . . . , N − 1,

yN + ψP (y′), j = N.

Since ∇ψP (0) = 0, we have ∇ΦP (0) = I. Therefore ΦP has an inverse
mapping y = Φ−1

P (x) for |x| < δ′, with δ′ > 0 small. We set ΨP (x) = Φ−1
P (x).

We notice that

(2) |ΦP (y)| ≤ C|y|
for some constant C > 0 and small |y|. Following the ideas from [12] and
[14] we define a comparison function for Id. Towards this end let wM be the
ground state solution [7] of

(3)
{
−∆u+ u = Mup in RN ,
u > 0 on RN .
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By rescaling we have wM = M−1/(p−1)w1, where w1 > 0 is spherically
symmetric: w1(x) = w1(|x|), dw1/dr < 0 for |x| > 0. It is known that w1

and its first order derivatives exponentially decay at infinity, that is,

(4) w1(x), |∇w1(x)| ≤ Ce−µ|x| on RN ,

for some constants C > 0 and µ > 0. For % > 0 we set

ζ%(t) =





1 for 0 ≤ t ≤ %,
2− %−1t for % < t ≤ 2%,
0 for t ≥ 2%,

and
wM∗ (z) = ζk/d(|z|)wM(z),

where k > 0 is chosen so that the domain of definition of ΦP contains the ball
B3k = B(0, 3k). Further, let Dj = ΦP (B+

jk) for j = 1, 2, with B+
r = Br∩RN+ .

We observe that D1 ⊂ D2 ⊂ Ω. We define a comparison function by

(5) φMd (x) =
{
wM∗ (ΨP (x)/d) in D2,
0 elsewhere.

In what follows we shall use for a fixed P ∈ Ω the following functional:

IQ(P )(u) =
1
2

�

Ω

(|∇u|2 + u2) dx− Q(P )
p+ 1

�

Ω

|u|p+1 dx.

3. Behaviour of the least energy solutions for small d > 0. We
begin by estimating Id at φd.

Lemma 1. Suppose P ∈ ∂Ω. Let φd = φ
Q(P )
d be defined by (5). Then

M [φd] = sup
t≥0

Id(tφd) =
dN

2
IQ(P )(wQ(P ))Ad,

where Ad > 0 and Ad → 1 as d→ 0.

Proof. We commence by observing that there exists t◦(d) > 0 (unique)
such that

M [φd] = Id(t◦(d)φd).

To simplify we assume that P = the origin of the coordinates. Since

d

dt
Id(tφd)

∣∣∣∣
t=t◦(d)

= 0,

we have

t◦(d) =
( �

Ω
(d2|∇φd|2 + φ2) dx

�
Ω
Q(x)φp+1

d dx

)1/(p−1)

.
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Hence

(6) Id(t◦(d)φd)

=
p− 1

2(p+ 1)

( �
Ω

(d2|∇φd|2 + φ2
d) dx

�
Ω
Q(x)φp+1

d dx

)2/(p−1) �

Ω

(d2|∇φd|2 + φ2
d) dx.

It follows from (3.14) and (3.15) in [12] that

d2
�

Ω

|∇φd|2 dx = dN
( �

RN+

(w′Q(0))
2 dx+O(d)

)
,(7)

�

Ω

φp+1
d dx = dN

( �

RN+

wp+1
Q(0) dx+O(d)

)
,(8)

�

Ω

φ2
d dx = dN

( �

RN+

w2
Q(0) dx+O(d)

)
.(9)

Using (8) we now write
�

Ω

Q(x)φp+1
d dx = Q(0)

�

Ω

φp+1
d dx+

�

Ω

(Q(x)−Q(0))φp+1
d dx

= Q(0)dN
( �

RN+

wp+1
Q(0) dx+O(d)

)
+

�

Ω

(Q(x)−Q(0))φp+1
d dx.

The second integral on the right side can be estimated using (A.3) of Lem-
ma A.1 in [12]:

�

Ω

|Q(x)−Q(0)|φp+1
d dx

≤ L
�

D2

|x|αwQ(0)
∗

(
Ψ(x)
d

)p+1

dx

= L
�

B+
2k

|Φ(y)|αwQ(0)
∗

(
y

d

)p+1

det|DΦ(y)| dy

≤ LCdN+α
�

B2R

|y|αwQ(0)
∗ (y)p+1(1− αdyN +O(d2|y|2)) dy,

where α = ∆Ψ(0) and C is a constant from (2) and L is a Hölder constant
for Q. Using the fact that w1(z) ≤ Ce−µ|z| on RN , we derive from the last
two estimates that

(10)
�

Ω

Q(x)φp+1
d dx = dN

(
Q(0)

�

RN+

wp+1
Q(0) dx+O(dα)

)
.
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The result follows from (6), (7), (9) and (10) with

Ad =
( �
RN+

(|∇wQ(0)|2 + w2
Q(0)) dx+O(d)

�
RN+

Q(0)wp+1
Q(0) dx+O(dα)

)2/(p−1)

.

Lemma 2. If ud attains its local maximum at xd ∈ Ω, then

ud(xd) ≥M−1/(p−1),

where M = maxx∈Ω Q(x). Also, there exists a constant η > 0 independent
of xd and d such that ud(x) ≥ η for x ∈ B(xd, d) ∩ Ω if d is sufficiently
small.

Proof. Suppose that ud(xd) < M−1/(p−1). If xd ∈ Ω, then

d2∆ud = ud −Q(x)upd = ud(1−Q(x)up−1
d ) ≥ ud(1−Mup−1

d ) > 0

in a small ball with centre at xd. However, this contradicts the inequality
d2∆ud(xd) ≤ 0. Hence, xd ∈ ∂Ω and ud(x) < ud(xd) for x ∈ Ω close to
xd. According to the Hopf boundary point lemma we have ∂ud(xd)/∂n > 0,
which does not match the boundary condition. The second assertion follows
from the Harnack inequality (see Lemma 4.3 in [9] and p. 830 in [12]).

We are now in a position to locate the maximum points of ud.

Theorem 1. Suppose that maxx∈∂Ω Q(x) = maxx∈Ω Q(x). Let ud(Pd)
= maxx∈Ω ud(x). Then Pd ∈ ∂Ω for small d > 0 and Pd → P with Q(P ) =
maxx∈∂Ω Q(x).

Proof. We follow some ideas from [12]. The proof will be divided in
several steps.

Step I. There exists a constant C > 0 such that dist(Pd, ∂Ω) ≤ Cd. In
the contrary case we can find a decreasing sequence dj → 0 such that

%j =
dist(Pj , ∂Ω)

dj
→∞

as j →∞, where Pj = Pdj . We define a function vj on B%j by

vj(z) = udj (Pj + djz) for z ∈ B%j .
We may assume that Pj → P . Using the Schauder estimates we can show
as in [12] that vj → wQ(P ) in C2

loc(RN ), where wQ(P ) is the ground state
solution of equation (3) with M = Q(P ). Since M1 ≤ Q(x) ≤ M2 on Ω for
some constants 0 < M1 < M2 and wQ(P )(z) = Q(P )−1/(p−1)w1(z), we see
that

wQ(P )(z), |∇wQ(P )(z)| ≤ C◦e−µ|z| on RN ,
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for some constants µ > 0 and C◦ > 0 independent of P . For the mountain
pass level we have the following estimate from below for each R > 0:

cdj ≥
�

|x−Pj |<djR

p− 1
2(p+ 1)

Q(x)udj (x)p+1 dx(11)

= dNj
�

|z|<R

p− 1
2(p+ 1)

Q(Pj + djz)vj(z)p+1 dz

= dNj
�

|z|<R

p− 1
2(p+ 1)

Q(P )wQ(P )(z)p+1 dz

+ dNj
�

|z|<R

p− 1
2(p+ 1)

Q(Pj + djz)vj(z)p+1 dz

−dNj
�

|z|<R

p− 1
2(p+ 1)

Q(P )wQ(P )(z)p+1 dz

= dNj
�

|z|<R

p− 1
2(p+ 1)

Q(P )wQ(P )(z)p+1 dz

+ dNj
�

|z|<R

p− 1
2(p+ 1)

Q(Pj + djz)(vj(z)p+1 − wQ(P )(z)p+1) dz

+ dNj
�

|z|<R

p− 1
2(p+ 1)

(Q(Pj + djz)−Q(P ))wQ(P )(z)p+1 dz.

Let us denote the last two integrals on the right side of this inequality
by J1 and J2, respectively. Let R > 0 be a fixed and large number and
set dR = C◦e−µR/2. We choose j◦ = j◦(R) sufficiently large so that
‖vj − wQ(P )‖C2(B(0,R)) ≤ dR for j ≥ j◦. Thus

(12) |J1| ≤ C1d
N
j R

NdR

for some constant C1 > 0 and all j ≥ j◦. Since Q(Pj + djz) → Q(P )
uniformly on B(0, 2R), we have

(13) |J2| ≤ C2d
N
j o(1)

for some constant C2 > 0 and j ≥ j◦. Inserting estimates (12) and (13) into
(11) we get

cdj ≥ dNj
( �

B(0,R)

p− 1
2(p+ 1)

Q(P )wp+1
Q(P )

dx− C1R
NdR + o(1)

)
.

Next, we observe that
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�

B(0,R)

p− 1
2(p+ 1)

Q(P )wQ(P )(z)p+1 dx

= IQ(P )(wQ(P ))−
�

|z|>R

p− 1
2(p+ 1)

Q(P )wQ(P )(z)p+1 dz

≥ IQ(P )(wQ(P ))− C3e
−µR

for some constant C3 > 0. Combining the last two estimates we derive the
following estimate from below for the level cdj :

cdj ≥ dNj (IQ(P )(wQ(P ))− Ce−µR + o(1))

for some constants µ > 0 and C > 0. On the other hand, by Lemma 1 we
have

cdj ≤M [φdj ] ≤
dNj
2
IQ(P )(wQ(P ))Adj

for each P ∈ ∂Ω. Combining the last two estimates and letting first j →∞
and then R→∞ we obtain

p− 1
2(p+ 1)

�

RN
Q(P )wp+1

Q(P )
dx ≤ p− 1

4(p+ 1)

�

RN
Q(P )wp+1

Q(P ) dx

for each P ∈ ∂Ω. Since wQ(P ) = Q(P )−1/(p−1)w1 for each P , we see that
this inequality is equivalent to

Q(P ) ≥ 2(p−1)/2Q(P )

for each P ∈ ∂Ω. This contradicts the fact that Q achieves its maximum on
the boundary.

Step II. We show that Pd ∈ ∂Ω for d > 0 small. Arguing indirectly
we may assume that Pj = Pdj ∈ Ω for some decreasing sequence dj → 0.
By Step I, Pj → P ∈ ∂Ω and we assume that P = 0. Let y = Ψ(x) be
a diffeomorphism which straightens the boundary ∂Ω near P . We assume
that the closed ball B2k is contained in the domain of definition of Φ = Ψ−1

for some k > 0 and let Qj = Ψ(Pj) ∈ B+
k for all j. We set vj(y) = uj(Φ(y))

for y ∈ B+
2k and we extend vj to B2k by the reflection

vk(y) =
{
vk(y) if y ∈ B+

2k,
vk(y′,−yN ) if y ∈ B−2k,

where B−2k = D2k∩{y ∈ RN : yN < 0}. Finally, we set wj(z) = vj(Qj +djz)
for z ∈ Bk/dj . Let Qj = (q′j , αjdj), where q′j ∈ RN−1 and αj > 0. As in [12]
using the Schauder estimates one can show that wj → wQ(P ) in C2

loc(RN ),
where wQ(P ) is a ground state solution of (3) with M = Q(P ). Here we have
used the fact that Qj → 0. Since the ground state has only one maximum
we deduce from Lemma 4.2 in [12], repeating the argument from p. 837 in
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[12], that wj attains only one maximum in a ball B(0, R), where R > 0 is
chosen so that R > αj for all j. If αj > 0, then it follows from the definition
of vj that Q∗j = (q′j ,−αjdj) is also another local maximum point of wj in
B(0, R), which is impossible.

Step III. We show that ud has at most one local maximum. In the
contrary case there exists a decreasing sequence dj such that udj has two
local maxima at Pj and P ′j . By the previous part of the proof Pj , P ′j ∈ ∂Ω.
We may assume that |Pj − P ′j |/dj →∞ as j →∞, since in the contrary case
the scaled function from Step II has two local maxima in the ball B(0, R).
Assume Pj → P ∈ ∂Ω. We now introduce the diffeomorphism y = Ψ(x)
which straightens a part of the boundary ∂Ω around Pj and define, as in
Step II, vj , vj and wj . Using the Schauder estimates we show that, up to
a subsequence, wj → wQ(P ) in C2

loc(RN ) and wQ(P ) is the ground state
solution of (3) with M = Q(P ). Since uj = udj satisfies (3) we see that

cdj =
�

Ω

p− 1
2(p+ 1)

Q(x)uj(x)p+1 dx

=
�

D1

p− 1
2(p+ 1)

Q(x)uj(x)p+1 dx+
�

Ω−D1

p− 1
2(p+ 1)

Q(x)uj(x)p+1 dx

= I1 + I2,

where D1 = Φ(BRdj ). As in Step I (see also p. 832 in [12]) we check that

(14) I1 ≥ dNj
[ �

B+
k

p− 1
2(p+ 1)

Q(P )wQ(P )(z)p+1 dz − C1R
NdR − C2dj

]

for some constants C1 > 0 and C2 > 0. It follows from Lemma 2 that uj is
bounded away from zero on Bdj (P

′
j) ∩Ω, uniformly in j. Consequently,

(15) I2 =
�

Ω−D1

p− 1
2(p+ 1)

Q(x)uj(x)p+1 dx ≥ η

for some constant η > 0 independent of j. Estimates (14) and (15) give the
following estimate of cdj from below:

(16) cdj ≥ dNj
(

1
2
IQ(P )(wQ(P )) + η − Ce−µR − C2dj

)
.

Here we have used the exponential decay of wQ(P ). On the other hand, by
Lemma 1 we have

cdj ≤M [φdj ] ≤ dNj
(

1
2
IQ(P )(wQ(P )) +O(dα)

)
.

The last estimate contradicts (16) if dj is sufficiently small and R sufficiently
large.
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Step IV. In the final step we show that if ud(Pd) = maxx∈Ω ud(x),
then Pd → P ∗, where Q(P ∗) = maxx∈∂Ω Q(x), P ∗ ∈ ∂Ω. Obviously, by the
previous steps Pd ∈ ∂Ω. Suppose that Pd → P ∗ ∈ ∂Ω. As in the paper [12]
(see pp. 837–838 there) we can establish the following estimate of cd from
below:

cd ≥ dN
(

1
2
IQ(P ∗)(wQ(P ∗))− Ce−µR + o(1)

)
,

where C > 0 and µ > 0 are constants independent of R and o(1) → 0 as
d→ 0. Using this and the estimate from Lemma 1 we get

p− 1
4(p+ 1)

Q(P ∗)−1/(p−1)
�

RN
w1(z)p+1 dz − Ce−µR + o(1)

≤ p− 1
4(p+ 1)

Q(P )−1/(p−1)
�

RN
w1(z)p+1 dz +O(dα)

for every P ∈ ∂Ω. Letting d→ 0 and then R→∞ we obtain

Q(P ∗)−1/(p−1) ≤ Q(P )−1/(p−1)

for each P ∈ ∂Ω and the claim follows.

Inspection of the proof of Step 1 of Theorem 1 shows that if Q(x) ≤
hQ(y) for all x ∈ Ω and y in ∂Ω for some constant 1 < h < 2(p−1)/2, then
the points Pd where ud achieve their maxima concentrate at a boundary
point of Ω. However, it is not clear whether Pd ∈ ∂Ω for small d under this
assumption on Q.

If Q(x) = M on ∂Ω and Q(x) ≤ M for all x ∈ Ω, where M > 0 is a
constant, then according to Theorem 1, ud concentrates on the boundary.
The question is how to locate a point of ∂Ω at which the concentration
occurs. We show that, under an additional assumption on the behaviour of
Q(x) near the boundary, the concentration occurs at a point where the mean
curvature of ∂Ω attains its maximum. We need the following asymptotic
formula for cd.

Proposition 1. Suppose that Q(x) ≤ M on Ω and Q(x) = M on ∂Ω
for some constant M > 0, and moreover ,

(17) |Q(x)−M | = O(dist(x, ∂Ω)k)

for x close to ∂Ω and some constant k > 1. Then

(18) cd = dN{IM (wM )− (N − 1)γM−1/(p−2)H(Pd) + o(d)}
as d→ 0, where ud(Pd) = maxx∈Ω ud(x), H(P ) denotes the mean curvature
of ∂Ω at P and

γ =
1

N + 1

�

RN+

w′(|z|)2zN dz > 0.

(The quantity o(d) in (18) is independent of Pd.)
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The proof of Proposition 1 is identical to that of Proposition 2.1 in [11].
In the Appendix we provide a sketch of the proof.

Similarly, we have

(19) M [φd] ≤ dN
{

1
2
IM (wM )− (N − 1)γH(P )M−2/(p−1) + o(d)

}

for all P ∈ ∂Ω.

Theorem 2. Suppose that the assumptions of Proposition 1 hold and
let ud(Pd) = maxx∈Ω ud(x). Then Pd ∈ ∂Ω for small d and Pd → P , with
H(P ) = maxP∈∂ΩH(P ).

Proof. Since cd ≤ M [φd], it follows from (18) and (19) that H(Pd) ≥
H(P ) + o(d) for d sufficiently small and all P ∈ ∂Ω. Letting d → 0 we get
H(P ) ≥ H(P ) for all P ∈ ∂Ω.

4. Multiple single peak solutions. In this section we calculate a lower
bound on the number of single peak solutions to problem (1d) in terms of
the category of ∂Ω. Explicitly, we show there are at least cat(∂Ω) distinct
nonconstant solutions provided d is sufficiently small.

Assume throughout this section that Q∈C2(Ω) and 0<M1 =minΩ Q(x)
< M2 = maxΩ Q(x) = max∂Ω Q(x).

It is convenient for our purposes to consider a different functional than
Id(u) as used in the previous section. We look for minima of the functional

Ed(u) =
�

Ω

(d2|∇u|2 + u2) dx

constrained to the manifold

V Q1 (Ω) =
{
u ∈ H1(Ω) :

�

Ω

Q(x)|u|p+1 dx = 1
}
.

One may check that if u is a critical point of Ed on V Q1 (Ω) then v =
[Ed(u)]1/(p−1)u is a solution of (1d). Furthermore, we have the following
relation between Id and Ed:

Id(v) =
p− 1

2(p+ 1)
[Ed(u)](p+1)/(p−1).

Therefore, an absolute minimum of Ed corresponds to the least energy of Id.
Let

cd = min
u∈V Q1 (Ω)

Ed(u),

which is easily seen to be achieved on V Q1 (Ω). Also, a critical point of Ed
with absolute minimum critical value corresponds to a critical point of Id
and therefore a least energy solution of (1d).
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There exists a one-to-one correspondence between the solutions of (1d)
of arbitrary sign, and the solutions of the rescaled problem

(11/d)

{−∆u+ u = Qd(x)up, x ∈ Ω1/d,
∂u(x)
∂n

= 0, x ∈ ∂Ω1/d,

where Ω1/d = {x ∈ RN : dx ∈ Ω} and Qd(x) = Q(dx). This correspondence
is given by

σ(u)(x) = dN/(p+1)u(dx).

The functional associated with problem (11/d) is

Ẽ1/d(u) =
�

Ω1/d

(|∇u|2 + u2) dx

for u ∈ V Q1 (Ω1/d) = {u ∈ H1(Ω1/d) :
�
Ω1/d

Qd(x)|u|p+1 dx = 1}.
By direct computation as shown in [14], Lemma 1.1, we have the follow-

ing

Lemma 3. For any u ∈ V Q1 (Ω),

Ẽ1/d[σ(u)] = d−N(p−1)/(p+1)Ed(u)

and therefore

min
V Q1 (Ω1/d)

Ẽ1/d = d−N(p−1)/(p+1) min
V Q1 (Ω)

Ed(u).

The following notation is needed: for α > 0 and r ≥ 1 define

Vα(Ωr) =
{
u ∈ H1(Ωr) :

�

Ωr

|u|p+1 dx = α
}
,

V Qα (Ωr) =
{
u ∈ H1(Ωr) :

�

Ωr

Q1/r(x)|u|p+1 dx = α
}
,

m(r, α) = min
u∈Vα(Ωr)

Ẽr(u),

mQ(r, α) = min
u∈V Qα (Ωr)

Ẽr(u),

m(+, α) = min
{ �

RN+

(|∇u|2 + u2) dx : u ∈ H1(RN+ ),
�

RN+

|u|p+1 dx = α
}
,

m(∞, α) = min
{ �

RN
(|∇u|2 + u2) dx : u ∈ H1(RN ),

�

RN
|u|p+1 dx = α

}
.

Let w1 be the ground state solution of (3) with M = 1 and let w̃ =
w1/‖w1‖Lp+1 . The following result is Lemma 1.2 of [14].
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Lemma 4. For r ≥ 1 and α > 0:

(i) m(∞, 1) =
�
RN (|∇w̃|2 + |w̃|2) dx;

(ii) m(r, α) = α2/(p+1)m(r, 1) where r may be + or ∞ as well ;
(iii) m(∞, 2) = 2m(+, 1).

Now we define a comparison function in order to find an asymptotic
estimate of cd. Let % > 0 be fixed throughout this section (different from %
in Section 2) such that the neighbourhood

N%(∂Ω) = {x ∈ RN : dist(x, ∂Ω) < %}
is homotopic to ∂Ω. Define

η(t) =
{

1 for 0 ≤ t ≤ 1,
0 for t ≥ 2

and |η′(t)| ≤ 2. For P ∈ ∂Ω let wQ(P ) ≡ wP be the ground state solution of
(3) with M = Q(P ) and set

ψd(P )(x) = η

( |x− P |
%

)
wP

(
x− P
d

)

for x ∈ Ω. The comparison function is defined as

φd(P )(x) =
ψd(P )(x)

Q1/(p+1)(x)‖ψd(P )‖Lp+1(Ω)
.

Clearly, φd(P ) ∈ V Q1 (Ω). For u ∈ V Q1 (Ω) we define a “barycenter” function
as

β(u) =
�

Ω

Q(x)|u|p+1x dx.

It is clear that β(u) ∈ conv(Ω) for u ∈ V Q1 (Ω). Furthermore, using the
arguments of Proposition 2 below, one may show

β(φd(P )) = P + o(1) as d→ 0.

Proposition 2. For P ∈ ∂Ω,

Ed(φd(P )) = dN(p−1)/(p+1)
(
m

(
+,

1
Q(P )

)
+ o(1)

)

as d→ 0.

Proof. Upon substitution and expansion we obtain

Ed(φd(P )) =
1

‖ψd(P )‖2
Lp+1

�

Ω

(
d2

∣∣∣∣∇
(

ψd
Q1/(p+1)

)∣∣∣∣
2

+
∣∣∣∣

ψd
Q1/(p+1)

∣∣∣∣
2)

dx

=
1

‖ψd‖2Lp+1

(I1 + I2 + I3),
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where

I1 =
�

Ω

η2(|x− P |/%)
Q2/(p+1)

(∣∣∣∣∇wP
(
x− P
d

)∣∣∣∣
2

+ w2
P

(
x− P
d

))
dx,

I2 = d
�

Ω

[
2

%Q2/(p+1)
ηwP∇η · ∇wP

+ 2η2wP
1

Q1/(p+1)
∇wP · ∇

(
1

Q1/(p+1)

)]
dx,

I3 = d2
�

Ω

[
1

%2Q2/(p+1)
|∇η|2w2

P + η2w2
P

∣∣∣∣∇
1

Q1/(p+1)

∣∣∣∣
2

+
2

%Q1/(p+1)
ηw2

P∇η · ∇
(

1
Q1/(p+1)

)]
dx

where we have dropped the arguments of η and wP in I2 and I3 for clarity.
We examine each integral in turn.

Using the substitution z = (x− P )/d we obtain

I1 = dN
�

(Ω−P )1/d

η2(|z|d/%)
Q(dz + P )2/(p+1)

(|∇wP (z)|2 + wP (z)2) dz.

As w and |∇w| decay exponentially and Q is bounded, for any ε > 0 there
exists R > 0 such that

�

(Ω−P )1/d∩(|z|≥R)

η2

Q2/(p+1)
(|∇wP |2 + w2

P ) dz ≤ ε

2
.

For this R, (Ω − P )1/d ∩ (|z| ≤ R) → B+
R(0) in measure as d → 0. By the

mean value theorem we find that

Q(dz + P )2/(p+1) = Q(P )2/(p+1) +O(d).

Choosing d < %/R sufficiently small we get
∣∣∣∣

�

(Ω−P )1/d∩(|z|≤R)

|∇wP |2 + w2
P

Q(P + dz)2/(p+1)
dz −

�

B+
R

|∇wP |2 + w2
P

Q(P )2/(p+1)
dx

∣∣∣∣ ≤
ε

2

and therefore

I1 = dN
( �

RN+

|∇wP |2 + w2
P

Q(P )2/(p+1)
dx+ o(1)

)
.

Using the same substitution as above we estimate I2 to be
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I2 = dN
�

(Ω−P )1/d

d

[
2ηwP

%Q(P + dz)2/(p+1)
∇η · ∇wp

+
2η2wP

Q(P + dz)2/(p+1)
∇wP · ∇

(
1

Q(P + dz)1/(p+1)

)]
dz

≤ dN
[ �

(Ω−P )1/d∩(|z|≤%/d)

d
2wP

Q(P + dz)1/(p+1)
∇wP · ∇

(
1

Q1/(p+1)

)
dz

+
�

(Ω−P )1/d∩(%/d≤|z|≤2%/d)

d

[
4wP

%Q(P + dz)2/(p+1)
|∇wP |

+
2wp

Q(P + dz)1/(p+1)
∇wP · ∇

(
1

Q1/(p+1)

)]
dz

]
.

Since wP and |∇wP | decay exponentially and the terms involving Q are
bounded independently of d, we have

I2 ≤ dN (o(1)).

Precisely the same reasoning shows that

I3 ≤ dN (o(1))

and so

(20)
�

Ω

(
d2

∣∣∣∣∇
(

ψd
Q1/(p+1)

)∣∣∣∣
2

+
∣∣∣∣

ψd
Q1/(p+1)

∣∣∣∣
2)
dx

= dN
( �

RN+

|∇wP |2 + w2
P

Q(P )2/(p+1)
dx+ o(1)

)
.

Now we estimate ‖ψd‖2Lp+1 :

‖ψd‖2Lp+1 =
[ �

Ω

ηp+1
( |x− P |

%

)
wp+1
P

(
x− P
d

)
dx

]2/(p+1)

= d2N/(p+1)
[ �

(Ω−P )1/d

ηp+1
( |z|d

%

)
wp+1
P (z) dz

]2/(p+1)

= d2N/(p+1)
[ �

(Ω−P )1/d∩(|z|≤%/d)

wp+1
P (z) dz

+
�

(Ω−P )1/d∩(%/d≤|z|≤2%/d)

ηp+1
( |x− P |

%

)
wp+1
P (z) dz

]2/(p+1)
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= d2N/(p+1)
[ �

RN+

wp+1
P (z) dz + o(1)

]2/(p+1)

hence

(21) ‖ψd‖2Lp+1 = d2N/(p+1)
{[ �

RN+

wp+1
P (z) dz

]2/(p+1)
+ o(1)

}
.

From equations (20) and (21) we find

Ed(φd(P )) =
dN
( �
RN+
|∇wP |2+w2

P

Q(P )2/(p+1) dx+ o(1)
)

d2N/(p+1)([
�
RN+

wp+1
P (x) dx]2/(p+1) + o(1))

=
dN(p−1)/(p+1)

Q(P )2/(p+1)

( �
RN+
|∇wP |2 + w2

P

(
�
RN+

wp+1
P )2/(p+1)

+ o(1)
)

=
dN(p−1)/(p+1)

Q(P )2/(p+1)
(m(+, 1) + o(1))

= dN(p−1)/(p+1)
(
m

(
+,

1
Q(P )

)
+ o(1)

)
as d→ 0.

Proposition 3. For cd = minV Q1 (Ω)Ed(u), we have

cd = dN(p−1)/(p+1)
(
m

(
+,

1
M2

)
+ o(1)

)
.

Proof. As φd(P ) ∈ V Q1 (Ω) for any P ∈ ∂Ω, choosing P ∈ ∂Ω with
Q(P ) = M2 we find that

cd ≤
dN(p−1)/(p+1)

M
2/(p+1)
2

(m(+, 1) + o(1)).

Suppose this inequality is strict, so that

lim inf
d→0

d−N(p−1)/(p+1)cd <
m(+, 1)

M
2/(p+1)
2

.

Then there is a subsequence dn → 0 and un ∈ V Q1 (Ω) such that

cdn ≡ cn = Edn(un)

and

lim
n→∞

d−N(p−1)/(p+1)
n Edn(un) = A < m

(
+,

1
M2

)
.

By rescaling vn = σ(un) = d
N/(p+1)
n un(dnx) we have

lim
n→∞

d−N(p−1)/(p+1)
n Edn(un) = lim

n→∞
Ẽ1/dn(vn) = A < m

(
+,

1
M2

)
.
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It is obvious that A = limnmQ(1/dn, 1) as vn solves the rescaled problem
(11/dn). Defining

µn = χn(x)Qn(x)|vn|p+1,

where χn is the characteristic function of Ω1/dn ≡ Ωn and Qn(x) = Q(dnx),
we get �

RN
µn = 1

as vn ∈ V Q1 (Ωn). Therefore we may apply the Concentration-Compactness
principle.

Following the arguments of [14, Lemma 2.1] and replacing the function
vn there with Q

1/(p+1)
n vn we find that Vanishing of the sequence µn does

not occur.
If Dichotomy occurs, then there exists λ ∈ (0, 1) such that for

Θn(t) = sup
y∈RN

�

Bt(y)

χnQn|vn|p+1 dx and Θ(t) = lim
n→∞

Θn(t),

we have limt→∞Θ(t) = λ. For any ε > 0 there exists R0 such that Θ(R0) ≥
λ− ε/6 and there exist {yn} ⊂ RN and n0 ≥ 0 such that for n ≥ n0,

Θn(R0)− ε/6 ≤
�

BR0 (yn)

χnQn|vn|p+1 dx

and
|Θ(R0)−Θn(R0)| ≤ ε/6.

Therefore

λ− ε

6
≤ Θ(R0) ≤ Θn(R0) +

ε

6
≤

�

BR0 (yn)

χnQn|vn|p+1 dx+
ε

3

and so �

BR0 (yn)

χnQn|vn|p+1 dx ≥ λ− ε

2

for all n ≥ n0. We may also choose Rn →∞ such that

Θn(2Rn) ≤ λ+ ε/2.

With η as defined above, let ξ = 1− η and

v1
n(x) = χn(x)η

( |x− yn|
R0

)
vn(x), v2

n(x) = χn(x)ξ
( |x− yn|

Rn

)
vn(x).

It is standard to show that∣∣∣1−
�

RN
Qn(|v1

n|p+1 + |v2
n|p+1) dx

∣∣∣ ≤ ε
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for all n ≥ n0. Thus for all n ≥ n0,∣∣∣
�

RN
Qn|v1

n|p+1 dx− λ
∣∣∣ ≤ ε

2
and

∣∣∣
�

RN
Qn|v1

n|p+1 dx− (1− λ)
∣∣∣ ≤ ε

2
.

Hence �

RN
Qn|v1

n|p+1 dx = λ+ ε1
n with |ε1

n| ≤ ε,
�

RN
Qn|v2

n|p+1 dx = 1− λ− ε2
n with |ε2

n| ≤ ε.

By choosing R0 sufficiently large and keeping ε fixed we get
�

Ωn

(|∇vn|2 + |vn|2) dx−
�

Ωn

(|∇v1
n|2 + |v1

n|2) dx−
�

Ωn

(|∇v2
n|2 + |v2

n|2) dx ≥ −2ε.

Thus

A = lim
n→∞

�

Ωn

(|∇vn|2 + |vn|2) dx(22)

≥ lim
n→∞

( �

Ωn

(|∇v1
n|2 + |v1

n|2) dx+
�

Ωn

(|∇v2
n|2 + |v2

n|2) dx
)
− 2ε

≥ lim
n→∞

(mQ(1/dn, λ+ ε1
n) +mQ(1/dn, 1− λ+ ε2

n))− 2ε

≥ lim
n→∞

((λ− ε)2/(p+1)mQ(1/dn, 1)

+ (1− λ− ε)2/(p+1)mQ(1/dn, 1))− 2ε

= (λ− ε)2/(p+1)A+ (1− λ− ε)2/(p+1)A− 2ε.

Now A > 0 from the following reasoning: as the embedding H1(Ωn) →
Lp+1(Ωn) is compact, there is a constant depending only on the cone con-
dition of Ωn such that ‖vn‖p+1

Lp+1 ≤ c̃nẼ1/dn(vn). As the cone condition is
independent of n, we have c̃n ≡ c̃. As vn ∈ V Q1 (Ωn) it is trivial to see that
‖vn‖p+1

Lp+1 ≥ 1/M2 > 0. Thus Ẽ1/dn(vn)≥ c̃/M2 and A= limn Ẽ1/dn(vn)> 0.
So dividing the final equation in (22) by A gives

1 ≥ (λ− ε)2/(p+1) + (1− λ− ε)2/(p+1) − 2ε

and letting ε→ 0 we get the contradiction

1 ≥ λ2/(p+1) + (1− λ)2/(p+1) > 1.

Therefore Dichotomy does not occur.
With Vanishing and Dichotomy ruled out the sequence µn must be tight,

so there exists a sequence {yn} ⊂ RN such that for any ε > 0 there exists
R > 0 such that

(23)
�

BR(yn)

χnQn|vn|p+1 dx ≥ 1− ε.
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Assertion 1. There exists C > 0 such that dist(yn, ∂Ωn) ≤ C.

If not, then dist(yn, ∂Ωn) → ∞. From (23), yn ∈ Ωn. For ε > 0 fixed,
let R > 0 be such that (23) holds. Choose n large such that B2R(yn) ⊂ Ωn
and define

wn(x) = η

( |x− yn|
R

)
vn(x),

which clearly belongs to H1(Ωn). Choosing R larger if necessary, we have
�

Ωn

(|∇vn|2 + |vn|2) dx−
�

Ωn

(|∇wn|2 + |wn|2) dx ≥ −2ε.

Let
λn ≡

�

RN
χnQn|wn|p+1 dx ≥ 1− ε

and define

Qn =
λn�

RN |wn|p+1 dx
.

Then Qn ∈ [M1,M2] and so
�

Ωn

(|∇vn|2 + |vn|2) dx ≥
�

RN
(|∇wn|2 + |wn|2) dx− 2ε

≥ m
(
∞, λn

Qn

)
− 2ε =

λ
2/(p+1)
n

Q
2/(p+1)
n

m(∞, 1)− 2ε

≥ (1− ε)2/(p+1)

Q
2/(p+1)
n

2(p−1)/(p+1)m(+, 1)− 2ε

≥ (1− ε)2/(p+1)

M
2/(p+1)
2

2(p−1)/(p+1)m(+, 1)− 2ε

= (1− ε)2/(p+1)2(p−1)/(p+1)m

(
+,

1
M2

)
− 2ε.

Letting n→∞ and ε→ 0 gives

m

(
+,

1
M2

)
> A ≥ 2(p−1)/(p+1)m

(
+,

1
M2

)
,

a contradiction. Therefore there exists C > 0 such that

dist(yn, ∂Ωn) ≤ C.
Choose tn ∈ ∂Ωn with dist(yn, tn) ≤ C and let tn = dntn ∈ ∂Ω. Let Tn

be a unitary matrix such that Ω̃n = Tn(Ωn− tn) has yN as an inner normal
direction to ∂Ω̃n at 0.

We need the following result of [14] (Assertion 3):
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Assertion 2. For any fixed R1 > 0, as n→∞,

Tn(Ωn − tn) ∩BR1(0)

converges to B+
R1

(0) in the following sense: There exists K1 > 0 and for
each δ > 0 there exists nδ such that

{x ∈ B+
R1

(0) : xN ≥ δ} ⊂ Tn(Ωn − tn) for all n ≥ nδ,
and

LN{x ∈ Tn(Ωn − tn) ∩BR1(0) : xN ≤ δ} ≤ K1δ

where LN{. . .} is N -dimensional Lebesgue measure.

The next result is Assertion 4 of [14]:

Assertion 3. ‖vn‖L∞(Ωn) is uniformly bounded independently of n.

Now we complete the proof of Proposition 3. As µn is tight, for each
ε > 0 there exists R > 0 such that (23) holds. Since dist(yn, ∂Ωn) ≤ C,
setting R1 = R+ C gives

�

BR1 (tn)

χnQn|vn|p+1 dx ≥ 1− ε.

By Assertions 2 and 3, for the given ε choose δ1 > 0 such that

K1δ1M2‖vn‖p+1
L∞(Ωn) < ε.

Then there exists nδ1 such that
�

BR1 (tn)

χnQn|vn|p+1 dx

=
�

{x∈B+
R1

(0):xN≥δ1}

Qn(T−1
n x+ tn)|vn(T−1

n x+ tn)|p+1 dx

+
�

{x∈BR1 (0):xN<δ1}∩Tn(Ωn+tn)

Qn(T−1
n x+ tn)|vn(T−1

n x+ tn)|p+1 dx

≥ 1− ε for all n ≥ nδ1 .
As K1δ1M2‖vn‖p+1

L∞(Ωn) < ε the second integral is less than ε by the second
part of Assertion 2. Thus

�

{x∈B+
R1

(0):xN≥δ1}

Qn(T−1
n x+ tn)|vn(T−1

n x+ tn)|p+1 dx ≥ 1− 2ε

for all n ≥ nδ1 . Define xδ1 = (0, . . . , 0, δ1) and

ṽn(x) = η(|x|/R1)vn(T−1
n (x+ xδ1) + tn)
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for x ∈ RN+ , which is well defined by the first part of Assertion 2 for n
sufficiently large. Choose R1 so large to ensure that

�

Ωn

(|∇vn|2 + v2
n) dx−

�

RN+

(|∇ṽn|2 + ṽ2
n) dx ≥ −2ε

and let

λn =
�

{x∈B+
R1

(0):xN≥δ1}

Qn(T−1
n x+ tn)|vn(T−1

n x+ tn)|p+1 dx ≥ 1− 2ε.

Defining

Qn =
λn�

RN+
|ṽn|p+1 dx

we get

A = lim
n→∞

�

Ωn

(|∇vn|2 + v2
n) dx ≥ lim

n

�

RN
(|∇ṽn|2 + ṽ2

n) dx− 2ε

≥ lim
n
m

(
+,

λn

Qn

)
− 2ε = lim

n

λ
2/(p+1)
n

Q
2/(p+1)
n

m(+, 1)− 2ε

≥ (1− 2ε)2/(p+1) 1

M
2/(p+1)
2

m(+, 1)− 2ε.

Letting ε→ 0 gives the contradiction

m

(
+,

1
M2

)
> A ≥ m

(
+,

1
M2

)
,

which completes the proof.

An obvious modification of the arguments used in the above proof reveals
the following.

Lemma 5. Let dn→0 as n→∞ and assume a sequence vn∈V Q1 (Ω1/dn)
satisfies

�

Ω1/dn

(|∇vn|2 + v2
n) dx→ m

(
+,

1
M2

)

as n → ∞. Then there exists a subsequence vn, points yn ∈ RN and a
constant C independent of n such that for n sufficiently large,

∀ε ∃R > 0 lim
n→∞

�

BR(yn)∩Ω1/dn

Qn|vn|p+1 dx ≥ 1− ε

and
dist(yn, ∂Ωn) ≤ C.

Now we are in a position to prove
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Proposition 4. For % > 0 such that N%(∂Ω) is homotopic to ∂Ω, there
exist ε1 > 0 and d1 > 0 such that for any d ∈ (0, d1],

β(u) ∈ N%(∂Ω)

for all u ∈ Ecd+ε1dN(p−1)/(p+1)

d .

Proof. Suppose not. Then for each ε > 0 and d > 0 there exists u ∈
Ecd+εdN(p−1)/(p+1)

d with β(u) 6∈ N%(∂Ω). We may choose subsequences dn →
0, εn → 0 and functions

un ∈ Ecdn+εndN(p−1)/(p+1)
n

dn

with β(un) 6∈ N%(∂Ω). Using Proposition 3 we have

lim
n→∞

d−N(p−1)/p+1
n Edn(un) = m

(
+,

1
M2

)
.

Rescaling, we find vn(x) = d
N/(p+1)
n un(dnx) ∈ V Q1 (Ωn) and

lim
n→∞

�

Ωn

(|∇vn|2 + v2
n) dx = m

(
+,

1
M2

)
.

By Lemma 5, there is a subsequence vn, points yn ∈ RN and C > 0 such
that for any ε > 0 there exists R > 0 such that

lim
n→∞

�

BR(yn)∩Ωn
Qn|vn|p+1 dx ≥ 1− ε

and
dist(yn, ∂Ωn) ≤ C.

We may choose tn ∈ ∂Ω such that dist(yn, tn/dn) ≤ C and tn → t ∈ ∂Ω.
Without loss of generality we may assume that β(un)→ 0 ∈ RN .

By direct calculation,

�

Ωn

Qn|vn|p+1x dx =
β(un)1

dn
.

As β(un) 6∈ N%(∂Ω), we have t 6= 0, so without loss of generality, t =
(t1, . . . , tN ) with t1 > 0.

For ε > 0 arbitrary, let R1 > 0 such that

lim
n→∞

�

BR1 (tn/dn)∩Ωn
Qn|vn|p+1 dx ≥ 1− ε.

Let s = min{y1 : (y1, . . . , yN ) ∈ ∂Ω}. For n large we then have



Shape and multiplicity of solutions 141

β(un)1

dn
=

�

Ωn

Qn|vn|p+1x1 dx

=
�

Ωn∩BR1 (tn/dn)

Qn|vn|p+1x1 dx+
�

Ωn−BR1 (tn/dn)

Qn|vn|p+1x1 dx

≥
(
t1n
dn
−R1

) �

Ωn∩BR1 (tn/dn)

Qn|vn|p+1 dx

−|s|
dn

�

Ωn−BR1 (tn/dn)

Qn|vn|p+1 dx

≥
(
t1n
dn
−R1

)
(1− ε)− |s|

dn
ε

so
β(un)1 ≥ (t1n − dnR1)(1− ε)− |s|ε.

Letting n→∞ and ε→ 0 gives the contradiction 0 ≥ t1 > 0.

We recall that the Lusternik–Schnirelman category of a subset A ⊂ ∂Ω,
denoted by cat∂Ω(A), equals k if A can be covered by k closed contractible
sets in ∂Ω, but not k − 1 such sets. We set cat∂Ω(∂Ω) = cat(∂Ω).

Lemmas 6 and 7 below are proved exactly as in [14].

Lemma 6. Let ε1 be given as in Proposition 3. For any ε ∈ (0, ε1) there
exists dε > 0 such that

cat(Ecd+εd
d ) ≥ 2 cat(∂Ω)

where εd = dN(p−1)/(p+1)ε.

Lemma 7. Let u be a critical point of Ed(u) with

Ed(u) ≤ 2(p−1)/(p+1)cd.

Then u does not change sign.

Now we prove the main result of this section.

Theorem 3. If d is sufficiently small , then (1d) has at least cat(∂Ω)
distinct solutions.

Proof. From Proposition 3,

cd = dN(p−1)/(p+1)
(
m

(
+,

1
M2

)
+ o(1)

)

as d→ 0. For ε1 as in Proposition 3, choose ε0 ∈ (0, ε1] such that

ε0 < (2(p−1)/(p+1) − 1)m
(

+,
1
M2

)
.
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Then there exists d0 such that for all d ∈ (0, d0),

cd + dN(p−1)/(p+1)cd < 2(p−1)/(p+1)cd.

For this ε0 ∈ (0, ε1], there exists, by Lemma 6, a d′0 > 0 such that

cat(Ecd+εd
d ) ≥ 2 cat(∂Ω)

for all d ∈ (0, d′0), where εd = dN(p−1)/(p+1)ε0.
Applying the minimax method here yields at least 2 cat(∂Ω) critical

points of Ed. From Lemma 7 none of the solutions change sign and so there
are at least cat(∂Ω) solutions of (1d).

5. Multi-peak solutions. This section is devoted to the construction
of multi-peak solutions. We aim to show that local minima of the restriction
of Q to ∂Ω generate multi-peak solutions. Our approach is a modification
of the construction from [4].

For a fixed integer k ≥ 1 we set α = (α1, . . . , αk) ∈ Rk, x = (x1, . . . , xk)
∈ RkN , where xi ∈ RN , i = 1, . . . , k. For R > 0 we define

Dd,R =
{
x : xi ∈ ∂Ω, i = 1, . . . , k,

|xi − xj |
d

≥ R, i 6= j

}
.

We denote by U the ground state solution of (3) with M = 1. We use the
notation Ud,z(y) = U((y − z)/d). It is convenient for our purposes to define
a scalar product in H1(Ω) by

〈u, v〉d =
�

Ω

(d2∇u∇v + uv) dx

and let ‖u‖d = 〈u, u〉1/2d . For every x = (x1, . . . , xk) ∈ ∂Ω× . . .×∂Ω, we set

Ed,x,k =
{
v ∈ H1(Ω) : 〈Ud,xi , v〉d =

〈
∂Ud,xi

∂τi,j
, v

〉

d

= 0,

i = 1, . . . , k, j = 1, . . . , N − 1
}
,

where {τi,1, . . . , τi,N−1} form an orthogonal basis of the tangent space to
∂Ω at xi. Let Q◦ = minx∈∂Ω Q(x) and set

Md,δ,R = {(α, x, v) : |αi −Q−1/(p−1)
◦ | ≤ δ, i = 1, . . . , k,

x ∈ Dd,R, v ∈ Ed,x,k, ‖v‖d ≤ δdN/2}
for some constant δ > 0. We define a functional Jd : Md,δ,R → R by

Jd(α, x, v) = Id

( k∑

i=1

αiUd,xi + v
)
.

The proof of the following lemma is similar to that of Proposition 7 in [2].
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Lemma 8. There exist constants d◦ > 0, δ > 0 and R > 0 such that for
every d ∈ (0, d◦], every u ∈ H1(Ω) satisfying

∥∥∥u−
k∑

i=1

Ud,xi
∥∥∥
d
≤ δdN/2

for some x = (x1, . . . , xk) ∈ Dd,R admits a unique decomposition

u =
k∑

i=1

αd,iUd,xid + vd,

where (αd, xd, vd) ∈Md,δ,k.

The next result is a consequence of Lemma 8 and shows that in or-
der to find critical points of Id it is sufficient to find critical points of the
functional Jd.

Proposition 5. There exist d◦ > 0, δ > 0 and R > 0 such that for
every d ∈ (0, d◦], a point (α, x, v) ∈ Md,δ,R is a critical point of Jd if and
only if

u =
k∑

i=1

αiUd,xi + v

is a critical point of Id.

It is known [13] that critical points of Id of the form u =
∑k
i=1 αiUd,xi+v

are positive. According to Proposition 4 to find a critical point (α, x, v) ∈
Md,δ,R of Jd it is enough to find (α, x, v) ∈ Md,δ,R and constants Al, Bli,
l = 1, . . . , k, i = 1, . . . , N − 1, such that

(24)
∂Jd(α, x, v)

∂τl,i
=
N−1∑

j=1

Blj

〈
∂2Ud,xl

∂τl,i∂τl,j
, v

〉

d

,

i = 1, . . . , N − 1, l = 1, . . . , k,

(25)
∂Jd(α, x, v)

∂αl
= 0, l = 1, . . . , k,

(26)
∂Jd(α, x, v)

∂v
=

k∑

i=1

AiUd,xi +
k∑

l=1

N−1∑

j=1

Blj
∂Ud,xl

∂τl,j
.

In the first step we solve equations (25) and (26) for each fixed x ∈ Dd,R.
Then we solve (24).

Proposition 6. There exist d◦ > 0, δ > 0 and R > 0 such that for
each d ∈ (0, δ◦] there exists a C1-map (αd(x), vd(x)) : Dd,R → Rk × Ed,x,k
satisfying

∂Jd(αd(x), x, vd(x))
∂αl

= 0, l = 1, . . . , k,(27)
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〈
∂Jd(αd(x), x, vd(x))

∂v
,w

〉

d

= 0(28)

for each w ∈ Ed,x,k, and moreover ,

|αl −Q−1/(p−1)
◦ | = O

(
d+

∑

i6=j
exp
(
−1 + σ

2
|xi − xj |

d

)
, l = 1, . . . , k,

‖vd‖d = O

(
dN/2

(
d+

∑

i6=j
exp
(
−1 + σ

2
|xi − xj |

d

))

for some constant σ > 0.

Results of this nature are known and we refer to [4], [13]. Let (αd, vd) be
the mapping from Proposition 6. Then there exists xd ∈ Dd,R such that

Jd(αd(xd), xd, vd(xd)) = sup{Jd(αd(x), x, vd(x)) : x ∈ Dd,R}.
To proceed further we need some estimates of Jd. Let H(x) be the mean
curvature of ∂Ω.

Lemma 9. Let x ∈ ∂Ω and set

K(x) =
1
2
H(x)

�

RN−1

Up+1(y′, 0)|y′|2 dy.

Then
�

Ω

Q(y)Up+1
d,x (y) dy = dNQ(x)(A− dK(x) +O(d2)) +O(dN+α),

where A = 1
2

�
RN U

p+1(y) dy and α is a Hölder exponent for Q.

Proof. For simplicity we assume that x = 0. We choose the coordinate
system so that

Ω ∩Bτ (0) = {yN > f(y′)}, ∂Ω ∩Bτ (0) = {yN = f(y′)},
where τ > 0 is a small constant and f(y′) satisfies

f(y′) =
1
2

N−1∑

i=1

%iy
2
i +O(|y′|3) for y′ ∈ BN−1

τ (0) = {y′ : |y′| ≤ τ}.

Then H(0) = (N − 1)−1∑N−1
i=1 %i. Letting Ωd,x = {y : dy + x ∈ Ω},

Ωd = Ωd,0 and using the result from [4] (see also [8]) we get
�

Ω

Q(y)Up+1
d,0 (y) dy = Q(0)

�

Ω

Up+1
d,0 (y) dy +

�

Ω

(Q(y)−Q(0))Up+1
d,0 (y) dy

= dNQ(0)(A− dK(0) +O(d2))

+
�

Ω

(Q(y)−Q(0))Up+1
d,0 (y) dy.
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It follows from the Hölder condition for Q that∣∣∣
�

Ω

(Q(y)−Q(0))Up+1
d,0 (y) dy

∣∣∣ ≤ C
�

Ω

|y|αUp+1
d,0 (y) dy

= CdN+α
�

Ωd

|y|αUp+1(y) dy

≤ CdN+α
�

RN
|y|αUp+1(y) dy

for some constant C > 0 and the result follows.

We also need the following asymptotic relation (see Lemma A.2 in [4]):

(29)
�

Ω

(d2|∇Ud,x|2 + U2
d,x) dx = dN (A− dK(x) + dM(x) +O(d2)),

where K(x) is as in Lemma 9 and

M(x) =
1
2
H(x)

�

RN−1

U(y′, 0)
∂U(y′, 0)

∂r
|y′| dy.

Proposition 7. Let xd be a point in Dd,R where Jd attains its maxi-
mum. Then

|xid − xjd|
d

→∞ as d→ 0, i 6= j,

xid → xi ∈ ∂Ω as d→ 0 and xi satisfies Q(xi) = min∂Ω Q(x), i = 1, . . . , k.

Proof. Expanding Jd(α, x, v) around (Q,x, 0), where Q = (Q−1/(p−1)
◦ ,

. . . , Q
−1/(p−1)
◦ ) and using Proposition 6 we get

Jd(αd(x), x, vd(x))

= Jd(Q,x, 0) +O

(
dN
(
d2 +

∑

i6=j
exp
(
−(1 + σ)

|xi − xj |
d

)))
.

Since xd is a point in Dd,R where the maximum is achieved we have

Jd(αd(xd), xd, vd(xd)) ≥ Jd(αd(zd), zd, vd(zd))
for every zd ∈ Dd,R. Thus

(30) Jd(Q,xd, 0) +O

(
dN
(
d2 +

∑

i6=j
exp
(
−(1 + σ)

|xid − xjd|
d

)))

≥ Jd(Q, zd, 0) +O

(
dN
(
d2 +

∑

i6=j
exp
(
−(1 + σ)

|zid − zjd|
d

)))
.

Let ei, i = 1, . . . , k, be tangent vectors to ∂Ω at x◦, with ei 6= ej for
i 6= j, and zi(t) be a curve in ∂Ω satisfying zi(0) = x◦, z′i(0) = ei, where
Q(x◦) = Q◦. Let zid = zi(d1/2), i = 1, . . . , k. Then
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|zid − zjd|
d

=
|ei − ej |+ o(1)

d1/2
→∞ as d→ 0.

Therefore zd ∈ Dd,R if d > 0 is sufficiently small. It follows from Lemma 9
and (29) that

(31) Jd(Q, zd, 0)

=
1
2

∥∥∥
k∑

i=1

Q
−1/(p−1)
◦ Ud,zid

∥∥∥
2

d
− 1
p+ 1

�

Ω

Q(y)
∣∣∣
k∑

i=1

Q
−1/(p−1)
◦ Ud,zid

∣∣∣
p+1

dy

=
1
2

k∑

i=1

Q
−2/(p−1)
◦ ‖Ud,zid‖

2
d

− 1
p+ 1

k∑

i=1

Q
−(p+1)/(p−1)
◦

�

Ω

Q(y)Up+1
d,zid

dy +O(dNe−c◦/d
1/2

)

=
dN

2

( k∑

i=1

Q
−2/(p−1)
◦ (A− dK(zid) + dM(zid) +O(d2))

)

− dN

p+ 1

k∑

i=1

Q(zid)Q
−(p+1)/(p−1)
◦ (A− dK(zid) +O(d2)) +O(dN+α)

=
kdN

2
(Q−2/(p−1)
◦ (A− dK(x◦) + dM(x◦) +O(d3/2)))

− kdN

p+ 1
Q
−2/p−1
◦ (A− dK(x◦) +O(d3/2)) +O(dN+α)

= k

(
1
2
− 1
p+ 1

)
dNAQ

−2/(p−1)
◦ +O(dN+α)

for some constant c◦ > 0. For Jd(Q,xd, 0) we have the estimate

Jd(Q,xd, 0) =
1
2

∥∥∥
k∑

i=1

Q
−1/(p−1)
◦ Ud,xid

∥∥∥
2

d

− 1
p+ 1

�

Ω

Q(y)
∣∣∣
k∑

i=1

Q
−1/(p−1)
◦ Ud,xid

∣∣∣
p+1

dy

=
k∑

i=1

(
1
2
Q
−2/(p−1)
◦ ‖Ud,xid‖

2
d

− 1
p+ 1

Q
−(p+1)/(p−1)
◦

�

Ω

Q(y)Up+1
d,xid

dy

)
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+
1
2

∑

i6=j
Q
−2/(p−1)
◦ 〈Ud,xid , Ud,xjd〉d

− 1
p+ 1

[ �

Ω

Q(y)
∣∣∣
k∑

i=1

Q
−1/(p−1)
◦ Ud,xid

∣∣∣
p+1

dy

−
k∑

i=1

�

Ω

Q
−(p+1)/(p−1)
◦ Q(y)Up+1

d,xid
dy
]
.

We denote the last two terms on the right side by P1 and − 1
p+1P2, respec-

tively. For P1 we have the estimate (see [4])

P1 =
1
2

∑

i6=j
Q
−2/(p−1)
◦ 〈Ud,xid , Ud,xjd〉d

=
∑

i<j

Q
−2/(p−1)
◦

�

Ω

Up
d,xid

Ud,xjd
dy

+O

(
dN+1

∑

i6=j
exp
(
− (1− θ)|xid − xjd|

d

))
.

To estimate P2 we make repeated use of the inequality∣∣|a+ b|p − ap − bp − pap−1b− pabp−1
∣∣

≤
{
Cap/2bp/2 if 2 < p ≤ 3,
C(ap−2b2 + a2bp−2) if p > 3,

and we get

P2 =
�

Ω

Q(y)
∣∣∣
k∑

i=1

Q
−1/(p−1)
◦ Ud,xid

∣∣∣
p+1

dy −
k∑

i=1

�

Ω

Q
−(p+1)/(p−1)
◦ Q(y)Up+1

d,xid
dy

= Q
−(p+1)/(p−1)
◦

�

Ω

Q(y)
( k∑

i=2

Ud,xid

)p+1
dy

−Q−(p+1)/(p−1)
◦

k∑

i=2

�

Ω

Q(y)Up+1
d,xid

dy

+ (p+ 1)Q−(p+1)/(p−1)
◦

�

Ω

Q(y)
( k∑

i=2

Ud,xid

)p
Ud,x1

d
dy

+ (p+ 1)Q−(p+1)/(p−1)
◦

�

Ω

Q(y)Up
d,x1

d

k∑

i=2

Ud,xid dy

+O

(
dN
∑

i6=j
exp
(
− (1 + σ)|xid − xjd|

d

))
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= (p+ 1)Q−(p+1)/(p−1)
◦

�

Ω

Q(y)
k−1∑

j=1

( k∑

i=j+1

Ud,xid

)p
Ud,xjd

dy

+ (p+ 1)Q−(p+1)/(p−1)
◦

�

Ω

Q(y)
∑

i<j

Up
d,xid

Ud,xjd
dy

+O

(
dN
∑

i6=j
exp
(
− (1 + σ)|xid − xjd|

d

))
.

Since

Q
−2/(p−1)
◦

∑

i<j

�

Ω

Up
d,xid

Ud,xjd
dy −Q−(p+1)/(p−1)

◦
�

Ω

Q(y)
∑

i<j

Up
d,xid

Ud,xjd
dy

= Q
−2/(p−1)
◦

�

Ω

(
1− Q(y)

Q◦

)∑

i<j

Up
d,xid

Ud,xjd
dy < 0,

we derive the following estimate:

(32) Jd(Q,xd, 0)

≤ dN
[
k

2
AQ
−2/(p−2)
◦ − 1

p+ 1
A

k∑

i=1

Q
−(p+1)/(p−1)
◦ Q(xid)

−
(

1
2
− 1
p+ 1

)
d

k∑

i=1

Q
−2/(p−1)
◦ K(xid) +O(d2)

]
+O(dN+α)

−Q−(p+1)/(p−1)
◦

�

Ω

Q(y)
k−1∑

j=1

( k∑

i=j+1

Ud,xid

)p
Ud,xjd

dy

+O

(
dN
∑

i6=j
exp
(
− (1 + σ)|xid − xjd|

d

))
.

Inserting estimates (31) and (32) into (30) we get

(33) − k

p+ 1
AQ
−2/(p−1)
◦

≤ − 1
p+ 1

AQ
−(p+1)/(p−1)
◦

k∑

i=1

Q(xid)

−d−NQ−(p+1)/(p−1)
◦

�

Ω

Q(y)
k−1∑

j=1

( k∑

i=j+1

Ud,xid

)p
Ud,xjd

dy

+O

(∑

i6=j
exp

(
(1 + σ)|xid − xjd|

d

))
+O(dα).
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Since

d−NQ−(p+1)/(p−1)
◦

�

Ω

Q(y)
k−1∑

j=1

( k∑

i=j+1

Ud,xid

)p
Ud,xjd

dy

≥ c◦
∑

i6=j
exp
(
− (1 + σ/2)|xid − xjd|

d

)

for some c◦ > 0 and for large R > 0 we deduce from (33) that
k∑

i=1

Q(xid) +O(dα) + c◦
∑

i6=j
exp
(
−
(

1 +
σ

2

) |xid − xdj |
d

)

+O

(∑

i6=j
exp
(
−(1 + σ)

|xid − xjd|
d

))
≤ kQ◦.

Taking R sufficiently large we deduce that

(34)
k∑

i=1

Q(xid) +O(dα) + c1
∑

i6=j
exp
(
−
(

1 +
σ

2

) |xii − xjd|
d

)
≤ kQ◦.

Since Q(xid) ≥ Q◦, i = 1, . . . , k, we see that

lim
d→0

|xid − xjd|
d

=∞

and necessarily xid → xi as d→ 0. Letting d→ 0 in (34) we get
k∑

i=1

Q(xi) ≤ kQ(x◦) = k min
x∈∂Ω

Q(x)

and the result follows.

From Propositions 6 and 7 we deduce the following existence result:

Theorem 4. For each positive integer k, there exists a d◦ = d◦(k) such
that for each d ∈ (0, d◦], problem (1d) has a solution of the form

ud =
k∑

i=1

αidUd,xid + vd,

where

αid → Q
−1/(p−1)
i , i = 1, . . . , k,

|xid − xjd|
d

→∞ for i 6= j, xid → xi

as d → 0 and xid satisfies Q(xi) = min∂Ω Q(x), k = 1, . . . , l. In particular ,
if Q|∂Ω has only one global minimum point at x◦, then xid → x◦ as d→ 0,
i = 1, . . . , k.
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6. Effect of the graph topology of the coefficient Q. In this section
we examine the effect of the graph topology of the coefficient Q on the
number of one-peak solutions. We follow some ideas from the paper [3],
where the effect of the graph topology of Q was studied for the Dirichlet
problem. Let Qm = maxx∈∂Ω Q(x) and set

M = {x ∈ ∂Ω : Q(x) = Qm} and M% = {x ∈ ∂Ω : dist(x,M) < %},
where % > 0 is a small number. The sets Ed,x,k, with k = 1, introduced in
Section 5, are now denoted by Ed,x, that is,

Ed,x =
{
v ∈ H1(Ω) : 〈Ud,x, v〉d =

〈
∂Ud,x
∂τi

, v

〉

d

= 0, i = 1, . . . , N − 1
}
,

where {τi}, i = 1, . . . , N − 1, is an orthogonal basis of the tangent space to
∂Ω at x. For each δ > 0 small enough we define

Md,% = {(α, x, v) : |α−Q−1/(p−1)
m | ≤ δ, x ∈M%, v ∈ Ed,x, ‖v‖d ≤ δdN/2}.

For (α, x, v) ∈ Md,% we set

Jd(α, x, v) = Id(αUd,x + v).

As in Section 5 we have the following result:

Proposition 8. There exist d◦ > 0, δ > 0 such that for every d ∈ (0, d◦)
a point (α, x, v) ∈Md,% is a critical point of the functional Jd(α, x, v) if and
only if αUd,x + v is a critical point of Id.

Consequently, to find a critical point (α, x, v) ∈ Md,% we need to solve
the following problem: find constants A,Bi, i = 1, . . . , N −1, and (α, x, v) ∈
Md,% such that

∂Jd
∂τi

=
N−1∑

j=1

Bj

〈
∂2Ud,x
∂τi∂τj

, v

〉

d

, i = 1, . . . , N − 1,(35)

∂Jd
∂α

= 0,(36)

∂Jd
∂v

= AUd,x +
N−1∑

j=1

Bj
∂Ud,x
∂τj

.(37)

We need a result analogous to Proposition 6.

Proposition 9. There exist d◦ > 0, δ > 0 such that for every d ∈
(0, d◦), there exists a C1-mapping (αd(x), vd(x)) : M% → R×Ed,x satisfying

∂Jd(αd(x), x, vd(x))
∂α

= 0,
〈
∂Jd(αd(x), x, vd(x))

∂v
,w

〉

d

= 0
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for every w ∈ Ed,x and

|αd(x)−Q−1/(p−1)
m | = O(dN/2+α), ‖vd‖d = O(dN/2+1).

Proof. Let J∗(x,w) = J(α, x, v) = Id(αUd,x + v), where w = (β, v) =
(α−Q−1/(p−d)

m , v). As in [4] (see also [13]) we expand J∗(x,w) at w = 0:

J∗(w, x) = J∗(0, x) + 〈fd,x, w〉d + 1
2 〈Qd,xw,w〉+Rd,x(w),

where fd,x ∈ R× Ed,x is given by

〈fd,x, w〉d =
[
Q−1/(p−1)
m ‖Ud,x‖2d −Q−p/(p−1)

m

�

Ω

Q(y)Up+1
d,x dy

]
β

−Q−p/(p−1)
m

�

Ω

Q(y)Upd,xv dy

= J1 · β + J2(v),

Qd,x is a linear map from R×Ed,x to R×Ed,x and Rd,x is the higher order
term satisfying

R
(i)
d,x(w) = O(‖w‖min(p−i,3−i)

d ), i = 0, 1, 2.

Repeating the argument from [4] we show that Qd,x is invertible and ‖Q−1
d,x‖

≤ C, where C is independent of d and x. Obviously, equations (36) and (37)
are equivalent to

fd,x +Qd,xw +R′d,x(w) = 0.

From the implicit function theorem this equation has a solution wd ∈ R ×
Ed,x and wd satisfies

‖wd‖d ≤ C‖fd,x‖.
We now estimate ‖fd,x‖. For the term J1 of β we have (we eventually drop
the d, x subscript)

J1 = Q−1/(p−1)
m ‖Ud,x‖2d −Q−p/(p−1)

m

�

Ω

Q(y)Up+1
d,x dy

= Q−1/(p−1)
m

[ �

Ω

(d2|∇U |2 + U2) dy −Q−1
m

�

Ω

Q(y)Up+1 dy
]

= Q−1/(p−1)
m

[ �

Ω

(
U2 − Q(y)

Qm
Up+1

)
dy +

�

Ω

d2|∇U |2 dy
]

= Q−1/(p−1)
m

[ �

Ω

(
U2 − Q(y)

Qm
Up+1

)
dy

+
�

∂Ω

d2U
∂U

∂ν
dσ −

�

Ω

d2U∆U dy

]
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= Q−1/(p−1)
m

[ �

Ω

(−d2∆Ud,x + Ud,x − Upd,x) dy

+
�

Ω

(
1− Q(y)

Qm

)
Up+1
d,x dy +

�

∂Ω

d2U
∂U

∂ν
dσ

]
.

After scaling z = (y − x)/d we find the first integral to be 0. The third
integral is O(dN+1). For the second integral we have the estimate

�

Ω

(
1− Q(y)

Qm

)
Up+1
d,x dy = dN (A− dK(x) +O(d2))

−dN Q(x)
Qm

(A− dK(x) +O(d2)) +O(dN+α)

= dNA

(
1− Q(x)

Qm

)
+O(dN+α) + o(dN+1).

The estimates for αd and ‖vd‖d easily follow.

Problem (1)d is reduced to finding x ∈ M% such that equation (34) is
satisfied.

Proposition 10. Let (αd, vd) be the mapping from Proposition 9. Then

Jd(αd(x), x, vd(x)) = dN
[

A

2Q2/(p−1)
m

(
1− 2

p+ 1
Q(x)
Qm

)
+O(d)

]
,

where A is the constant defined in Lemma 9.

Proof. It follows from Proposition 9 that
�

Ω

d2|αd∇Ud,x +∇vd|2 dx+
�

Ω

(αdUd,x + vd)2 dx

= α2
d‖Ud,x‖2d + ‖vd‖2d + 〈Ud,x, v〉 = α2

d‖Ud,x‖2d +O(dN+2).

Next we have
�

Ω

Q(y)|αdUd,x + vd|p+1 dy

=
�

Ω

Q(y)|αdUd,x|p+1 dy

+ (p+ 1)
�

Ω

Q(y)|αdUd,x + θ(y)vd|p−1(αdUd,x + θ(y)vd) dy,

where 0 < θ ≤ 1. Hence
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�

Ω

Q(y)|αdUd,x + θ(y)vd|p|vd| dy

≤ 2p
�

Ω

Q(y)|αdUd,x|p|vd| dy + 2p
�

Ω

Q(y)|vd|p+1 dy

≤ 2p max
Ω

Q
( �

Ω

|αdUd,x|p+1 dy
)p/(p+1)( �

Ω

|vd|p+1 dy
)1/(p+1)

+ 2p
�

Ω

|vd|p+1 dx

= O(dNp/(p+1)+N/2+1) +O(d(N/2+1)(p+1)).

Inserting the above estimates into Id(αdUd,x + vd) we get

Id(αdUd,x + vd) =
α2
d

2
‖Ud,x‖22 −

1
p+ 1

�

Ω

Q(y)|αdUd,x|p+1 dy

+O(dN+2) + (O(dN+α) +O(dN ))O(dN/2+1)

=
α2
d

2
‖Ud,x‖22 −

1
p+ 1

�

Ω

Q(y)|αdUd,x|p+1 dy +O(dN+1).

Applying Lemma 9 and the estimate (29) we obtain

Id(αdUd,x + v) =
α2
d

2
[dN (A− dK(x) + dM(x) +O(d2))]

−α
p+1
d

p+ 1
[dNQ(x)(A− dK(x) +O(d2))]

+O(dN+α) +O(dN+1)

=
α2
d

2
dNA

(
1− 2αp−1

d

p+ 1
Q(x)

)

+
α2
dd
N

2
(d(M(x)−K(x)) +O(d2))

+
αp+1
d

p+ 1
dNQ(x)(dK(x) +O(d2)) +O(dN+α) +O(dN+1)

=
α2
d

2
dNA

(
1− 2αp−1

d

p+ 1
Q(x)

)
+O(dN+1).

The result follows by applying the estimate |αd − Q−1/(p−1)
m | = O(dN/2+α)

from Proposition 9.

To proceed further we define a functional F : M% → R by F (x) =
Jd(αd(x), x, vd(x)), where (αd, vd) is the mapping from Proposition 9. Let
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ad = dN
[

A

2Q2/(p−1)
m

(
1− 2

p+ 1

)
+ ds

]
,

where 0 < s < 1. We show that there exists d1 > 0 sufficiently small such
that the flow defined by

dY (t)
dt

= −grad F (Y (t)),

Y◦ = Y (0) ∈ F ad = {x ∈ M% : F (x) < ad}
does not leave M% for 0 < d ≤ d1.

Lemma 10. There exists d1 > 0 such that for every d ∈ (0, d1) and every
x ∈ ∂M% we have F (x) > ad.

Proof. Arguing by contradiction assume that there are sequences dn → 0
and {xn} ⊂ ∂M% such that F (xn) ≤ adn . We then have

A

2Q2/(p−1)
m

(
1− 2

p+ 1
Q(xn)
Qm

)
+O(dn) ≤ A

2Q2/(p−1)
m

(
1− 2

p+ 1

)
+ dsn.

We may assume that xn → x◦ ∈ ∂M%. Letting n→ 0 in the last inequality
we deduce that Q(x◦)/Qm ≥ 1, which contradicts the fact that x◦ ∈ ∂M%

and Q(x◦) < Qm.

Lemma 11. There exists d2 > 0 small enough such that M ⊂ F ad for
0 < d ≤ d2.

Proof. In the contrary case there exist sequences dn → 0 and {xn} ⊂ M
such that F (xn) > adn . From this we get

dNn

[
A

2Q2/(p−1)
m

(
1− 2

p+ 1
Q(xn)
Qm

)
+O(dn)

]

> dNn

[
A

2Q2/(p−1)
m

(
1− 2

p+ 1

)
+ dsn

]
,

which is impossible since Q(xn) = Qm and 0 < s < 1.

Theorem 4. Suppose that Q(x) 6≡ Const on ∂Ω. Then there exists a
constant % > 0 such that problem (1d) has catM%(M) solutions for 0 < d ≤
min(d1, d2), of the following type:

ud = αdUd,xd + vd

where as d→ 0, αd → Q
−1/(p−1)
m , ‖vd‖d → 0 and xd → x◦ ∈ M.

Proof. In view of Lemmas 10 and 11 we conclude that

#{x ∈ M% : DF (x) = 0} ≥ catM%(F
ad) ≥ catM%(M)

and the result readily follows.
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Appendix. We only describe the main steps of the proof of Proposi-
tion 1 and for more details we refer to the paper [11]. Let ΦPd be the mapping
defined in Section 2 associated with Pd ∈ ∂Ω, where ud attains its maximum
on Ω. In what follows we assume Pd = P and write ψ, Φ, Φj , Ψ , Ψj instead
of ψPd , ΦPd , ΦPd,j , ΨPd , ΨPd,j , respectively. We assume that Φ is defined on
an open set containing the closed ball B3k = B(0, 3k), where k > 0 is a
small constant. We set

wd(z) =

{
ud(Φ(dz)) for z ∈ B+

3k/d,

ud(Φ(dz′,−dzN )) for z ∈ B−3k/d.

As in [12] we check that wd → wM in C2
loc(RN ). We need a first order

approximation in d of wd. Towards this end we set

(A1) wd(z) = wM (z) + dw̃d(z).

The function wd satisfies the equation

(A2)
N∑

i,j=1

a∗ij(z)
∂wd
∂zi∂zj

+ d
N∑

j=1

b∗j (z)
∂wd
∂zj
− wd +Q(Φ(dz))wpd = 0

in B3k/d, where the coefficients a∗ij and b∗j are expressed in terms of the
derivatives of Ψ (see p. 835 in [12]), and moreover,

∂wd
∂zN

(z′, 0) = 0 for |z′| < 3k
d
.

Let χ ∈ C2(R) be a cut-off function satisfying 0 ≤ χ(t) ≤ 1 on R, χ(t) = 0
if |t| ≥ 3/2 and χ(t) = 1 if |t| < 1. We set χR(z) = χ(|z|/R) for z ∈ RN and
WR(z) = χR(z)wd(z). We see that WR ∈ C2(RN ), WR(z) = wd(z) on BR
and WR(z) = 0 on RN − B2R. From now on we assume that R = k/d. We
let dφR(z) = WR(z) − wM (z), and we see that φR(z) = w̃d on Bk/d. The
function φR satisfies the equation

LφR + ARφR + gR + h(φR) = 0,

where

L = ∆− 1− pMwp−1
M ,

gR =
1
d
ARwM −

1
d

(∆χR + ARχR)wd −
1
d

N∑

i,j=1

(a∗ij + a∗ji)
∂χR
∂zi

∂wd
∂zj

,

h(φR) =
1
d

[Q(Φ(dz))χRw
p
d −MwpM + pMwp−1

M dφR],
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and

AR = dχ2R(z)
(

2|zN |
N−1∑

i,j=1

ψd,ij
∂2

∂zi∂zj
− αd sgn zN

∂

∂zN

)

+ χ3R

( N−1∑

i,j=1

αij(z)
∂2

∂zi∂zj
+ d

N∑

j=1

βj(z)
∂

∂zj

)
,

where

ψd,ij =
∂2ψd
∂zi∂zj

(0) and αd = ∆ψd(0).

Using Lemmas 4.2 and 4.3 from [11] we can formulate the existence result
for the following problem:

(A3) ∆φ− φ+Mwp−1
M φ+ 2|zN |

N−1∑

i,j=1

ψd,ij
∂2wM
∂zi∂zj

− αd(sgn zN )
∂wM
∂zN

= 0 in RN ,

(A4) φ(z)→ 0 as |z| → ∞.
Proposition A1. Problem (A3)–(A4) has a unique solution φ∈C2(RN )

satisfying
�

RN
φ
∂wM
∂zj

dz = 0 for j = 1, . . . , N.

Furthermore, φ decays exponentially at infinity :

|φ(z)| ≤ Ce−µ|z| for z ∈ RN ,
for some constants C > 0 and µ > 0 independent of d. The function φ is
even in zN and

(A5) lim
d→0

d−1 sup
z∈Bk/d

|wd(z)− (wM (z) + dφ(z))| = 0.

Sketch of proof. Since wd(z) − (wM (z) + dφ(z)) = d(φR(z) − φ(z)) on
BR, for the proof of the last assertion (A5) it is sufficient to show that
sup |φR(z)−φ(z)| → 0 as R→∞. This is established by writing the follow-
ing decomposition:

φR(z) =
N∑

j=1

aj(R)φj(z) + ζR(z),

where

φj(z) = c◦
∂wM
∂zj

, c◦ =
(

N
�
RN w

′
M (|z|)2 dz

)1/2
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and showing that aj(R)→ 0 and ζR(z)→ φ as R→∞ (see Lemmas 4.7–4.9
in [11]).

Now we are in a position to establish the asymptotic formula (18) for cd.
Multiplying (A3) by wM and integrating over RN we obtain

�

RN+

(p− 1)MwpMφdz = 2γαdM−2/(p−1)(A6)

+ αdM
−2/(p−1)

�

RN+

w1
∂w1

∂zN
dz

(for details see Lemma 3.1 in [11]). Since wd satisfies (1) we have, using
formula (A3) from [12],

cd =
�

Ω

p− 1
2(p+ 1)

Q(x)up+1
d dx

=
�

D1

p− 1
2(p+ 1)

Q(x)up+1
d dx+

�

Ω−D1

p− 1
2(p+ 1)

Q(x)up+1
d dx

=
�

D1

p− 1
2(p+ 1)

Q(x)up+1
d dx+O(e−µ/d)

= dN
�

B+
k/d

p− 1
2(p+ 1)

wd(z)p+1M(1− αddzn +O(d2|z|2))

+
�

D1

p− 1
2(p+ 1)

(Q(x)−M)up+1
d dx+O(e−µ/d)

= I1 + I2 +O(e−µ/d).

We estimate I1 using Proposition A1:

I1 =
p− 1

2(p+ 1)
dN

�

B+
k/d

Mwd(z)p+1(1− dαdzN ) dz + dN+2

=
p− 1

2(p+ 1)
dN

�

B+
k/d

M(wM + d(φ+ o(1)))p+1(1− dαdzN ) dz +O(dN+2)

= dN
[
p− 1

2(p+ 1)

�

B+
k/d

Mwp+1
M dx+

d

2
(p− 1)

�

B+
k/d

MwpMφdx

−αd
p− 1

2(p+ 1)

�

B+
k/d

Mwp+1
M zN dz + o(d)

]
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= dN
[
p− 1

2(p+ 1)

�

RN+

Mwp+1
M dz +

d

2
(p− 1)

�

RN+

MwpMφdz

− p− 1
2(p+ 1)

αdd
�

RN+

Mwp+1
M zN dz + o(1)

]
.

It then follows from (A6) and an obvious modification of formula (3.13) in
[12] that

I1 = dN
{

1
2IM (wM )− γdαdM−2/(p−1)}+ o(1)dN .

Finally, using (17) we check that I2 = o(1)dN and the result follows.
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