On prolongation of higher order connections

by MIROSLAV DOUPOVEC (Brno) and Włodzimierz M. MIKULSKI (Kraków)

Abstract. We describe all bundle functors G admitting natural operators transforming rth order holonomic connections on a fibered manifold $Y \to M$ into rth order holonomic connections on $GY \to M$. For second order holonomic connections we classify all such natural operators.

1. Introduction. Given a fibered manifold $Y \to M$, the bundle $J^r Y$ of all *r*-jets of local sections of *Y* is called the *r*th holonomic prolongation of *Y*. The *r*th nonholonomic prolongation $\widetilde{J}^r Y$ is defined by iteration: $\widetilde{J}^1 Y = J^1 Y, \ \widetilde{J}^r Y = J^1 (\widetilde{J}^{r-1} Y \to M)$. One can also define the *r*th semiholonomic prolongation $\overline{J}^r Y \subset \widetilde{J}^r Y \subset \widetilde{J}^r Y$.

An *r*th order nonholonomic connection on a fibered manifold $Y \to M$ is a section $\Theta: Y \to \tilde{J}^r Y$. Such a connection is called *semiholonomic* or *holonomic* if it has values in $\overline{J}^r Y$ or $J^r Y$, respectively. We recall that higher order connections were introduced in the groupoid form by Ehresmann [7], and Kolář [12] extended the Ehresmann theory to the case of any fibered manifold. In particular, for r = 1 we obtain the concept of a *general connection*, which can be equivalently interpreted as the lifting map

(1)
$$Y \times_M TM \to TY.$$

If Y = TM is the tangent bundle, then the linear morphism $TM \to J^1TM$ is exactly the classical linear connection on M, which can also be defined as a covariant derivative $\nabla : \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$. Finally, the rightinvariant connection on a principal bundle $P \to M$ is called *principal*.

By prolongation of connections we understand geometric constructions (more precisely natural operators \mathcal{D}) transforming a connection Θ on $Y \to M$ into a connection $\mathcal{D}(\Theta)$ of the same type on $GY \to M$, where G is some bundle functor. Such geometric constructions have motivation in

[279]

²⁰¹⁰ Mathematics Subject Classification: 58A05, 58A20.

Key words and phrases: jet prolongation, holonomic connection, natural operator.

mathematical physics, mainly in quantum mechanics and higher order dynamics [11], [27]. In [3] we classified all natural operators transforming first order connections on $Y \to M$ into first order connections on $GY \to M$ (see Proposition 1 below). This paper will be devoted to the similar problem for higher order connections. In Example 2 we generalize the vertical prolongation \mathcal{V}_1^F of first order connections to the vertical prolongation \mathcal{V}_r^F of *r*th order holonomic connections for any *r*. The first main result is Theorem 1, where we classify all bundle functors *G* that admit prolongation of *r*th order connections, which are most important in applications. In contrast to part (ii) of Proposition 1, in Theorem 2 we show that prolongation of second order connections depends on linear liftings of vector fields.

By [12], higher order connections are useful in the theory of higher order absolute differentiation. In [5] we showed applications of such connections in the geometric description of higher order geometric object fields. Using an *r*th order holonomic connection, the second author [23] recently generalized (1) to the lifting map $Y \times_M FM \to FY$ for any bundle functor F of order ron the category of all smooth manifolds and all smooth maps. This allows us to define the lifting of geometric objects on M (i.e. sections of $FM \to M$) to geometric objects on Y. For other applications of higher order connections see e.g. [1], [17], [26]. We also recall that linear holonomic connections $TM \to$ J^rTM (i.e. principal connections on the *r*th order frame bundle $P^rM =$ inv $J_0^r(\mathbb{R}^m, M)$) were also studied in [9] and [10].

Let $G: \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor, where \mathcal{FM} is the category of fibered manifolds and their fibered maps and $\mathcal{FM}_{m,n}$ is the subcategory of fibered manifolds with *n*-dimensional fibers, *m*-dimensional bases and their fibered embeddings. Prolongation of holonomic connections can be expressed as a natural operator in the sense of [14] in the following way. An $\mathcal{FM}_{m,n}$ -natural operator $\mathcal{D}: J^r \rightsquigarrow J^r G$ transforming rth order holonomic connections Θ on $\mathcal{FM}_{m,n}$ -objects $Y \to M$ to rth order holonomic connections $\mathcal{D}(\Theta)$ on $GY \to M$ is a family of $\mathcal{FM}_{m,n}$ -invariant regular operators (functions) $\mathcal{D}: \operatorname{Con}^r(Y \to M) \to \operatorname{Con}^r(GY \to M)$ for all $\mathcal{FM}_{m,n}$ -objects $Y \to M$ from the space $\operatorname{Con}^r(Y \to M)$ of all rth order holonomic connections on $Y \to M$ into the space $\operatorname{Con}^r(GY \to M)$ of all rth order holonomic connections on $GY \to M$. Invariance means that if $\Theta_1 \in \operatorname{Con}^r(Y_1 \to M_1)$ and $\Theta_2 \in \operatorname{Con}^r(Y_2 \to M_2)$ are *f*-related for an $\mathcal{FM}_{m,n}$ -map $f: Y_1 \to Y_2$, then $\mathcal{D}(\Theta_1)$ and $\mathcal{D}(\Theta_2)$ are Gf-related. Regularity means that \mathcal{D} transforms smoothly parametrized families of connections into smoothly parametrized ones.

In what follows, we denote by $\mathcal{M}f$ the category of smooth manifolds and all smooth maps, by $\mathcal{M}f_m$ the subcategory of *m*-dimensional manifolds and

local diffeomorphisms and by \mathcal{FM}_m the category of fibered manifolds with *m*-dimensional bases and fiber respecting mappings over local diffeomorphisms. We recall that the *r*th order jet functor $J^r : \mathcal{FM}_m \to \mathcal{FM}_m \subset \mathcal{FM}$ sends any \mathcal{FM}_m -object $Y \to M$ into the fibered manifold $J^r Y \to M$ and any \mathcal{FM}_m -map $f: Y \to Y_1$ covering a local diffeomorphism $f: M \to M_1$ into the map $J^r f: J^r Y \to J^r Y_1$ given by $J^r f(j_x^r \sigma) = j_{f(x)}^r (f \circ \sigma \circ \underline{f}^{-1}),$ $j_r^r \sigma \in J^r Y$. All manifolds and maps are assumed to be infinitely differentiable.

2. Prolongation of higher order connections. Let $F : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a natural bundle. Then the *F*-vertical functor $V^F : \mathcal{F}\mathcal{M}_{m,n} \to \mathcal{F}\mathcal{M}$ is defined fiberwise by $V^F Y = \bigcup_{x \in M} F(Y_x)$ and analogously for morphisms [15]. If F is defined on $\mathcal{M}f$, then V^F can be defined on $\mathcal{F}\mathcal{M}_m$ (even on the whole category \mathcal{FM}). Next, if $F = T^A : \mathcal{M}f \to \mathcal{FM}$ is a Weil functor determined by a Weil algebra A, then $V^{T^A} : \mathcal{FM}_m \to \mathcal{FM}_m \subset \mathcal{FM}$ is called the vertical Weil functor, which will be briefly denoted by V^A . In particular, for the tangent functor F = T we obtain the classical vertical bundle VY.

Given a connection $\Gamma: Y \to J^1 Y$ on $Y \to M$, we can define the first order connection $\mathcal{V}_1^F \Gamma$ on $V^F Y \to M$ by the lifting map

 $\mathcal{V}_1^F \Gamma : V^F Y \times_M TM \to TV^F Y, \quad \mathcal{V}_1^F \Gamma(v, X_x) = \mathcal{V}^F(\Gamma X)_v, \quad v \in (V^F Y)_x,$ $x \in M$, where $X \in \mathcal{X}(M)$ is a vector field on M, $\Gamma X \in \mathcal{X}_{\text{proj}}(Y)$ is the Γ horizontal lift of X and $\mathcal{V}^F(\Gamma X)$ denotes its flow prolongation to $V^F Y$ [15].

For prolongation of first order connections we have proved in [3]:

PROPOSITION 1.

- (i) A bundle functor $G : \mathcal{FM}_{m,n} \to \mathcal{FM}$ admits an $\mathcal{FM}_{m,n}$ -natural operator \mathcal{D} transforming connections Γ on $Y \to M$ into connections $\mathcal{D}(\Gamma)$ on $GY \to M$ if and only if G is isomorphic to the vertical functor V^F for some natural bundle $F : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$. (ii) For $G = V^F$ such an operator \mathcal{D} is unique and $\mathcal{D}(\Gamma) = \mathcal{V}_1^F \Gamma$.

In this section, part (i) of Proposition 1 will be extended to rth order holonomic connections for any r. We start with the following example.

EXAMPLE 1. Let m be a natural number. By [2], for every rth order jet functor $J: \mathcal{FM}_m \to \mathcal{FM}$ we have an exchange \mathcal{FM}_m -natural equivalence $\kappa^{A,J}: V^A J \to J V^A$. So for any rth order holonomic connection $\Theta: Y \to V^A$. $J^r Y$ on an \mathcal{FM}_m -object $Y \to M$ we have $V^A \Theta : V^A Y \to V^A J^r Y$, and the composition

(2)
$$\mathcal{V}_r^A \Theta := \kappa^{A,J^r} \circ V^A \Theta : V^A Y \to J^r V^A Y$$

is an *r*th order holonomic connection on $V^A Y \to M$.

PROPOSITION 2. Let $\mu : A_1 \to A_2$ be a homomorphism of Weil algebras, $\mu : T^{A_1} \to T^{A_2}$ (denoted by the same symbol) be the corresponding $\mathcal{M}f$ natural transformation between Weil functors $T^{A_1}, T^{A_2} : \mathcal{M}f \to \mathcal{F}\mathcal{M}$, and $\tilde{\mu} : V^{A_1} \to V^{A_2}$ be the corresponding $\mathcal{F}\mathcal{M}_m$ -natural transformation (fiberwise extension of μ) between the vertical Weil functors $V^{A_1}, V^{A_2} : \mathcal{F}\mathcal{M}_m \to \mathcal{F}\mathcal{M}$. Let $\Theta : Y \to J^r Y$ be an rth order holonomic connection on an $\mathcal{F}\mathcal{M}_m$ object $Y \to M$. Then $\mathcal{V}_r^{A_1}\Theta$ is $\tilde{\mu}$ -related to $\mathcal{V}_r^{A_2}\Theta$. More precisely, $J^r\tilde{\mu} \circ \mathcal{V}_r^{A_1}\Theta = \mathcal{V}_r^{A_2}\Theta \circ \tilde{\mu}$.

Proof. By [2], the \mathcal{FM}_m -natural transformations κ^{A,J^r} and $\tilde{\mu}$ commute for any natural transformation $\mu: T^{A_1} \to T^{A_2}$. Then we have $\mathcal{V}_r^{A_2} \Theta \circ \tilde{\mu} = \kappa^{A_2,J^r} \circ V^{A_2} \Theta \circ \tilde{\mu} = \kappa^{A_2,J^r} \circ \tilde{\mu} \circ V^{A_1} \Theta = J^r \tilde{\mu} \circ \kappa^{A_1,J^r} \circ V^{A_1} \Theta = J^r \tilde{\mu} \circ \mathcal{V}_r^{A_1} \Theta$.

As a direct consequence we immediately obtain

LEMMA 1. Let $\Theta: Y \to J^r Y$ be an rth order holonomic connection on an \mathcal{FM}_m -object $Y \to M$. Then $\mathcal{V}_r^{\mathbb{D}_n^k} \Theta: V^{\mathbb{D}_n^k} Y \to J^r V^{\mathbb{D}_n^k} Y$ is a G_n^k -invariant rth order holonomic connection on $V^{\mathbb{D}_n^k} Y \to M$, where $\mathbb{D}_n^k = J_0^k(\mathbb{R}^n, \mathbb{R})$ is the Weil algebra of k-jets at $0 \in \mathbb{R}^n$ of maps $\mathbb{R}^n \to \mathbb{R}$, $G_n^k = \operatorname{inv} J_0^k(\mathbb{R}^n, \mathbb{R}^n)_0$ is the kth order differential group in dimension n, and the action of G_n^k on \mathbb{D}_n^k is given by $j_0^k \psi \cdot j_0^k f = j_0^k (f \circ \psi^{-1})$.

Proof. Indeed, G_n^k -invariance means exactly that $\mathcal{V}_r^{\mathbb{D}_n^k}\Theta$ is related to itself by the extension $\tilde{g}: V^{\mathbb{D}_n^k}Y \to V^{\mathbb{D}_n^k}Y$ of the automorphism $g: \mathbb{D}_n^k \to \mathbb{D}_n^k$ of Weil algebras (left translation by $g \in G_n^k$ of the action of G_n^k on \mathbb{D}_n^k) for any $g \in G_n^k$.

We recall that two \mathcal{FM} -morphisms $f, g : Y \to \overline{Y}$ determine the same (0, k, 0)-jet at $y \in Y$ if $j_y^k(f|Y_x) = j_y^k(g|Y_x)$ (see [14]). Using Lemma 1 we can generalize Example 1 as follows.

EXAMPLE 2. Let $F: \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a natural bundle of order k. Let $\Theta: Y \to J^r Y$ be an rth order holonomic connection on an $\mathcal{F}\mathcal{M}_{m,n}$ -object $Y \to M$. We define an rth order holonomic connection $\mathcal{V}_r^F \Theta: V^F Y \to J^r V^F Y$ on $V^F Y \to M$ as follows. Let $P_{m,n}^{0,k,0}Y = \operatorname{inv} J_{(0,0)}^{0,k,0}(\mathbb{R}^{m,n},Y)$ be the space of (0,k,0)-jets at $(0,0) \in \mathbb{R}^{m,n}$ of $\mathcal{F}\mathcal{M}_{m,n}$ -maps $\mathbb{R}^{m,n} \to Y$. It is a principal G_n^k -bundle over Y (the projection $P_{m,n}^{0,k,0}Y \to Y$ is the target one) with the right action of G_n^k given by $j_{(0,0)}^{0,k,0} \Phi \cdot j_0^k \psi = j_{(0,0)}^{0,k,0} (\Phi \circ (\operatorname{id}_{\mathbb{R}^m} \times \psi))$. By an order argument, $V^F Y = P_{m,n}^{0,k,0} Y[F_0 \mathbb{R}^n]$ is the associated bundle with G_n^k -fiber $F_0 \mathbb{R}^n$ (we have the well-defined identification $[j_{(0,0)}^{0,k,0}\Psi, v] = V^F \Psi(v))$, where the left action of G_n^k on $F_0 \mathbb{R}^n$ is the standard one. By Lemma 1, the restriction $\mathcal{P}_{m,n;r}^{0,k,0}\Theta: \mathcal{P}_{m,n}^{0,k,0}Y \to J^r \mathcal{P}_m^{0,k,0}Y$ of $\mathcal{V}_r^{\mathbb{D}_n^k}\Theta: V^{\mathbb{D}_n^k}Y \to J^r V^{\mathbb{D}_n^k}Y$ to the open subbundle $P_{m,n}^{0,k,0}Y \subset V^{\mathbb{D}_n^k}Y$ (the inclusion is given by the identification

 $j_{(0,0)}^{0,k,0}\Psi = j_0^k(\Psi_{|\{0\}\times\mathbb{R}^n}))$ is a G_n^k -invariant rth order holonomic connection on $P_{m,n}^{0,k,0}Y \to M$. We define

$$\mathcal{V}_{r}^{F}\Theta(w) := j_{x}^{r}([\sigma, v]), \quad w = [p, v], \ p \in (P_{m,n}^{0,k,0}Y)_{y}, \ v \in F_{0}\mathbb{R}^{n}, \ y \in Y_{x},$$

 $x \in M$, where $\sigma : M \to P_{m,n}^{0,k,0}Y$ is a local section with $j_x^r \sigma = \mathcal{P}_{m,n;r}^{0,k,0}\Theta(p)$ and $[\sigma, v] : M \to V^F Y$ is a section of $V^F Y \to M$ given by $x \mapsto [\sigma(x), v]$. Using G_n^k -invariance of $\mathcal{P}_{m,n;r}^{0,k,0}\Theta$ and a local coordinate argument, one can easily show that the definition of $\mathcal{V}_r^F\Theta(w)$ is correct (i.e. independent of the choice of p and v with w = [p, v] and of the choice of σ with $\mathcal{P}_{m,n;r}^{0,k,0}\Theta(p) = j_x^r\sigma$). By the canonical character of the construction of $\mathcal{V}_r^F\Theta$ we have the corresponding $\mathcal{FM}_{m,n}$ -natural operator \mathcal{V}_r^F transforming rth order holonomic connections $\mathcal{V}_r^F\Theta$ on $V^F Y \to M$.

Quite analogously to Proposition 2 we have

PROPOSITION 3. Let $\mu : F_1 \to F_2$ be an $\mathcal{M}f$ -natural transformation between bundle functors $F_1, F_2 : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ of order k, and $\tilde{\mu} : V^{F_1} \to V^{F_2}$ be the corresponding $\mathcal{F}\mathcal{M}_m$ -natural transformation (fiberwise extension of μ) between the vertical bundle functors $V^{F_1}, V^{F_2} : \mathcal{F}\mathcal{M}_m \to \mathcal{F}\mathcal{M}$. Let $\Theta : Y \to J^r Y$ be an rth order holonomic connection on an $\mathcal{F}\mathcal{M}_{m,n}$ -object $Y \to \mathcal{M}$. Then $\mathcal{V}_r^{F_1}\Theta$ is $\tilde{\mu}$ -related to $\mathcal{V}_r^{F_2}\Theta$. More precisely, $J^r\tilde{\mu} \circ \mathcal{V}_r^{F_1}\Theta = \mathcal{V}_r^{F_2}\Theta \circ \tilde{\mu}$.

Proof. Let $w = [p, v] \in V^{F_1}Y$, $p \in P^{0,k,0}_{m,n}Y$, $v \in F_{10}\mathbb{R}^n$. Then $\tilde{\mu}(w) = [p, \mu(v)]$. Denoting $\mathcal{P}^{0,k,0}_{m,n;r}\Theta(p) = j_x^r\sigma$, we have $\mathcal{V}^{F_2}_r\Theta(\tilde{\mu}(w)) = j_x^r([\sigma, \mu(v)]) = j_x^r([\sigma, v]) = J^r\tilde{\mu}(j_x^r([\sigma, v])) = J^r\tilde{\mu}(\mathcal{V}^{F_1}_r\Theta(w))$.

Now we show that for $F = T^A$, the connection $\mathcal{V}_r^F \Theta$ from Example 2 is exactly $\mathcal{V}_r^A \Theta$ from Example 1.

PROPOSITION 4. For any Weil algebra A and any rth order holonomic connection $\Theta: Y \to J^r Y$ on an $\mathcal{FM}_{m,n}$ -object $Y \to M$ we have $\mathcal{V}_r^{T^A} \Theta = \mathcal{V}_r^A \Theta$, where $\mathcal{V}_r^{T^A} \Theta$ is as in Example 2 for $F = T^A$ and $\mathcal{V}_r^A \Theta$ is as in Example 1.

Proof. Let $v \in (V^A Y)_y = (V^{T^A} Y)_y$, $y \in Y$. We prove $(\mathcal{V}_r^{T^A} \Theta)_v = (\mathcal{V}_r^A \Theta)_v$. By $\mathcal{F}\mathcal{M}_{m,n}$ -invariance we can assume that $Y = Y^{\mathbb{R}^n}$ is the trivial bundle over \mathbb{R}^m with the fiber \mathbb{R}^n , y = (0,0) and $v \in (V^A Y^{\mathbb{R}^n})_{(0,0)} = (V^{T^A} Y^{\mathbb{R}^n})_{(0,0)} = T_0^A \mathbb{R}^n$. Let k be the order of A (i.e. of T^A). It is a simple observation that $(\mathcal{V}_r^{T^h} \Theta)_{j_0^k \operatorname{id}_{\mathbb{R}^n}} = (\mathcal{P}_{m,n;r}^{0,k,0} \Theta)_{j_0^k \operatorname{id}_{\mathbb{R}^n}} = (\mathcal{V}_r^{\mathbb{R}^n} \Theta)_{j_0^k \operatorname{id}_{\mathbb{R}^n}}$, where $j_0^k \operatorname{id}_{\mathbb{R}^n} = j_{(0,0)}^{0,k,0} (\operatorname{id}_{\mathbb{R}^m} \times \operatorname{id}_{\mathbb{R}^n}) \in (V^{\mathbb{R}^n} Y^{\mathbb{R}^n})_{(0,0)} = (T^{\mathbb{D}_n^k} \mathbb{R}^n)_0 = (T_n^k \mathbb{R}^n)_0$. For, write $(\mathcal{P}_{m,n;r}^{0,k,0} \Theta)_{j_0^k \operatorname{id}_{\mathbb{R}^n}} = (\mathcal{V}_r^{\mathbb{R}^n} \Theta)_{j_0^k \operatorname{id}_{\mathbb{R}^n}} = j_0^r \sigma$, where $\sigma : \mathbb{R}^m \to P_{m,n}^{0,k,0} Y^{\mathbb{R}^n}$

is a section. Then we have $(\mathcal{V}_r^{\mathbb{T}_n^k}\Theta)_{j_0^k\operatorname{id}_{\mathbb{R}^n}} = j_0^r([\sigma, j_0^k\operatorname{id}_{\mathbb{R}^n}]) = j_0^r\sigma = (\mathcal{P}_{m,n;r}^{0,k,0}\Theta)_{j_0^k\operatorname{id}_{\mathbb{R}^n}} = (\mathcal{V}_r^{\mathbb{D}_n^k}\Theta)_{j_0^k\operatorname{id}_{\mathbb{R}^n}}$. Moreover, there is an $\mathcal{M}f$ -natural transformation $\mu : T_n^k = T^{\mathbb{D}_n^k} \to T^A$ defined by $\mu(j_0^k\gamma) = T^A\gamma(v)$ such that $\mu(j_0^k\operatorname{id}_{\mathbb{R}^n}) = v$. By Propositions 2 and 3 we have $(\mathcal{V}_r^{T^A}\Theta)_v = (\mathcal{V}_r^{T^A}\Theta)_{\tilde{\mu}(j_0^k\operatorname{id}_{\mathbb{R}^n})} = J^r\tilde{\mu}((\mathcal{V}_r^{\mathbb{T}_n^k}\Theta)_{j_0^k\operatorname{id}_{\mathbb{R}^n}}) = (\mathcal{V}_r^A\Theta)_{\tilde{\mu}(j_0^k\operatorname{id}_{\mathbb{R}^n})} = (\mathcal{V}_r^A\Theta)_v$.

Now we generalize part (i) of Proposition 1 to higher order connections.

THEOREM 1. A bundle functor $G : \mathcal{FM}_{m,n} \to \mathcal{FM}$ admits an $\mathcal{FM}_{m,n}$ natural operator \mathcal{D} transforming rth order holonomic connections Θ on $Y \to M$ into rth order holonomic connections $\mathcal{D}(\Theta)$ on $GY \to M$ if and only if $G \cong V^F$ for some bundle functor $F : \mathcal{M}f_n \to \mathcal{FM}$.

Proof. The "if" implication is an immediate consequence of Example 2. The converse implication can be proved by using almost the same arguments as for Theorem 3 in [4]. More precisely, the converse implication follows immediately from Lemmas 2 and 3 below. \blacksquare

LEMMA 2. Let $G : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor. Suppose Gadmits an $\mathcal{FM}_{m,n}$ -natural operator \mathcal{D} transforming rth order holonomic connections Θ on $Y \to M$ into rth order holonomic connections $\mathcal{D}(\Theta)$ on $GY \to M$. Then the natural bundle $G^1 : \mathcal{M}f_m \to \mathcal{FM}$ corresponding to Gdefined by $G^1M = G(M \times \mathbb{R}^n)$ and $G^1f = G(f \times \mathrm{id}_{\mathbb{R}^n})$ is of order 0.

Proof. Suppose G^1 is of minimal order $s \ge 1$. Let M be an m-manifold. Let Θ_M be the trivial *r*th order holonomic connection on the trivial bundle $M \times \mathbb{R}^n \to M$ (i.e. $\Theta_M(x,y) = j_x^r(\tilde{y})$, where $\tilde{y} : M \to M \times \mathbb{R}^n$ is the constant section $x \mapsto (x, y)$). Applying \mathcal{D} , we have the *r*th order holonomic connection $\mathcal{D}(\Theta_M)$ on $G^1M \to M$. Denote by $\mathcal{D}^o(\Theta_M)$ the underlying first order connection of $\mathcal{D}(\Theta_M)$ on $G^1M \to M$. Since Θ_M is invariant with respect to $\mathcal{FM}_{m,n}$ -maps of the form $f \times \mathrm{id}_{\mathbb{R}^n}$, the first order connection $\mathcal{D}^{o}(\Theta_{M})$ on $G^{1}M \to M$ is $\mathcal{M}f_{m}$ -invariant. Denoting by $X^{\mathcal{D}^{o}(\Theta_{M})} \in \mathcal{X}(G^{1}M)$ the horizontal lift of a vector field X on M with respect to $\mathcal{D}^{o}(\Theta_{M})$, we have the $\mathcal{M}f_m$ -natural operator $B: T \rightsquigarrow TG^1$ transforming vector fields X on *m*-manifolds M into vector fields $B(X) := X^{\mathcal{D}^o(\Theta_M)}$ on G^1M (the notion of such operators will be recalled in the next section). Clearly, the order of B is zero. Further, as B(X) is projectable over X, we have B(X) = $\mathcal{G}^1X + \mathcal{V}(X)$ for some vertical type $\mathcal{M}f_m$ -natural operator $\mathcal{V}: T \rightsquigarrow TG^1$, where $\mathcal{G}^1: T \rightsquigarrow TG^1$ is the well-known flow operator corresponding to G^1 . As G^1 is of minimal order s, so is the operator \mathcal{G}^1 . By Lemma 1 from [22], \mathcal{V} is of order $\leq s - 1$. Then B is of minimal order $s \geq 1$, which is a contradiction.

LEMMA 3. Let $G : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor of order s. Suppose that the natural bundle $G^1 : \mathcal{M}f_m \to \mathcal{FM}$ (as in Lemma 2) corresponding to G is of order 0. Then $G \cong V^F$ for some natural bundle $F : \mathcal{M}f_n \to \mathcal{FM}$.

Proof. This follows directly from Proposition 9 and Corollary 3 in [3].

REMARK 1. By Theorem 1, if G is not isomorphic to V^F (e.g. $G = J^k$), then prolongation of connections from $Y \to M$ to $GY \to M$ requires the use of some additional geometric object. Given an arbitrary bundle functor G on $\mathcal{FM}_{m,n}$, the second author [23] recently constructed an rth order holonomic connection $\mathcal{G}(\Theta, \nabla)$ on $GY \to M$ from an rth order holonomic connection Θ on $Y \to M$ by means of a torsion free classical linear connection ∇ on M. This generalizes the classical geometric construction from [14] to first order connections.

3. Prolongation of second order holonomic connections. We recall that the product of two connections $\Theta_1 : Y \to \tilde{J}^r Y$ and $\Theta_2 : Y \to \tilde{J}^s Y$ is a connection $\Theta_1 * \Theta_2 : Y \to \tilde{J}^{r+s} Y$ defined by $\Theta_1 * \Theta_2 := \tilde{J}^s \Theta_1 \circ \Theta_2$. Then the *r*th order Ehresmann prolongation of $\Gamma : Y \to J^1 Y$ is a semiholonomic connection $\Gamma^{(r-1)} : Y \to \bar{J}^r Y$ defined by induction:

$$\Gamma^{(1)} := \Gamma * \Gamma : Y \to \overline{J}^2 Y, \quad \Gamma^{(r-1)} := \Gamma^{(r-2)} * \Gamma : Y \to \overline{J}^r Y.$$

In what follows, if $\Theta: Y \to J^2 Y$ is a second order connection on $Y \to M$, then $\Theta^o: Y \to J^1 Y$ will denote its underlying connection.

EXAMPLE 3. Let \mathcal{V}_1^F be the operator from Proposition 1. We have an $\mathcal{FM}_{m,n}$ -natural operator $\mathcal{V}^{F,2}: J^2 \rightsquigarrow J^2 V^F$ transforming second order holonomic connections Θ on $Y \to M$ into second order holonomic connections,

$$\mathcal{V}^{F,2}\Theta := C^{(2)}(\mathcal{V}_1^F\Theta^o * \mathcal{V}_1^F\Theta^o) : V^FY \to J^2V^FY$$

on $V^F Y \to M$, where $\mathcal{V}_1^F \Theta^o * \mathcal{V}_1^F \Theta^o : V^F Y \to \overline{J}^2 V^F Y$ is the second order semiholonomic Ehresmann prolongation of $\mathcal{V}_1^F \Theta^o : V^F Y \to J^1 V^F Y$ and $C^{(2)} : \overline{J}^2 Y \to J^2 Y$ is the well-known symmetrization of second order semiholonomic jets (see e.g. [5]).

In [5] we have proved that the symmetrization $\overline{J}^r Y \to J^r Y$ exists only for $r \leq 2$. This means that the operator $\mathcal{V}^{F,2}$ cannot be generalized to r > 2.

By [6], second order holonomic connections $\Theta: Y \to J^2 Y$ on $Y \to M$ are in bijection with couples (Γ, Δ) of first order connections Γ on $Y \to M$ and tensor fields $\Delta: Y \to S^2 T^* M \otimes VY$. This bijection is given by

$$\Gamma = \Theta^o \text{ and } \Delta = \Theta - C^{(2)}(\Gamma * \Gamma),$$

where the difference is on the affine bundle $J^2 Y \to J^1 Y$ with the vector bundle $S^2 T^* M \otimes VY$. Indeed, Θ and $C^{(2)}(\Gamma * \Gamma)$ have the same underlying first order connection, so that we can take the difference. The inverse bijection is given by $(\Gamma, \Delta) \mapsto C^{(2)}(\Gamma * \Gamma) + \Delta$. In what follows, if Θ is a second order holonomic connection on $Y \to M$, then the equality $\Theta = (\Gamma, \Delta)$ means that (Γ, Δ) corresponds to Θ in the above bijection.

Clearly, if $\Theta = (\Gamma, \Delta)$, then $\mathcal{V}^{F,2}\Theta = (\mathcal{V}_1^F \Gamma, 0)$, where $\mathcal{V}_1^F \Gamma$ is from Proposition 1 and $0: V^F Y \to S^2 T^* M \otimes V V^F Y$ is the zero tensor field.

Let $F : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a natural bundle. We recall that a *natural* operator $A: T \rightsquigarrow TF$ is an $\mathcal{M}f_n$ -invariant family of regular operators $A: \mathcal{X}(N) \to \mathcal{X}(FN)$ for any *n*-manifold N, where $\mathcal{X}(N)$ is the set of vector fields on N. An operator A is called *linear* if $A: \mathcal{X}(N) \to \mathcal{X}(FN)$ is \mathbb{R} -linear for any *n*-manifold N. A simple example of such an $A: T \rightsquigarrow TF$ is the flow operator \mathcal{F} transforming vector fields $X \in \mathcal{X}(N)$ with the flow φ_t into vector fields $\mathcal{F}X \in \mathcal{X}(FN)$ defined by the flow $F\varphi_t$. Clearly, the flow operator \mathcal{F} is linear. There are many papers where classifications of all natural (linear) operators $A: T \rightsquigarrow TF$ for some F are presented (see e.g. [8], [13], [14], [18], [20], [21], [25]).

EXAMPLE 4. Given an $\mathcal{M}f_n$ -natural linear operator $A: T \rightsquigarrow TF$, we construct an $\mathcal{F}\mathcal{M}_{m,n}$ -natural operator $\mathcal{D}^A: J^2 \rightsquigarrow J^2 V^F$ transforming second order holonomic connections Θ on $Y \to M$ into second order holonomic connections $\mathcal{D}^A(\Theta)$ on $V^F Y \to M$. Let $\Theta = (\Gamma, \Delta)$ be a second order holonomic connection on $Y \to M$, where Γ is a first order connection on $Y \to M$ and $\Delta: Y \to S^2 T^* M \otimes VY$ is a tensor field. We define

$$\mathcal{D}^A(\Theta) := (\mathcal{V}_1^F \Gamma, \Delta^A),$$

where $\mathcal{V}_1^F \Gamma : V^F Y \to J^1 V^F Y$ is from Proposition 1 and $\Lambda^A : V^F Y \to S^2 T^* M \otimes V V^F Y$

is defined as follows. Given $u, v \in T_x M$, $x \in M$, we have the vector field $\Delta(u, v) \in \mathcal{X}(Y_x)$, where Y_x is the fiber of Y over x. Applying A we obtain the vector field $A(\Delta(u, v))$ on $F(Y_x) = (V^F Y)_x$. Write $\Delta^A(u, v) := A(\Delta(u, v))$. By linearity of A, $\Delta^A(u, v)$ depends linearly on u and v. Since $\Delta(u, v)$ is symmetric in u, v, so is $\Delta^A(u, v)$.

Clearly, if $\Theta = (\Gamma, \Delta)$, then $\mathcal{D}^A(\Theta) = \mathcal{V}^{F,2}\Theta + \Delta^A$, where $\mathcal{V}^{F,2}\Theta$ is from Example 3, Δ^A is from Example 4 and addition is on the affine bundle $J^2 V^F Y \to J^1 V^F Y$.

In the next section we prove the following second main result of this paper.

Theorem 2.

(i) A bundle functor $G : \mathcal{FM}_{m,n} \to \mathcal{FM}$ admits an $\mathcal{FM}_{m,n}$ -natural operator $\mathcal{D} : J^2 \rightsquigarrow J^2 G$ transforming second order connections Θ on $Y \to M$ into second order connections $\mathcal{D}(\Theta)$ on $GY \to M$ if and only if G is isomorphic to the vertical bundle functor V^F for some natural bundle $F : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$.

(ii) For G = V^F the space of all such natural operators D is an affine space with the corresponding vector space of all Mf_n-natural linear operators A : T → TF transforming vector fields X on n-manifolds N to vector fields A(X) on FN.

Part (ii) of Theorem 2 follows directly from

THEOREM 2'. Let $F : \mathcal{M}f_n \to \mathcal{F}\mathcal{M}$ be a natural bundle. Let $\mathcal{D} : J^2 \rightsquigarrow J^2 V^F$ be an $\mathcal{F}\mathcal{M}_{m,n}$ -natural operator. Then there exists a unique $\mathcal{M}f_n$ -natural linear operator $A : T \rightsquigarrow TF$ such that $\mathcal{D} = \mathcal{D}^A$.

REMARK 2. By Theorem 1, part (i) of Theorem 2 is true also for rth order holonomic connections for any r. On the other hand, the problem is open whether one can generalize Theorem 2' to rth order holonomic connections, r > 2. It is a simple observation that for r > 2, holonomic connections $\Theta: Y \to J^r Y$ on $\mathcal{FM}_{m,n}$ -objects $Y \to M$ cannot be in canonical bijection with systems $(\Gamma, \Delta_1, \ldots, \Delta_{r-1})$ of first order connections $\Gamma: Y \to J^1 Y$ and tensor fields $\Delta_i: Y \to S^{i+1}T^*M \otimes VY$ for $i = 1, \ldots, r-1$. Indeed, if we had such a bijection, then we would have an $\mathcal{FM}_{m,n}$ -natural operator A given by $A(\Gamma) = (\Gamma, 0, \ldots, 0)$ transforming general connections Γ on $Y \to M$ into rth order holonomic connections $A(\Gamma): Y \to J^r Y$ on $Y \to M$. But this is impossible for r > 2 (see [5]).

4. Proof of Theorem 2. Part (i) of Theorem 2 is exactly Theorem 1 for r = 2. We also present the following alternative (independent of Theorem 1) proof of part (i). The "only if" implication can be deduced as follows. Suppose we have an $\mathcal{FM}_{m,n}$ -natural operator $\mathcal{D} : J^2 \rightsquigarrow J^2 G$. Let $\Gamma : Y \to J^1 Y$ be a connection on $Y \to M$. Applying symmetrization $C^{(2)} : \overline{J}^2 Y \to J^2 Y$ to the Ehresmann prolongation $\Gamma * \Gamma : Y \to \overline{J}^2 Y$ we obtain a second order holonomic connection $C^{(2)}(\Gamma * \Gamma) : Y \to J^2 Y$. Using \mathcal{D} we get a second order holonomic connection $\mathcal{D}(C^{(2)}(\Gamma * \Gamma))$ on $GY \to M$. Write $D(\Gamma) = (\mathcal{D}(C^{(2)})(\Gamma * \Gamma))^o : GY \to J^1 GY$ for the underlying connection of $\mathcal{D}(C^{(2)}(\Gamma * \Gamma))$. So we have an $\mathcal{FM}_{m,n}$ -natural operator $D : J^1 \rightsquigarrow J^1 G$. By Proposition 1, $G \cong V^F$ for some natural bundle $F : \mathcal{M}f_n \to \mathcal{FM}$. The "if" implication is an immediate consequence of Example 3. Of course, the above alternative proof of Theorem 1 for r = 2 cannot be extended to other r, because there is no symmetrization $\overline{J}^r Y \to J^r Y$ if r > 2.

The rest of this section will be devoted to the proof of Theorem 2', which also proves (ii) of Theorem 2. Let $x^1, \ldots, x^m, y^1, \ldots, y^n$ be the usual coordinates on $\mathbb{R}^m \times \mathbb{R}^n$.

Proof of Theorem 2'. Let $\Theta = (\Gamma, \Delta)$ be a second order holonomic connection on $Y \to M$ (the notation is taken from the previous section). We can write

$$\mathcal{D}(\Theta) = (\mathcal{V}_1^F \Gamma + \Delta_1(\Gamma, \Delta), \Delta_2(\Gamma, \Delta))$$

for unique $\mathcal{FM}_{m,n}$ -natural operators Δ_1 and Δ_2 transforming pairs (Γ, Δ) as above into tensor fields $\Delta_1(\Gamma, \Delta) : V^F Y \to T^* M \otimes V V^F Y$ and $\Delta_2(\Gamma, \Delta) : V^F Y \to S^2 T^* M \otimes V V^F Y$.

Using Δ_2 we define an $\mathcal{M}f_n$ -natural linear operator $A: T \rightsquigarrow TF$ as follows. Let X be a vector field on an n-manifold N. We have the trivial connection $\Gamma_N: Y^N \to J^1 Y^N$ on the trivial bundle $Y^N = \mathbb{R}^m \times N$ over \mathbb{R}^m . We also have a tensor field $\Delta^X := (dx^1 \odot dx^1) \otimes X: Y^N \to S^2 T^* \mathbb{R}^m \otimes VY^N$. Write

$$A(X) := \langle \Delta_2(\Gamma_N, \Delta^X), u^o \odot u^o \rangle : FN = (V^F Y^N)_0 \to (VV^F Y^N)_0 = TFN,$$

where $u^o = \frac{\partial}{\partial x^1}\Big|_0 \in T_0\mathbb{R}^m$. Because of the canonical character of the construction, the family $A: T \rightsquigarrow TF$ is an $\mathcal{M}f_n$ -natural operator. By Proposition 42.5 in [14], A is of finite order. Using invariance of Δ_2 with respect to the base homotheties on \mathbb{R}^m we get the homogeneity condition $A(t^2X) = t^2A(X)$ for t > 0. Then A is linear by the homogeneous function theorem (Theorem 24.1 in [14]).

Now we show that $\Delta_1(\Gamma, \Delta) = 0$ and $\Delta_2(\Gamma, \Delta) = \Delta^A$, where Δ^A is from Example 4. Let $y \in Y$ be a point. It is sufficient to show that $\Delta_1(\Gamma, \Delta) = 0$ and $\Delta_2(\Gamma, \Delta) = \Delta^A$ over y. Choose a sufficiently large natural number r and a torsion free classical linear connection on M. By Proposition 2.2 in [24] there exists a "special" fibered chart ψ on Y with $\psi(y) = (0,0)$ such that $j_0^r(\psi_*\Gamma(0,-)) = j_0^r(\Gamma_{\mathbb{R}^n}(0,-))$ and

$$j_{(0,0)}^{1}(\psi_{*}\Gamma) = j_{(0,0)}^{1}\left(\Gamma_{\mathbb{R}^{n}} + \sum_{k=1}^{n}\sum_{i,j=1}^{m}a_{ij}^{k}x^{i}dx^{j}\otimes\frac{\partial}{\partial y^{k}}\right)$$

for some numbers $a_{ij}^k \in \mathbb{R}$ with $a_{ij}^k = -a_{ji}^k$. So, taking into account invariance of Δ_1 and Δ_2 with respect to the "special" fibered charts we may assume that $Y = Y^{\mathbb{R}^n}$, $y = (0,0) \in \mathbb{R}^m \times \mathbb{R}^n$, $j_0^r(\Gamma(0,-) = j_0^r(\Gamma_{\mathbb{R}^n}(0,-))$ and

$$j_{(0,0)}^{1}(\Gamma) = j_{(0,0)}^{1}\left(\Gamma_{\mathbb{R}^{n}} + \sum_{k=1}^{n}\sum_{i,j=1}^{m}a_{ij}^{k}x^{i}dx^{j}\otimes\frac{\partial}{\partial y^{k}}\right)$$

for some numbers $a_{ij}^k \in \mathbb{R}$ with $a_{ij}^k = -a_{ji}^k$. Let $w \in (V^F Y^{\mathbb{R}^n})_{(0,0)}$. It remains to verify that $\Delta_1(\Gamma, \Delta)_w = 0$ and $\Delta_2(\Gamma, \Delta)_w = \Delta_w^A$.

Using invariance of Δ_1 , Δ_2 and Δ^A with respect to fiber homotheties for t > 0 (they preserve w) we can additionally assume that (Γ, Δ) are sufficiently close (in the compact open C^{∞} -topology) to $(\Gamma_{\mathbb{R}^n}, 0)$. So, assuming that the above r is sufficiently large, by the nonlinear Peetre theorem (more

precisely by Theorem 19.10 in [14] for $K = \{w\}$ and $f = (\Gamma_{\mathbb{R}^n}, 0)$), we can additionally assume that the coefficients of Γ and Δ (in the usual coordinates on $\mathbb{R}^m \times \mathbb{R}^n$) are polynomials of degree $\leq r$. Now, applying invariance of Δ_1 with respect to the base homotheties $t \operatorname{id}_{\mathbb{R}^m} \times \operatorname{id}_{\mathbb{R}^n}$ for t > 0 (they preserve w) and the homogeneous function theorem we get $\Delta_1(\Gamma, \nabla)_w = 0$. Similarly, using invariance of Δ_2 with respect to the base homotheties and the homogeneous function theorem and next using invariance of Δ_2 with respect to maps from $\operatorname{GL}(m) \times \{\operatorname{id}_{\mathbb{R}^n}\}$ (they preserve w) and the invariant tensor theorem (Theorem 24.4 in [14]) we deduce that $\Delta_2(\Gamma, \Delta)_w$ depends linearly on the value $\Delta_{|(0,0)}$ only. By polarization, it suffices to verify $\langle \Delta_2(\Gamma, \Delta)_w, u \odot u \rangle = \langle \Delta_w^A, u \odot u \rangle$ for any $u \in T_0 \mathbb{R}^m$ and any Γ , Δ , w as above. Consequently, using invariance of Δ_2 with respect to linear maps from $\operatorname{Gl}(m) \times \operatorname{Gl}(n)$ it suffices to show that

$$\langle \Delta_2(\Gamma, \Delta)_w, u^o \odot u^o \rangle = \langle \Delta_w^A, u^o \odot u^o \rangle$$

for $\Gamma = \Gamma_{\mathbb{R}^n}$ and $\Delta = (dx^1 \odot dx^1) \otimes \frac{\partial}{\partial y^1}$, where $u^o = \frac{\partial}{\partial x^1} \Big|_0 \in T_0 \mathbb{R}^m$. But this equality is an immediate consequence of the definitions of A and Δ^A .

If $\Delta_2(\Gamma, \Delta) = \Delta^B$ for another $\mathcal{M}f_n$ -natural linear operator $B: T \rightsquigarrow TF$, then $A\left(\frac{\partial}{\partial x^1}\right)_w = \langle \Delta^A_w, u^o \odot u^o \rangle = \langle \Delta^B_w, u^o \odot u^o \rangle = B\left(\frac{\partial}{\partial x^1}\right)_w$, so that A = B.

Open problem. By [6], second order nonholonomic connections Θ on $Y \to M$ are in bijection with triples $(\Gamma, \Gamma_1, \Delta)$ of first order connections Γ, Γ_1 on $Y \to M$ and tensor fields $\Delta : Y \to \otimes^2 T^*M \otimes VY$. It seems that using a similar (but more technically complicated) proof to the one of Theorem 2' one can also completely describe all $\mathcal{FM}_{m,n}$ -natural operators $\mathcal{D} : \tilde{J}^2 \to \tilde{J}^2 V^F$ transforming second order nonholonomic connections Θ on $Y \to M$ into second order nonholonomic connections $\mathcal{D}(\Theta)$ on $V^F Y \to M$.

5. Applications of Theorem 2. If F is the identity functor on $\mathcal{M}f_n$, then $V^F Y = Y$. By [14], the vector space of all $\mathcal{M}f_n$ -natural linear operators $A: T \rightsquigarrow T$ is one-dimensional (generated by $A = \mathrm{id}$). Then we have the following corollary of Theorem 2':

COROLLARY 1. Let $\mathcal{D}: J^2 \rightsquigarrow J^2$ be an $\mathcal{FM}_{m,n}$ -natural operator. Then there exists a unique number $\alpha \in \mathbb{R}$ such that $\mathcal{D}(\Theta) = \mathcal{V}^{F,2}\Theta + \alpha\Delta$ for all second order connections $\Theta = (\Gamma, \Delta)$ on $Y \to M$, where F is the identity functor on $\mathcal{M}f_n$.

If $F = T_p^r$ is the Ehresmann functor of (p, r)-velocities, then $V^F Y = V_p^r Y$ is the vertical bundle of (p, r)-velocities. The basis of the vector space of all $\mathcal{M}f_n$ -linear operators $A : T \rightsquigarrow TT_p^r$ is formed by Morimoto lifts $\mathcal{L}^{(\lambda)} : T \rightsquigarrow T_p^r$ for all *p*-tuples of nonnegative integers $\lambda = (\lambda_1, \ldots, \lambda_p)$ with $0 \leq |\lambda| \leq r$ (see [8], [13]). So we have COROLLARY 2. Let $\mathcal{D} : J^2 \rightsquigarrow J^2 V_p^r$ be an $\mathcal{FM}_{m,n}$ -natural operator. Then there exist unique real numbers a_λ such that $\mathcal{D}(\Theta) = \mathcal{V}^{T_p^r,2}\Theta + \sum_\lambda a_\lambda \Delta^{\mathcal{L}^{(\lambda)}}$ (where the sum is over all p-tuples λ of nonnegative integers with $0 \leq |\lambda| \leq r$) for all second order connections $\Theta = (\Gamma, \Delta)$ on $Y \to M$.

If $F = T^A$ is the Weil functor corresponding to a Weil algebra A, then $V^F Y = V^A Y$. All $\mathcal{M} f_n$ -linear natural operators $B: T \rightsquigarrow TT^A$ are $\operatorname{op}(a) \circ \mathcal{T}^A: T \rightsquigarrow TT^A$ for all $a \in A$, where $\mathcal{T}^A: T \rightsquigarrow TT^A$ is the flow operator and $\operatorname{op}(a): TT^A N \to TT^A N$ is the natural affinor on $T^A N$ corresponding to $a \in A$ (see [13]). Thus the vector space of all $\mathcal{M} f_n$ -natural linear operators $B: T \rightsquigarrow TT^A$ is $\dim_{\mathbb{R}}(A)$ -dimensional. So we have the following corollary of Theorem 2', which generalizes Corollaries 1, 2.

COROLLARY 3 ([16]). Let A be a Weil algebra. Let $\mathcal{D} : J^2 \rightsquigarrow J^2 V^A$ be an $\mathcal{FM}_{m,n}$ -natural operator. Then there is a unique $a \in A$ such that $\mathcal{D}(\Theta) = \mathcal{V}^{T^A,2}\Theta + \Delta^{\operatorname{op}(a)\circ \mathcal{T}^A}$ for all second order connections $\Theta = (\Gamma, \Delta)$ on $Y \to M$.

Let $T^{r*}N = J^r(N,\mathbb{R})_0$ be the space of all r-jets from an n-manifold N into \mathbb{R} with target 0. Since \mathbb{R} is a vector space, $T^{r*}N$ has a canonical structure of a vector bundle over N, which is called the *r*th order cotangent bundle. The dual bundle $T^{(r)}N = (T^{r*}N)^*$ is called the *r*th order tangent bundle. For every map $f: N \to N_1$ the jet composition $A \mapsto A \circ (j_x^r f)$, $x \in N, A \in (T^{r*}N_1)_{f(x)},$ defines a linear map $(T^{r*}N_1)_{f(x)} \to (T^{r*}N)_x$. The dual map $T_x^{(r)}f: (T^{(r)}N)_x \to (T^{(r)}N_1)_{f(x)}$ is called the *r*th tangent map of f at x. This yields a vector bundle functor $T^{(r)}$, which is defined on the whole category $\mathcal{M}f$ of all manifolds and maps. Clearly, for r = 1 we obtain the classical tangent functor T and for r > 1 the functor $T^{(r)}$ does not preserve products. Obviously we have the canonical inclusion $TN \subset T^{(r)}N$. Using fiber translations on $T^{(r)}N$, we can extend every section $X: N \to TN$ to a vector field V(X) on $T^{(r)}N$. This defines a linear $\mathcal{M}f_n$ -natural operator V: $T \rightsquigarrow TT^{(r)}$. In [20] the second author classified all $\mathcal{M}f_n$ -natural operators $T \rightsquigarrow TT^{(r)}$. From this result we obtain directly that all linear $\mathcal{M}f_n$ -natural operators $T \rightsquigarrow TT^{(r)}$ are of the form $c_1 \mathcal{T}^{(r)} + c_2 V$, $c_i \in \mathbb{R}$. If $F = T^{(r)}$ then we have $V^F = V^{(r)} : \mathcal{FM}_{m,n} \to \mathcal{FM}$.

COROLLARY 4. Let $\mathcal{D} : J^2 \rightsquigarrow J^2 V^{(r)}$ be an $\mathcal{FM}_{m,n}$ -natural operator. Then there exist unique real numbers c_1, c_2 such that $\mathcal{D}(\Theta) = \mathcal{V}^{T^{(r)}, 2}\Theta + c_1 \Delta^{\mathcal{T}^{(r)}} + c_2 \Delta^V$ for all second order connections $\Theta = (\Gamma, \Delta)$ on $Y \to M$.

If $F = T^*$ is the cotangent functor, then $V^F Y = V^* Y$. By [14], all linear $\mathcal{M}f_n$ -natural operators $A : T \rightsquigarrow TT^*$ are linear combinations (with real coefficients) of the flow operator \mathcal{T}^* and the operator V defined by $V(X)_{\omega} = \langle \omega, X_x \rangle^{\cdot} C_{\omega}$, where C is the Liouville vector field of the cotangent bundle and $X \in \mathcal{X}(N)$, $\omega \in T_x^*N$, $x \in N$. Thus we have

COROLLARY 5. Let $\mathcal{D} : J^2 \rightsquigarrow J^2 V^*$ be an $\mathcal{FM}_{m,n}$ -natural operator. Then there exist unique real numbers c_1, c_2 such that $\mathcal{D}(\Theta) = \mathcal{V}^{T^*,2}\Theta + c_1 \Delta^{T^*} + c_2 \Delta^V$ for all second order connections $\Theta = (\Gamma, \Delta)$ on $Y \to M$.

Quite analogously to Corollary 4, one can generalize Corollary 5 to the rth order cotangent bundle $F = T^{r*}$. Indeed, the second author [21] described all linear natural operators $T \rightsquigarrow T^{r*}$, which enables us to describe all natural operators $\mathcal{D}: J^2 \rightsquigarrow J^2 V^{r*}$.

Acknowledgements. The first author was supported by a grant of the GA ČR, no. 201/09/0981.

References

- A. Cabras and I. Kolář, Prolongation of second order connections to vertical Weil bundles, Arch. Math. (Brno) 37 (2001), 333–347.
- M. Doupovec and I. Kolář, Iteration of fiber product preserving bundle functors, Monatsh. Math. 134 (2001), 39–50.
- [3] M. Doupovec and W. M. Mikulski, On the existence of prolongation of connections, Czechoslovak Math. J. 56 (131) (2006), 1323–1334.
- [4] —, —, On involutions of iterated bundle functors, Colloq. Math. 106 (2006), 135– 145.
- [5] —, —, Holonomic extension of connections and symmetrization of jets, Rep. Math. Phys. 60 (2007), 299–316.
- [6] —, —, Some geometric constructions of second order connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A 61 (2007), 15–22.
- C. Ehresmann, Sur les connexions d'ordre supérieur, in: Atti del V. Cong. dell'Un. Mat. Ital. (1995), Cremonese, Roma, 1956, 344–346.
- [8] J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Dissertationes Math. 212 (1983).
- [9] —, Connections of order r, Ann. Polon. Math. 34 (1977), 69–83.
- [10] J. Gancarzewicz, N. Rahmani and M. Salgado, Connections of higher order and product preserving functors, Czechoslovak Math. J. 52 (127) (2002), 889–896.
- [11] J. Janyška and M. Modugno, Relations between linear connections on the tangent bundle and connections on the jet bundle of a fibred manifold, Arch. Math. (Brno) 32 (1996), 281–288.
- [12] I. Kolář, Higher order absolute differentiation with respect to generalized connections, in: Differential Geometry, Banach Center Publ. 12, PWN, Warszawa, 1984, 153–161.
- [13] —, On the natural operators on vector fields, Ann. Global Anal. Geom. 6 (1988), 109–117.
- [14] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- [15] I. Kolář and W. M. Mikulski, Natural lifting of connections to vertical bundles, Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 97–102.
- [16] J. Kurek and W. M. Mikulski, Constructions on second order connections, Ann. Polon. Math. 92 (2007), 215–223.

- M. Kureš, Generalizations of jets and reflections in the theory of connections, Publ. Math. Debrecen 59 (2001), 339–352.
- [18] M. Kureš and W. M. Mikulski, Natural operators lifting vector fields to bundles of Weil contact elements, Czechoslovak Math. J. 54 (129) (2004), 855–867.
- [19] P. Libermann, Introduction to the theory of semi-holonomic jets, Arch. Math. (Brno) 33 (1997), 173–189.
- [20] W. M. Mikulski, Some natural operations on vector fields, Rend. Mat. Appl. (7) 12 (1992), 783–803.
- [21] —, Some natural constructions on vector fields and higher order cotangent bundles, Monatsh. Math. 117 (1994), 107–119.
- [22] —, Non-existence of natural operators transforming connections on $Y \to M$ into connections on $FY \to Y$, Arch. Math. (Brno) 41 (2005), 1–4.
- [23] —, On prolongation of connections, Ann. Polon. Math. 97 (2010), 101–121.
- [24] —, On "special" fibred coordinates for general and classical connections, ibid. 99 (2010), 99–105.
- [25] J. Tomáš, Natural operators on vector fields on the cotangent bundles of the bundles of (k, r)-velocities, Rend. Circ. Mat. Palermo (2) Suppl. 54 (1998), 113–124.
- [26] J. Virsik, On the holonomity of higher order connections, Cahiers Topol. Géom. Diff. 12 (1971), 197–212.
- [27] A. Vondra, Higher-order differential equations represented by conections on prolongations of a fibered manifold, Extracta Math. 15 (2000), 421–512.

Miroslav Doupovec Department of Mathematics Brno University of Technology FSI VUT Technická 2 616 69 Brno, Czech Republic E-mail: doupovec@fme.vutbr.cz Włodzimierz M. Mikulski Institute of Mathematics Jagiellonian University Łojasiewicza 6 30-348 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

Received 6.12.2010 and in final form 10.2.2011

(2337)

292