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Univalence, strong starlikeness and integral transforms

by M. Obradović (Belgrad), S. Ponnusamy (Chennai),
and P. Vasundhra (Chennai)

Abstract. Let A represent the class of all normalized analytic functions f in the unit
disc ∆. In the present work, we first obtain a necessary condition for convex functions
in ∆. Conditions are established for a certain combination of functions to be starlike or
convex in ∆. Also, using the Hadamard product as a tool, we obtain sufficient conditions
for functions to be in the class of functions whose real part is positive. Moreover, we derive

conditions on f and µ so that the non-linear integral transform
T

z

0
(ζ/f(ζ))µ dζ is univalent

in ∆. Finally, we give sufficient conditions for functions to be strongly starlike of order α.

1. Introduction. Let H denote the class of all functions analytic in the
unit disc ∆ = {z : |z| < 1}, and A the class of all normalized functions f
(f(0) = f ′(0) − 1 = 0) in H. Let S denote the univalent subclass of A, and
S∗ denote the subclass of f ∈ S for which f(∆) is starlike with respect to the
origin. Recall the prominent subclasses studied in the theory of univalent
functions (see [7]), for 0 ≤ β < 1:

P(β) =

{

f ∈ A : Re

(

f(z)

z

)

> β, z ∈ ∆

}

,

R(β) = {f ∈ A : zf ′ ∈ P(β)},

S∗(β) =

{

f ∈ A : Re

(

zf ′(z)

f(z)

)

> β, z ∈ ∆

}

,

S∗

β =

{

f ∈ A :

∣

∣

∣

∣

arg

(

zf ′(z)

f(z)

)∣

∣

∣

∣

<
βπ

2
, z ∈ ∆

}

,

K(β) = {f ∈ A : zf ′ ∈ S∗(β)}.
It is well known that K ≡ K(0) ( S∗(1/2). Functions in S∗

β are called

strongly starlike of order β, while those in S∗(β) are starlike of order β. For
β < 0, S∗(β) * S, while for 0 < β < 1, S∗(β) ( S∗ ( S, and functions
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in S∗(0) ≡ S∗ are simply referred to as starlike. For 0 < β < 1, clearly,
S∗

β ( S∗ and S∗

1 ≡ S∗.
For a, b, c ∈ C and c 6= 0,−1,−2, . . . , the Gaussian hypergeometric series

F (a, b; c; z) is defined as

F (a, b; c; z) =
∞

∑

n=0

(a)n(b)n

(c)n

zn

n!
, |z| < 1,

where (a)n = a(a+1)(a+2) · · · (a+n−1) and (a)0 = 1. This series represents
an analytic function in ∆ and has an analytic continuation throughout the
finite complex plane except at most for the cut [1,∞).

Let B denote another important subclass, of all analytic functions ω ∈ H
such that ω(0) = 0 and ω(∆) ⊆ ∆. A function f ∈ H is called subordinate to
another function g ∈ H, and one writes f(z) ≺ g(z), if there exists an ω ∈ B
such that f(z) = g(ω(z)) for all z ∈ ∆. It is well known that this implies in
particular f(0) = g(0) and f(∆) ⊂ g(∆), and that these two conditions are
also sufficient for f(z) ≺ g(z) whenever g is univalent in ∆. Next, we remark
that if f ∈ H, f(0) = 0 and |f(z)| ≤ M on ∆, then this can be equivalently
expressed in the form

f(z) = Mω(z), ω ∈ B,

and so f(z) ≺ Mz.
In [8], R. Singh and S. Paul showed that for all real λ and µ with 0 ≤

µ ≤ λ/2 one has the following implication:

(1.1) f ∈ K ⇒ Re

(

λ
f(z)

zf ′(z)
+ µ

1

f ′(z)

)

> 0, z ∈ ∆.

We observe that the well known strict inclusion result, namely K ( S∗(1/2),
does not follow from the above one way implication. In view of this, in
Theorem 2.1 we use a different approach and determine R = R(λ, µ) such
that

f ∈ K ⇒ G(∆) ⊂ {w ∈ C : |w − R| < R}, G(z) = λ
f(z)

zf ′(z)
+ µ

1

f ′(z)
,

for all real values of λ and µ with |µ| ≤ λ/2.
Trimble [11] showed that if f ∈ K, then F defined by

F (z) = λz + (1 − λ)f(z)

is in S∗(β), where β = (1 − 3λ)/(2(2 + λ)) with 0 ≤ λ ≤ 1/3. Related
problems were considered in [2, 12], by imposing an additional condition
on f .

In Theorem 2.3, we impose conditions on f ∈ An := {f ∈ A : f(z) =
z +

∑

∞

k=n+1 akz
k} different from those of [2, 12] and obtain the starlikeness



Univalence and integral transforms 3

of

(1.2) F (z) = λz +
1 − λ

α

1\
0

t1/α−2f(tz) dt

for all λ < 1. It follows that the integral (1.2) is well defined or convergent
only for Reα > 0 and also at α = 0 as a limiting case, because

1

α

1\
0

t1/α−2+k dt =
1

(k − 1)α + 1

[

1 − lim
t→0+

exp

((

1

α
− 1 + k

)

ln t

)]

=
1

(k − 1)α + 1
,

for k = 1, n+1, n+2, . . . , where the principal branches of possible multiple-
valued power functions are considered. We remark that the relation (1.2)
looks much simpler in the following differential form:

(1.3) αzF ′(z) + (1 − α)F (z) = λz + (1 − λ)f(z)

since

f(z) ≡
1\
0

∂

∂t
(t1/α−1f(tz)) dt.

Thus, for a given f ∈ An, there is exactly one solution F ∈ An of the
equation (1.3) if and only if α ∈ C \ {−1/j : j = n, n + 1, n + 2, . . .}:

(1.4) F (z) ≡ z + (1 − λ)
∞

∑

k=n+1

ak

(k − 1)α + 1
zk

whenever f(z) = z +
∑

∞

k=n+1 akz
k. We use this observation in the proof of

Theorem 2.3.
Also, we provide a condition on β such that Re zf ′′(z) > −β(1 − λ)

implies that Re(f(z)/z) > λ (see Theorem 2.6). In addition to these results,
in Theorem 2.7, we obtain conditions so that the non-linear operator

g(z) =

z\
0

(

ζ

f(ζ)

)µ

dζ

is univalent. Finally, we derive a sufficient condition for f to be strongly
starlike of order α.

2. Main results

Theorem 2.1. If f ∈ K then

(2.1)

∣

∣

∣

∣

λ
f(z)

zf ′(z)
+ µ

1

f ′(z)
− λ(λ + 2µ)

λ − 2µ

∣

∣

∣

∣

<
λ(λ + 2µ)

λ − 2µ
, z ∈ ∆,
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for all real λ and µ with 0 < µ ≤ λ/2, and

(2.2)

∣

∣

∣

∣

λ
f(z)

zf ′(z)
+ µ

1

f ′(z)
− λ

∣

∣

∣

∣

< λ, z ∈ ∆,

for all real λ and µ with −λ/2 ≤ µ < 0.

Proof. Let f ∈ K. Since K ( S∗(1/2), we exclude the trivial case µ =
0 < |λ| as this may be obtained as a limiting case. Then, for all z and w
in ∆, it is known that

(2.3) Re

(

zf ′(z)

f(z) − f(w)
− w

z − w

)

>
1

2
,

where the expression is defined by its limit when z = w. Further, for f ∈ K
it is also known that Re(f(z)/z) > 1/2 in ∆ and hence, for 0 < µ ≤ λ/2,
this shows that

(2.4) 0 < Re

(

µz

µz + λf(z)

)

≤ 2µ

λ + 2µ
.

Since f ∈ K, the image of f covers the disc |ζ| < 1/2 and therefore, it can
be readily seen that there exists w ∈ ∆ such that

f(w) = −(µ/λ)z.

From (2.3) and (2.4),

Re

(

λzf ′(z)

λf(z) + µz

)

= Re

(

zf ′(z)

f(z) − f(w)

)

>
1

2
+ Re

(

w

z − w

)

=
1

2
− Re

(

µw

µw + λf(w)

)

>
1

2
− 2µ

λ + 2µ
=

λ − 2µ

2(λ + 2µ)
,

which proves the first assertion (2.1) for 0 < µ < λ/2. If µ = λ/2, then the
last inequality becomes

Re

(

λ
f(z)

zf ′(z)
+

1

2

1

f ′(z)

)

> 0,

which is same as (2.1) in the limiting case.
Next, we observe that for −λ/2 ≤ µ < 0,

Re

(

1 +
λf(z)

µz

)

<
λ + 2µ

2µ
≤ 0

so that

2µ

λ + 2µ
<

1

Re(1 + λf(z)/µz)
≤ Re

(

1

1 + λf(z)/µz

)

< 0.
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This observation shows that

Re

(

λzf ′(z)

λf(z) + µz

)

>
1

2
, z ∈ ∆,

which proves the second assertion (2.2).

Corollary 2.2. Let f ∈ K. For z, w ∈ ∆, define

(2.5) G(z, w) = λ
[f(z) − f(w)](1 − |w|2)
(z − w)f ′(z)(1 − wz)

+ µ
f ′(w)(1 − |w|2)2
f ′(z)(1 − wz)2

.

Then, for all real λ and µ such that 0 < µ ≤ λ/2, we have
∣

∣

∣

∣

G(z, w) − λ(λ + 2µ)

λ − 2µ

∣

∣

∣

∣

<
λ(λ + 2µ)

λ − 2µ
,

and for −λ/2 ≤ µ < 0, we have |G(z, w) − λ| < λ.

Proof. Since f ′(w) 6= 0 in ∆, we consider a disc automorphism of ∆ and
define g by

g(ζ) =
f((ζ + w)/(1 + wζ)) − f(w)

f ′(w)(1 − |w|2) .

As the convexity is preserved under disc automorphisms, we have g ∈ K if
and only if f ∈ K. Writing z = (w + ζ)/(1 + ζw), it can be shown that

λg(ζ) + µζ

ζg′(ζ)
= G(z, w)

where G(z, w) is given by (2.5). Since g ∈ K, the desired conclusion follows
from Theorem 2.1 and the last equality.

Theorem 2.3. Let n ∈ N, α ∈ C \ {−1/j : j = n, n + 1, n + 2, . . .} with

Re α > −1/n and let f ∈ An satisfy the condition

(2.6) |zf ′′(z)| <
µ

1 − λ
, z ∈ ∆,

for some λ < 1. Then, for F defined by (1.3), we have

(a)

∣

∣

∣

∣

zF ′(z)

F (z)
− 1

∣

∣

∣

∣

≤ 1 for 0 < µ ≤ nRe α + 1,

(b)

∣

∣

∣

∣

zF ′′(z)

F ′(z)

∣

∣

∣

∣

≤ 1 for 0 < µ ≤ (nRe α + 1)/2.

Proof. From the representation (1.4), we easily see that

zF ′′(z) = (1 − λ)
∞

∑

k=n

(k + 1)kak+1z
k

1 + kα
= (1 − λ)

[

zf ′′(z) ∗
( ∞

∑

k=n

zk

1 + kα

)]

,
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and thus,

(2.7) zF ′′(z) = (1 − λ)

1\
0

tαzf ′′(tαz) dt.

Suppose that f satisfies condition (2.6), which may be rewritten as

zf ′′(z) =
µ

1 − λ
ω(z), ω ∈ Bn,

where Bn = {ω ∈ H : |ω(z)| < 1 and ω(k)(0) = 0 for k = 0, 1, . . . , n − 1}.
Schwarz’ lemma then shows that |ω(z)| ≤ |z|n for z ∈ ∆. Therefore, (2.7)
becomes

zF ′′(z) = µ

1\
0

ω(tαz) dt

and hence, by the condition on α, it follows that

|zF ′′(z)| ≤ µ|z|n
nRe α + 1

<
µ

nRe α + 1
, z ∈ ∆.

Then (see [7, 10]) we have

(2.8)

∣

∣

∣

∣

zF ′(z)

F (z)
− 1

∣

∣

∣

∣

≤ µ/[2nRe α + 2]

1 − µ/[2nReα + 2]

and

(2.9)

∣

∣

∣

∣

zF ′′(z)

F ′(z)

∣

∣

∣

∣

≤ µ/[nRe α + 1]

1 − µ/[nReα + 1]
.

In particular, F is starlike for 0 < µ ≤ nRe α + 1 and convex if 0 < µ ≤
(nRe α + 1)/2.

The case n = 1 of Theorem 2.3 gives

Corollary 2.4. Let Re α > −1 and let f ∈ A satisfy the condition

(2.10) |zf ′′(z)| <
µ

1 − λ
, z ∈ ∆,

for some λ < 1. Then, for F defined by (1.2), we have

(a)

∣

∣

∣

∣

zF ′(z)

F (z)
− 1

∣

∣

∣

∣

≤ 1 for 0 < µ ≤ Re α + 1,

(b)

∣

∣

∣

∣

zF ′′(z)

F ′(z)

∣

∣

∣

∣

≤ 1 for 0 < µ ≤ (Reα + 1)/2.

Note that z + (c/2)z2 /∈ S whenever |c| > 1. Define

f(z) = z + (µ/2(1 − λ))z2.

Now, if we let 1−µ < λ ≤ 1, then µ/(1−λ) > 1 and hence f is not univalent
but satisfies (2.10). On the other hand, the corresponding F defined by (1.2)
is starlike for 0 < µ ≤ Re α+1 and is in fact convex for 0 < µ ≤ (Reα+1)/2.
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Lemma 2.5. Let p be analytic in ∆ and p(0) = 1. Suppose that

Re(z2p′′(z) + αzp′(z)) > −β(1 − λ), z ∈ ∆,

for some α > 1, λ < 1 and 0 < β ≤ β(α), where

β(α) :=
α(α − 1)

2[α log 2 − F (1, α; α + 1;−1)]
.

Then Re p(z) > λ for z ∈ ∆. In particular , if

Re(z2p′′(z) + αzp′(z)) > −β

for 0 < β ≤ β(α), then Re p(z) > 0 for z ∈ ∆.

Proof. We consider a more general differential equation

z2p′′(z) + αzp′(z) = β(1 − λ)(φ(z) − 1)(2.11)

where Re φ(z) > 0 in ∆, and φ(0) = 1. If p and φ are of the form

p(z) = 1 +

∞
∑

n=1

pnzn and φ(z) = 1 +

∞
∑

n=1

φnzn,

respectively, then, by comparing the coefficients of zn on both sides of (2.11),
it follows that

n(n − 1 + α)pn = β(1 − λ)φn, n ≥ 1,

which gives

p(z) = 1 + β(1 − λ)

∞
∑

n=1

φn

n(n − 1 + α)
zn.

It can be easily seen that p(z) has the integral representation (see [5, Propo-
sition 1])

p(z) = 1 + β(1 − λ)

1\
0

1\
0

u−1vα−2(φ(uvz) − 1) du dv.

As Re φ(z) > (1 − |z|)/(1 + |z|) for z ∈ ∆, we have

Re(φ(uvz) − 1) ≥ − 2|uvz|
1 + uv|z| ≥ − 2uv

1 + uv
, z ∈ ∆,

and therefore,

Re p(z) > 1 − 2β(1 − λ)

1\
0

1\
0

vα−1

1 + uv
du dv

= 1 − 2β(1 − λ)

1\
0

vα−2 log(1 + v) dv
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= 1 − 2β(1 − λ)

[

log(1 + v)
vα−1

α − 1

∣

∣

∣

∣

1

0

− 1

α − 1

1\
0

vα−1

1 + v
dv

]

= 1 − 2β(1 − λ)

[

log 2

α − 1
− F (1, α; α + 1;−1)

α(α − 1)

]

≥ 1 − 2β(α)(1 − λ)

[

α log 2 − F (1, α; α + 1;−1)

α(α − 1)

]

= λ.

The desired conclusion follows.

Theorem 2.6. Let f ∈ A satisfy the condition

Re zf ′′(z) > −β(1 − λ), 0 < β ≤ 1

2(2 log 2 − 1)
≈ 1.29435.

Then f ∈ P(λ). In particular ,

Re zf ′′(z) > −β ⇒ Re

(

f(z)

z

)

>
1 − log 2

log 2
= 0.4427 . . .

for 0 < β ≤ 1/ log 4.

Proof. Define p(z) = f(z)/z. Then z2p′′(z)+2zp′(z) = zf ′′(z) and there-
fore, the desired conclusion follows from Lemma 2.5, since F (1, 2; 3;−1) =
2(1 − log 2).

Remark. From [1], we recall that if Re zf ′′(z) > −β for 0 < β ≤
1/log 4 ≈ 0.721348, then f ∈ S∗. We observe that S∗(1/2) ( P(1/2). From
Theorem 2.6, it follows that if f ∈ A satisfies the differential inequality

(2.12) Re(z2f ′′′(z) + 2zf ′′(z)) > −β,

then Re f ′(z) > 0 whenever 0 < β ≤ 1/[4 log 2 − 2] = β0 ≈ 1.29435. It is
interesting to recall that if f ∈ A satisfies (2.12) then f is convex whenever

0 < β ≤ βc = 1/log 4.

Note that β0 > βc and we know that a convex function f ∈ A does not
necessarily satisfy Re f ′(z) > 0 for z ∈ ∆, and conversely, a function f
satisfying the last condition does not always have the convexity property.
Indeed, even the assumption that |f ′(z) − 1| < λ in ∆ does not necessarily
imply that f is starlike unless λ ≤ 2/

√
5 (see [3, 9]).

Our next result, which is of independent interest, is a reformulated ver-
sion of a result from [6] in our setting.

Theorem 2.7. Let f ∈ An = {f ∈ A : f(z) = z + an+1z
n+1 + · · · }

satisfy the condition
∣

∣

∣

∣

f ′(z)

(

z

f(z)

)µ+1

− 1

∣

∣

∣

∣

< λ (λ > 0)
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and let

g(z) =

z\
0

(

ζ

f(ζ)

)µ

dζ.

(i) For 0 < µ < n,

g ∈ R
(

1 − λµ

n − µ

)

.

In particular , Re g′(z) > 0 whenever 0 < µ ≤ n/(1 + λ).
(ii) For µ = n,

g ∈ R
(

1 − n|f (n+1)(0)|
(n + 1)!

− nλ

)

.

In particular ,

Re g′(z) > 0 whenever 0 < λ ≤ 1

n
− |f (n+1)(0)|

(n + 1)!
.

Proof. For µ ∈ (0, n) and f(z) 6= 0 in 0 < |z| < 1, we see that g′(z) =
(z/f(z))µ and

zg′′(z) = µ

(

z

f(z)

)µ−1[

−
(

z

f(z)

)2

f ′(z) +
z

f(z)

]

so that

g′(z) − 1

µ
zg′′(z) =

(

z

f(z)

)µ+1

f ′(z).

By hypothesis, we can write

(2.13) g′(z) − 1

µ
zg′′(z) = 1 + λw(z)

where w ∈ Bn. Suppose that g′(z) = 1+
∑

∞

k=n pkz
k and w(z) =

∑

∞

k=n bkz
k.

Then

g′(z) − 1

µ
zg′′(z) = 1 +

∞
∑

k=n

(

1 − k

µ

)

pkz
k.

A comparison of the coefficient of zk on both sides of (2.13) shows that
(

1 − k

µ

)

pk = λbk (k ≥ n)

so that

g′(z) = 1 + λ
∞

∑

k=n

bk

1 − k/µ
zk.

Since 0 < µ < n, we can rewrite the last equality in integral form

g′(z) = 1 − λ

∞\
1

w(t−1/µz) dt
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and therefore (using |w(z)| ≤ |z|n for z ∈ ∆), it follows that

|g′(z) − 1| < λ

∞\
1

t−n/µ dt =
λµ

n − µ
,

which gives the required conclusion. In particular, for 0 < µ ≤ n/(1 + λ),
we have Re g′(z) > 0 for z ∈ ∆.

For the case µ = n, proceeding as above but with w(z) =
∑

∞

k=n+1 bkz
k,

we get the required result.

Theorem 2.8. Let f ∈ A, 0 < α ≤ 1, and λ > (1 − α) sin(πα/2).
Suppose that f ′(z)f(z)/z 6= 0 on ∆ and

(2.14)

∣

∣

∣

∣

Im

[

λ
zf ′′(z)

f ′(z)
+ (1 − λ)

zf ′(z)

f(z)

]∣

∣

∣

∣

< β(α, λ),

where

β(α, λ) =
λ

2

[

(α + 1)
1

t0
+ (α − 1)t0

]

and t0 is the pointwise solution of the equation

2t1+α sin(απ/2) − λ(1 − t2) = 0.

Then f ∈ S∗

α.

Proof. Define

(2.15)
zf ′(z)

f(z)
=

(

1 + w(z)

1 − w(z)

)α

.

It suffices to prove that |w(z)| < 1 for z ∈ ∆. Logarithmic differentiation of
(2.15) gives

1 +
zf ′′(z)

f ′(z)
=

(

1 + w(z)

1 − w(z)

)α

+ α
2zw′(z)

1 − w2(z)

and therefore,

(2.16) λ

(

1 +
zf ′′(z)

f ′(z)

)

+ (1 − λ)
zf ′(z)

f(z)
=

(

1 + w(z)

1 − w(z)

)α

+ αλ
2zw′(z)

1 − w2(z)
.

Suppose it is not true that |w(z)| < 1, z ∈ ∆. Then there exists a z0 ∈ ∆
such that |w(z0)| = 1 and, by Jack’s well known lemma, z0w

′(z0) = kw(z0)
with k ≥ 1. If we put w(z0) = eiθ, then from (2.16), we obtain

λ

(

1 +
z0f

′′(z0)

f ′(z0)

)

+ (1 − λ)
z0f

′(z0)

f(z0)
=

(

1 + eiθ

1 − eiθ

)α

+ αλ
2keiθ

1 − e2iθ
(2.17)

= (i cot(θ/2))α + i
λkα

sin θ
.
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We consider first the case 0 < θ < π. Then taking the imaginary part on
both sides of (2.17), we get

Im

(

λ
z0f

′′(z0)

f ′(z0)
+ (1 − λ)

z0f
′(z0)

f(z0)

)

= cotα(θ/2) sin(απ/2) +
αλk

sin θ

≥ cotα(θ/2) sin(απ/2) +
αλ

sin θ

= tα sin(απ/2) +
αλ

2

(

t +
1

t

)

=: g(t), where t = cot(θ/2) > 0.

We have

g′(t) = αtα−1 sin(απ/2) + αλ/2 − αλ/(2t2)

and

g′′(t) = α(α − 1)tα−2 sin(απ/2) + αλ/t3 =
α

t3
[(α − 1)t1+α sin(απ/2) + λ].

Since limt→0+ g′(t) = −∞, g′(1) = α sin(απ/2) > 0 and g′′(t) > 0 for
0 < t ≤ 1 and λ > (1 − α) sin(πα/2), we conclude that the function g(t)
attains its minimum

β(α, λ) = g(t0) =
1

2
[(α + 1)/t0 + (α − 1)t0],

where t0 ∈ (0, 1) is the smallest positive root of the equation g′(t) = 0, i.e.

2t1+α sin(απ/2) + λt2 − λ = 0.

Thus

Im

(

λ
z0f

′′(z0)

f ′(z0)
+ (1 − λ)

z0f
′(z0)

f(z0)

)

≥ β(α, λ).

Similarly, for −π < θ < 0, we obtain

Im

(

λ
z0f

′′(z0)

f ′(z0)
+ (1 − λ)

z0f
′(z0)

f(z0)

)

≤ −β(α, λ).

A combination of these two inequalities shows that
∣

∣

∣

∣

Im

(

λ
z0f

′′(z0)

f ′(z0)
+ (1 − λ)

z0f
′(z0)

f(z0)

)∣

∣

∣

∣

≥ β(α, λ),

which contradicts the assumption of the theorem.
So, |w(z)| < 1 for z ∈ ∆, and from (2.15), this is equivalent to the

assertion that f ∈ S∗

α.

For λ = 1, we have

Corollary 2.9. Let f ∈ A be such that f ′(z)f(z)/z 6= 0 on ∆ and
∣

∣

∣

∣

Im
zf ′′(z)

f ′(z)

∣

∣

∣

∣

< β(α), z ∈ ∆,
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where 0 < α ≤ 1,

β(α) =
1

2

[

(α + 1)
1

t0
+ (α − 1)t0

]

and t0 is the pointwise solution of the equation

2t1+α sin(απ/2) − (1 − t2) = 0.

Then f ∈ S∗

α.

Example 2.1. For α = 1, we have the equation (2 + λ)t2 − λ = 0 with

positive root t0 =
√

λ/(2 + λ) and β(1, λ) =
√

λ(2 + λ). Now, we have the
following implication (see [4, p. 115]) for f ∈ A with f ′(z)f(z)/z 6= 0 on ∆:

∣

∣

∣

∣

Im

[

λ
zf ′′(z)

f ′(z)
+ (1 − λ)

zf ′(z)

f(z)

]∣

∣

∣

∣

<
√

λ(2 + λ) ⇒
∣

∣

∣

∣

arg

(

zf ′(z)

f(z)

)∣

∣

∣

∣

<
π

2
,

i.e. f ∈ S∗.
A simple computation shows that β(α, λ) in Theorem 2.8 is larger than

αλ, and β(α, λ) is independent of the root t0 of the appropriate equation.
Namely, if we let

φ(t) := β(α, λ) =
λ

2
[(α + 1)/t + (α − 1)t]

then

φ′(t0) =
λ

2t20
[−(α + 1) + (α − 1)t20] =

1

2t20
[(t20 − 1)α − (1 + t20)] < 0,

since 0 < t0 < 1, 0 < α ≤ 1 and λ > 0. It means that φ(t) is a decreasing
function of t0 ∈ [0, 1] and we have

φ(t0) > φ(1) = αλ.

References

[1] R. M. Ali, S. Ponnusamy and V. Singh, Starlikeness of functions satisfying a dif-

ferential inequality, Ann. Polon. Math. 61 (1995), 135–140.
[2] P. N. Chichra and R. Singh, Complex sum of univalent functions, J. Austral. Math.

Soc. 14 (1972), 503–507.
[3] R. Fournier, On integrals of bounded analytic functions in the closed unit disc, Com-

plex Var. Theory Appl. 11 (1989), 125–133.
[4] S. Ponnusamy, Some applications of differential subordination and convolution tech-

niques to univalent functions theory, Ph.D. thesis, I.I.T. Kanpur, 1988.
[5] S. Ponnusamy and S. Sabapathy, Polylogarithms in the theory of univalent functions,

Results Math. 30 (1996), 136–150.
[6] S. Ponnusamy and P. Sahoo, Geometric properties of certain linear integral trans-

forms, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), 95–108.
[7] S. Ponnusamy and V. Singh, Criteria for univalent, starlike and convex functions,

ibid. 9 (2002), 511–531. (Also Preprint 265, 2001, Department of Mathematics,
University of Helsinki.)



Univalence and integral transforms 13

[8] R. Singh and S. Paul, Linear sums of certain analytic functions, Proc. Amer. Math.
Soc. 99 (1987), 719–725.

[9] V. Singh, Univalent functions with bounded derivative in the unit disc, Indian J.
Pure Appl. Math. 8 (1977), 1370–1377.

[10] —, On some problems of Mocanu type, Indian J. Pure Appl. Math. 32) (2001),
1859–1867.

[11] S. Y. Trimble, The convex sums of convex functions, Math Z. 109 (1969), 112–114.
[12] K.-J.Wirths, Bemerkungen zu einem Satz von Fejér, Anal. Math. 1 (1975), 313–318.

Department of Mathematics
Faculty of Technology and Metallurgy
4 Karnegijeva St.
11000 Belgrad
Serbia and Montenegro
E-mail: obrad@elab.tmf.bg.ac.yu

Department of Mathematics
Indian Institute of Technology Madras

Chennai-600 036, India
E-mail: samy@iitm.ac.in

vasu2kk@yahoo.com
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