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A new approach to the existence results for orientor fields
with Nicoletti’s boundary conditions

by STANISEAW DOMACHOWSKI (Gdarnsk)

Abstract. Applying a global bifurcation theorem for convex-valued completely con-
tinuous mappings we prove some existence theorems for convex-valued differential inclu-
sions of the form z’ € F(t,x), where z satisfies the Nicoletti boundary conditions.

1. Introduction. In this paper we consider the Nicoletti boundary value
problem for the first order differential inclusions

{x’(t) € F(t,z(t)) for ae.te€ (a,b),
l(x) =0,
where F: [a, b] xRF — cf(RF) is a convex-valued mapping and [ : C([a, b], R¥)
— R* is given by

v, .. zx) = (21(a), 2a(b), 2s(ts). .25 (t5)), where ts, ... 15 € [a,b].

The Nicoletti single-valued and multi-valued boundary value problem
has been considered by several authors (see for instance [5], [6], [10]). In
these papers it is assumed that the mapping F' satisfies the Carathéodory
conditions and the inequality

(1.1)

(1.2) |F(t,z)| < p(t)|z| + ¢q(t) for z € R* and ¢ € [a, b],
where p, g : [a,b] — R, are integrable functions, and p satisfies the inequality
b
T
1.3 t)dt < —.
(13) oyt < 7

a

Lasota and Olech [6] considered the single-valued Nicoletti problem. They
showed that for F' satisfying (1.2) the condition (1.3) is the best possible
sufficient condition for the existence of solution of (1.1).
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Our assumptions refer to the behaviour of F(¢,x) for |z| close to 0 and
to oo. The main tool we use is a global bifurcation theorem for convex-
valued completely continuous mappings. In Section 2 we state the main
existence theorems. In Section 3 we give auxiliary lemmas, and transform
the Nicoletti boundary value problem to appropriate second order boundary
value problems. Finally, in Section 4 we prove the existence theorems.

2. Main theorems. Let E be a real Banach space. We denote by cf(E)
the family of all non-empty, closed, bounded and convex subsets of E, and
by D(A, B) the Hausdorff distance between A, B € cf(FE). In particular we
put [ 4] = D(A, {0}).

Let X be a closed non-empty subset of £. A multi-valued mapping & :
X — cf(E) is called upper semicontinuous (u.s.c.) if for each open set U C E
the set {x € X : &(x) C U} is open in X.

Let I C R be a closed interval. A multi-valued mapping & : I — cf(R¥) is
called measurable if for every open set U C R¥ the set {x € I : ®(z)NU # 0}
is Lebesgue measurable.

For x = (x1,...,21) € R¥ we write |z| = (Z?:l 22)1/? and let IT; : RF —
R be the linear projection given by II;(z1,...,z;) =x; for i =1,... k.

Recall that the multi-valued mapping F : [a,b] x RF — cf(RF) satisfies
the Carathéodory conditions if:

(i) for each 2 € R¥ the mapping F(-, ) is measurable;
(ii) for each t € [a,b] the mapping F'(t,-) is u.s.c.;
(iii) for each R > 0 there exists a function mpr € L'(a,b) such that for
each z € R¥ with |z| < R we have |F(t,z)| < mg(t) a.e. on [a, b].
THEOREM 1. Assume that F : [a,b] xR — cf(R¥) satisfies the Carathéo-
dory conditions and
(2.1)  there exists 6 > 0 and an integrable function v : [a,b] — R such that

b

[F(t,2)| < w(t)lal forte[ab], o] <5 and [u()dt < Z;

a

(2.2)  for every € > 0 there exists Ry > 0 such that
D((Iy o F)(t, ), {x2}) + D((II2 0 F)(t, x), {=M|a1]}) < el|
fort € [a,b], |x1| + |x2] > Ry and M > (7/2(b— a))?;
(2.3)  there exists Ry > 0 and integrable functions ; : [a,b] — Ry with
|(II; o F)(t, )| < i(t)|zi| fortela,b], || > Ry andi=3,... k.
Then there exists a non-trivial solution of the boundary value problem (1.1).

THEOREM 2. Assume that F : [a,b] xRF — cf(R¥) satisfies the Carathéo-
dory conditions and conditions (2.1), (2.2), and

3
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(2.4)  there exists Ry > 0 and an integrable function 1 : [a,b] — Ry such

that

k 1/2 k 1/2
(Y lumer) o)) " <w)(Yoa?) " forte o], fo| = Ry
=3 1=3

and SZ@Z)(t) dt < 7 /2.

Then there exists a non-trivial solution of the boundary value problem (1.1).

3. Auxiliary lemmas. Let ¢ : [a,b] — Ry satisfy (2.1). Then there
exists o > 1 such that agzw(t) dt < m/2. Let q1,¢2 : (0,00) — [0,1] be a
continuous partition of unity subordinate to the open cover {(0, @), (3,00)}
of the interval (0,00), where 1 < 3 < «, and let p : R¥ — RF be given by
p(x1, 22, ..., x) = (—x2, M|21],0,...,0).

We start with the following scalar boundary value problem:

2" (t) + \x(t) = 0,

z(a) = 2'(b) = 0.
It is well known (cf. [4]) that there exists exactly one eigenvalue pug =
(7/2(b— a))? of (3.1) for which there exists an eigenvector g : [a,b] — R

such that zo(t) > 0 for t € (a,b).
The following fact is a consequence of the properties of Green’s function

(cf. [2]-[4]).
(3.2) TIfu> (r/2(b—a))? n>0and x¢ : [a,b] — R is as above then the
scalar problem

(3.1)

" (t) + pa(t) + nao(t) =0,
z(a) = 2/(b) =0,
(t) = 0,

has no solutions.

Let 20 : [a,b] — R¥ be given by 2°(t) = (0, z0(t), 0,...,0). We now asso-
ciate with the problem (1.1) the following two-parameter family of boundary
value problems:

a'(t) € Mg\ F(t,z(t)) — Aga(M)p(a(t)) — (1 = 7)ga(N)2°(¢)
(2(,m) for a.e. t € (a,b),
l(x) =0,
for A € (0,00) and 7 € [0, 1]. An absolutely continuous function z : [a,b] —
R* satisfying (2(1,r)) is called a solution of (2() ). For every pair (A, 7) €
(0,00) x [0, 1] denote by S, ;) the set of all solutions of the problem (2(, ).
In what follows we will make use of the following fact.
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(3.3) (Lasota Olech [5]) Let p : [a,b] — Ry be an integrable function with
S t)dt < /2, let t1,...,tx € [a,b] and let = = (x1,...,2%) :
[a, ] — R* be an absolutely continuous mapping satisfying the
system

|2/ ()] < p(t)|z(t)] for a.e.t € (a,b),
{xz(z)—o fori=1,... k.
Then z(t) = 0 for every ¢ € [a, b].
Let ||-|| be the supremum norm in C|a, b], let ||| be the norm in C([a, b], R¥)
given by [zl = %, [lzi|| for & = (z1,...,2:) € C([a,b],RF) and let
B(0,r) ¢ C([a,b],R*) be an open ball centred at 0 of radius r > 0.

LEMMA 1. Assume that F : [a,b] x R¥ — cf(RF) satisfies all assumptions
of Theorem 1. Then:

(344)  Fr>0 Yae(o,8) Vrep,y B(0,7) NS = {0}

(35)  Vaza Snp ={0}

(3.6)  Vrep1) Yaza S =0;

(3-7) x>0 Yaso Vaco(apmsy @ € Sy = Lps llzill < K;
(3-8)  Fr>0 Vax1 Voeo(aprE) T E S = |lz]|x < K.

Proof of (3.4). By (2.1) there exists r > 0 such that |F(¢,z)| < ¥(t)|z]
for each ¢ € [a,b] and [z| < 7. Let A € (0, 0] and = € B(0,7) N .S(y1). Then
2/ (t) € TAF(t,z(t)) for a.e. t € (a,b),
{l(m) =0.
Hence
#(0)] < TAF (L 2()] < IS0 < fe(l(t)]  for ace. t € (a,b),
so according to (3.3), z(t) = 0 for each ¢ € [a, b].
Proof of (3.5). Let A > aand = € S(y 1). Then
{fﬂ'(t) = —Ap(z(1)),
I(x) =0.
From the definition of p we obtain
) (1) = Aza(t),
zy(t) = =AMz ()],

z1(a) =0, x2(b) =0,
S0
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By the maximum principle (cf. [8]), z1(t) > 0 for every ¢ € [a, b]. Since A > 1,
(3.1) yields z1(t) = 0 for each t € [a, b]. Therefore x(t) = 0 for each ¢ € [a, b],
so (3.5) is proved.

Proof of (3.6). Let x € S, ;) for some A > a and 7 € [0,1). Then
{w'(t) = —Ap(x(t) — (1 —7)2(1),

l(x) =0,
hence
2{(t) = =A2Mlz1(t)| = AL = 7)z0(t),
z1(a) =0,
zi(b) =0
From (3.2) we conclude that the above problem has no solution. This com-

pletes the proof.

Proof of (3.7). Let x € Sy ). By (iii) and (2.3) there exists mgr €
L'(a,b) such that

|(z:) (t)] < mp(t) + M (t)|z;(t)| for ae. t € [a,b] and i = 3,4,... k.
From (3.5) we obtain

|(z:) (t)] < mp(t) + at)i(t)|z;(t)| for a.e. t € [a,b] and i = 3,4,... k.
Hence by the Gronwall inequality we have

b
lzi(t)] < SmR(t)eaSZ Vil dt gt for t € [a,b] and i = 3,4,..., k.

This completes the proof of (3.7).

Proof of (3.8). Suppose that (3.8) is not satisfied, i.e. there exist se-
quences {\,} C (1,00) and {z"} C S(y, 1) such that S |2 — oo and
An — Ao > 1. From (3.7) we obtain |27 + [|23| — oo. Since 2™ € S(y, 1),
we have for a.e. t € (a,b),

(27)'(t) € Anqa(An) (1 © F)(t, 20 (1)) + Anga(An)25 (1),

(23)'(t) € Ang1(An)(ITy 0 F)(t, 2n (1)) — Ang2(An) M|z1 (1)),

zt(a) =0, x5(b)=0.
So there exists a sequence {w?} C L'(a, b) such that w?(t) € (II;0 F)(t, 2" (t))
a.e. on [a,b] for i = 1,2 and
t

21 (t) = Angi(An) \ (0 (s) — x5 (s))ds + A\, S xy(s)ds,

(wy (s) + M|z} (s)]) ds — )\RMS |z (s)| ds.
b

25 (t) = Ang1(An)

T ) Qe
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Set v*(t) = z]'(t)/||z"||x. From conditions (iii) and (2.2), and the Arzela-
Ascoli Theorem, there exists a subsequence of {v]'} which is convergent to
v; for 4 = 1,2 and the following conditions are satisfied:

v (t) = Aova(2),
vy(t) = —AoM|vi(t)],
vi(a) =0, wa(b) =0.
Similarly to what we showed in (3.5), by (3.1) we have A\gM = (7/2(b — a))?
so necessarily A9 < 1. This contradiction and finishes the proof of (3.8).
LEMMA 2. Assume that F : [a,b] x R¥ — cf(RF) satisfies all assumptions
of Theorem 2. Then there exists K > 0 such that
k
(3.9) > llzill < K for A€ (0,00) and z € Sy 1)
1=3
Proof of (5.9). Suppose (3.9) is not satisfied, i.e. there exist sequences
{An} and {z"} C S(y, 1) such that Zf::a |zl']| — oo and A, — Ag < a. Set
Y = (2%,...,27). By (iii) and (2.4) there exists mg € L'(a,b) such that

{ Y (D] < me(t) + Aty (O)|yn ()] ae. t € [a,b],

l(yn) = 0.
Observe that the function v, = yn/||yn||x—2 is a solution of the problem
mp(t
0] < 22y w@len@) ac. t € 0]
19|12
l(v,) = 0.

Therefore the sequence {v/,} of derivatives is bounded by the integrable
function a1 +mp for n € N large enough. Then by the Pli§ Lemma [7] there
exists a subsequence {vy,} of {v,} uniformly convergent to an absolutely
continuous function vy : [a,b] — R*~2 which is a non-trivial solution of the
problem (3.3). This contradiction finishes the proof of (3.9).

4. Proofs of Theorems 1 and 2. To the Carathéodory mapping
F : [a,b] x RF — cf(R¥) we associate the Nemytskii operator F : C([a, b], R¥)
(L ((a,5), R¥)), given by

F(z) = {w e LY((a,b),R¥) : w(t) € F(t,z(t)) for a.e. t € (a,b)}.
Let P : C([a,b],R¥) — L'((a,b),R¥) be the Nemytskii operator for the map-
ping p : R¥ — RF and let T = (T1,...,T%) : L'((a,b),R¥) — C([a, ], R¥)
be the integral operator given by
¢
T(z) = (Ta(z1), ..., Ti(wy)) where Tj(z;)(t) = | zi(s)ds.

t;
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With the family of boundary value problems (2, ;)) we associate the family
of vector fields f; : (0,00) x C([a,b], R¥) — cf(C([a,b], R¥)) given by

(4,)  fr\ ) =2 = Arqi(NTF () + A2 (\)TP(2) + (1 — 7)g2(N) T ().
Observe that z € S\ iff 0 € f-(\,7). Moreover the vector field f; is
completely continuous (cf. [9], [10]).

We call (11,0) € (0,00) x C([a, ], R¥) a bifurcation point of the mapping
f1 if for every open subset U C (0,00) x C([a,b], R¥) with (11,0) € U there
exists a point (A,z) € U such that  # 0 and 0 € fi(A, ). Denote by By,
the set of all bifurcation points of fi. Let Ry, C (0,00) x C([a, b], R¥) be the
closure (in (0,00) x C'([a,b],R¥)) of the set of non-trivial solutions of the
inclusion 0 € f1(A, z), i.e.

Rp ={(A\,z) € (0,00) x C([a,b],RF) : z #0AN0 € fi (A x)}.

For each A satisfying (A,0) & By, there exists ro > 0 such that 0 € f1()\, x)
for ||u|| = r € (0,r0], so the value deg(f1(\, ), B(0,7),0) is defined.
Assume that for an interval [c,d] C (0, 00) there exists 6 > 0 such that

((fle=d,0)U(d,d+d]) x {0}) N By, = 0.

Then we may define the bifurcation index s[fi,c,d| of the mapping f; with
respect to the interval [c, d] as

8[f17c7 d] = )\11211+ deg(fi(A,-), B(0,7),0) — /\llncl_ deg(f1(A,-), B(0,7),0),

where r = r(\) > 0 is small enough.

The main tool used in this section, Theorem A below, is a global bifur-
cation theorem for convex-valued completely continuous mappings which is
a consequence of a generalization of the Rabinovitz global bifurcation alter-
native (see [1], [11]).

THEOREM A (see [3]). Let f1 : (0,00) x C([a,b], R¥) — cf(C([a, b], R¥))
be given by (41), and assume that there exists an interval [c,d] C (0,00) such
that By, C [c,d] x {0} and s[fi,c,d] # 0. Then there exists a non-compact
component C C Ry, satisfying C N By, # (.

Proof of Theorem 1. According to (3.4) and (3.5), By, C [B,a]. Observe
that by (3.4) for A < [ there exists » > 0 such that fi(A,-) : B(0,r) —
cf(Cla,b],R¥) is homotopic to the identity mapping. Hence by the homo-
topy property of the topological degree we have deg(f1(A,-), B(0,7),0) = 1.
According to (3.5) and (3.6), for A > « there exists » > 0 such that
fi(\,2) : B(0,7) — cf(Cla, b], R¥) is homotopic to the mapping fy(), -) which
has no zeros and deg(fi(\, ), B(0,7),0) = 0. Therefore s[f1,3,a] = —1.
According to Theorem A there exists a non-compact component C C Ry,
satisfying C N By, # (. Since C is not compact there exists a sequence
{(An,xn)} C C such that ||a,||x — oo, or A\, — 00, or A\, — 0. Observe that
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by (3.5) the case A, — oo is impossible. Now consider the case ||z, || — oo.
Then it follows from (3.8) that A, < 1 for n € N large enough. So the con-
nected set C contains pairs (Aj,z1) and (A2, x2) with \; < 1 and Ay > 1.
Hence there exists (1, x) € C. This solution of the inclusion 0 € f;(1,z) must
have = # 0 because (1,0) € Ry,. The proof is complete.

Proof of Theorem 2. Since F' satisfies assumptions (2.1) and (2.2) of
Theorem 1, there exists a non-compact component C C Ry, satisfying C N
By, # (. Similarly to what we showed in the proof of Theorem 1, from (3.9)
and (3.8) it follows that there exist A\; < 1 and = € C([a,b], R¥) such that
(A1,2) € C. Because By, C [3, a] we can see that the connected set C contains
pairs (A1, z1) and (A2, z2) with Ay < 1 and A2 > 1. Hence (1,z) € C for some
x # 0 as before. The proof is complete.
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