A new approach to the existence results for orientor fields with Nicoletti's boundary conditions

by Stanisław Domachowski (Gdańsk)

Abstract. Applying a global bifurcation theorem for convex-valued completely continuous mappings we prove some existence theorems for convex-valued differential inclusions of the form $x' \in F(t, x)$, where x satisfies the Nicoletti boundary conditions.

1. Introduction. In this paper we consider the Nicoletti boundary value problem for the first order differential inclusions

(1.1)
$$\begin{cases} x'(t) \in F(t, x(t)) & \text{for a.e. } t \in (a, b), \\ l(x) = 0, \end{cases}$$

where $F: [a, b] \times \mathbb{R}^k \to cf(\mathbb{R}^k)$ is a convex-valued mapping and $l: C([a, b], \mathbb{R}^k) \to \mathbb{R}^k$ is given by

$$l(x_1, \ldots, x_k) = (x_1(a), x_2(b), x_3(t_3), \ldots, x_k(t_k)),$$
 where $t_3, \ldots, t_k \in [a, b].$

The Nicoletti single-valued and multi-valued boundary value problem has been considered by several authors (see for instance [5], [6], [10]). In these papers it is assumed that the mapping F satisfies the Carathéodory conditions and the inequality

(1.2)
$$|F(t,x)| \le p(t)|x| + q(t) \quad \text{for } x \in \mathbb{R}^k \text{ and } t \in [a,b],$$

where $p, q: [a, b] \to \mathbb{R}_+$ are integrable functions, and p satisfies the inequality

(1.3)
$$\int_{a}^{b} p(t) dt < \frac{\pi}{2}.$$

Lasota and Olech [6] considered the single-valued Nicoletti problem. They showed that for F satisfying (1.2) the condition (1.3) is the best possible sufficient condition for the existence of solution of (1.1).

²⁰⁰⁰ Mathematics Subject Classification: Primary 47H04; Secondary 34A60.

 $Key\ words\ and\ phrases:$ differential inclusion, global bifurcation theorem, Nicoletti boundary conditions.

Our assumptions refer to the behaviour of F(t,x) for |x| close to 0 and to ∞ . The main tool we use is a global bifurcation theorem for convexvalued completely continuous mappings. In Section 2 we state the main existence theorems. In Section 3 we give auxiliary lemmas, and transform the Nicoletti boundary value problem to appropriate second order boundary value problems. Finally, in Section 4 we prove the existence theorems.

2. Main theorems. Let *E* be a real Banach space. We denote by cf(E) the family of all non-empty, closed, bounded and convex subsets of *E*, and by D(A, B) the Hausdorff distance between $A, B \in cf(E)$. In particular we put $|A| = D(A, \{0\})$.

Let X be a closed non-empty subset of E. A multi-valued mapping Φ : $X \to cf(E)$ is called *upper semicontinuous* (u.s.c.) if for each open set $U \subset E$ the set $\{x \in X : \Phi(x) \subset U\}$ is open in X.

Let $I \subset \mathbb{R}$ be a closed interval. A multi-valued mapping $\Phi : I \to \mathrm{cf}(\mathbb{R}^k)$ is called *measurable* if for every open set $U \subset \mathbb{R}^k$ the set $\{x \in I : \Phi(x) \cap U \neq \emptyset\}$ is Lebesgue measurable.

For $x = (x_1, \ldots, x_k) \in \mathbb{R}^k$ we write $|x| = (\sum_{i=1}^k x_i^2)^{1/2}$, and let $\Pi_i : \mathbb{R}^k \to \mathbb{R}$ be the linear projection given by $\Pi_i(x_1, \ldots, x_k) = x_i$ for $i = 1, \ldots, k$.

Recall that the multi-valued mapping $F : [a, b] \times \mathbb{R}^k \to cf(\mathbb{R}^k)$ satisfies the *Carathéodory conditions* if:

- (i) for each $x \in \mathbb{R}^k$ the mapping $F(\cdot, x)$ is measurable;
- (ii) for each $t \in [a, b]$ the mapping $F(t, \cdot)$ is u.s.c.;
- (iii) for each R > 0 there exists a function $m_R \in L^1(a, b)$ such that for each $x \in \mathbb{R}^k$ with $|x| \leq R$ we have $|F(t, x)| \leq m_R(t)$ a.e. on [a, b].

THEOREM 1. Assume that $F: [a, b] \times \mathbb{R}^k \to cf(\mathbb{R}^k)$ satisfies the Carathéodory conditions and

 $(2.1) \quad \ \ there \ exists \ \delta > 0 \ and \ an \ integrable \ function \ \psi: [a,b] \to \mathbb{R}_+ \ such \ that$

$$|F(t,x)| \leq \psi(t)|x| \quad \textit{for } t \in [a,b], \; |x| \leq \delta \quad \textit{and} \quad \int\limits_a^b \psi(t) \, dt < \frac{\pi}{2};$$

(2.2) for every
$$\varepsilon > 0$$
 there exists $R_0 > 0$ such that

$$D((\Pi_1 \circ F)(t, x), \{x_2\}) + D((\Pi_2 \circ F)(t, x), \{-M|x_1|\}) \le \varepsilon |x|$$

for $t \in [a, b], |x_1| + |x_2| \ge R_0$ and $M > (\pi/2(b-a))^2;$

(2.3) there exists
$$R_1 > 0$$
 and integrable functions $\psi_i : [a, b] \to \mathbb{R}_+$ with
 $|(\Pi_i \circ F)(t, x)| \le \psi_i(t)|x_i|$ for $t \in [a, b], |x| \ge R_1$ and $i = 3, \dots, k$.

Then there exists a non-trivial solution of the boundary value problem (1.1).

THEOREM 2. Assume that $F : [a, b] \times \mathbb{R}^k \to cf(\mathbb{R}^k)$ satisfies the Carathéodory conditions and conditions (2.1), (2.2), and (2.4) there exists $R_1 > 0$ and an integrable function $\psi : [a, b] \to \mathbb{R}_+$ such that $\left(\sum_{i=3}^k |(\Pi_i \circ F)(t, x)|^2\right)^{1/2} \le \psi(t) \left(\sum_{i=3}^k x_i^2\right)^{1/2}$ for $t \in [a, b], |x| \ge R_1$ and $\int_a^b \psi(t) \, dt < \pi/2$.

Then there exists a non-trivial solution of the boundary value problem (1.1).

3. Auxiliary lemmas. Let $\psi : [a, b] \to \mathbb{R}_+$ satisfy (2.1). Then there exists $\alpha > 1$ such that $\alpha \int_a^b \psi(t) dt < \pi/2$. Let $q_1, q_2 : (0, \infty) \to [0, 1]$ be a continuous partition of unity subordinate to the open cover $\{(0, \alpha), (\beta, \infty)\}$ of the interval $(0, \infty)$, where $1 < \beta < \alpha$, and let $p : \mathbb{R}^k \to \mathbb{R}^k$ be given by $p(x_1, x_2, \ldots, x_k) = (-x_2, M|x_1|, 0, \ldots, 0)$.

We start with the following scalar boundary value problem:

(3.1)
$$\begin{cases} x''(t) + \lambda x(t) = 0, \\ x(a) = x'(b) = 0. \end{cases}$$

It is well known (cf. [4]) that there exists exactly one eigenvalue $\mu_0 = (\pi/2(b-a))^2$ of (3.1) for which there exists an eigenvector $x_0 : [a,b] \to \mathbb{R}$ such that $x_0(t) > 0$ for $t \in (a,b)$.

The following fact is a consequence of the properties of Green's function (cf. [2]–[4]).

(3.2) If $\mu > (\pi/2(b-a))^2$, $\eta > 0$ and $x_0 : [a,b] \to \mathbb{R}$ is as above then the scalar problem

$$\begin{cases} x''(t) + \mu x(t) + \eta x_0(t) = 0, \\ x(a) = x'(b) = 0, \\ x(t) \ge 0, \end{cases}$$

has no solutions.

Let $x^0 : [a, b] \to \mathbb{R}^k$ be given by $x^0(t) = (0, x_0(t), 0, \dots, 0)$. We now associate with the problem (1.1) the following two-parameter family of boundary value problems:

$$(2_{(\lambda,\tau)}) \qquad \begin{cases} x'(t) \in \lambda \tau q_1(\lambda) F(t, x(t)) - \lambda q_2(\lambda) p(x(t)) - (1-\tau) q_2(\lambda) x^0(t) \\ & \text{for a.e. } t \in (a, b), \\ l(x) = 0, \end{cases}$$

for $\lambda \in (0, \infty)$ and $\tau \in [0, 1]$. An absolutely continuous function $x : [a, b] \to \mathbb{R}^k$ satisfying $(2_{(\lambda, \tau)})$ is called a *solution* of $(2_{(\lambda, \tau)})$. For every pair $(\lambda, \tau) \in (0, \infty) \times [0, 1]$ denote by $S_{(\lambda, \tau)}$ the set of all solutions of the problem $(2_{(\lambda, \tau)})$. In what follows we will make use of the following fact.

S. Domachowski

(3.3) (Lasota-Olech [5]) Let $p: [a,b] \to \mathbb{R}_+$ be an integrable function with $\int_a^b p(t) dt < \pi/2$, let $t_1, \ldots, t_k \in [a,b]$ and let $x = (x_1, \ldots, x_k) : [a,b] \to \mathbb{R}^k$ be an absolutely continuous mapping satisfying the system

$$\begin{cases} |x'(t)| \le p(t)|x(t)| & \text{for a.e. } t \in (a,b), \\ x_i(t_i) = 0 & \text{for } i = 1, \dots, k. \end{cases}$$

Then x(t) = 0 for every $t \in [a, b]$.

Let $\|\cdot\|$ be the supremum norm in C[a, b], let $\|\cdot\|_k$ be the norm in $C([a, b], \mathbb{R}^k)$ given by $\|x\|_k = \sum_{i=1}^k \|x_i\|$ for $x = (x_1, \ldots, x_k) \in C([a, b], \mathbb{R}^k)$ and let $B(0, r) \subset C([a, b], \mathbb{R}^k)$ be an open ball centred at 0 of radius r > 0.

LEMMA 1. Assume that $F : [a, b] \times \mathbb{R}^k \to cf(\mathbb{R}^k)$ satisfies all assumptions of Theorem 1. Then:

 $(3.4) \quad \exists_{r>0} \ \forall_{\lambda \in (0,\beta]} \ \forall_{\tau \in [0,1]} \quad B(0,r) \cap S_{(\lambda,\tau)} = \{0\};$

$$(3.5) \quad \forall_{\lambda \ge \alpha} \quad S_{(\lambda,1)} = \{0\};$$

$$(3.6) \quad \forall_{\tau \in [0,1)} \ \forall_{\lambda \ge \alpha} \quad S_{(\lambda,\tau)} = \emptyset;$$

$$(3.7) \quad \exists_{K>0} \ \forall_{\lambda>0} \ \forall_{x\in C([a,b],\mathbb{R}^k)} \quad x\in S_{(\lambda,1)} \Rightarrow \sum_{i=3}^k \|x_i\| \le K;$$

 $(3.8) \quad \exists_{K>0} \ \forall_{\lambda \ge 1} \ \forall_{x \in C([a,b],\mathbb{R}^k)} \quad x \in S_{(\lambda,1)} \Rightarrow \|x\|_k \le K.$

Proof of (3.4). By (2.1) there exists r > 0 such that $|F(t, x)| \le \psi(t)|x|$ for each $t \in [a, b]$ and $|x| \le r$. Let $\lambda \in (0, \beta]$ and $x \in B(0, r) \cap S_{(\lambda, 1)}$. Then

$$\begin{cases} x'(t) \in \tau \lambda F(t, x(t)) & \text{for a.e. } t \in (a, b), \\ l(x) = 0. \end{cases}$$

Hence

$$\begin{split} |x'(t)| &\leq \tau \lambda |F(t,x(t))| \leq \tau \lambda \psi(t) |x(t)| \leq \beta \psi(t) |x(t)| \quad \text{ for a.e. } t \in (a,b), \\ \text{so according to (3.3), } x(t) &= 0 \text{ for each } t \in [a,b]. \end{split}$$

Proof of (3.5). Let $\lambda \ge \alpha$ and $x \in S_{(\lambda,1)}$. Then $\begin{cases} x'(t) = -\lambda p(x(t)), \\ l(x) = 0. \end{cases}$

From the definition of p we obtain

$$\begin{cases} x_1'(t) = \lambda x_2(t), \\ x_2'(t) = -\lambda M |x_1(t)|, \\ x_1(a) = 0, \quad x_2(b) = 0, \\ \int x_1''(t) = -\lambda^2 M |x_1(t)|, \end{cases}$$

 \mathbf{SO}

$$\begin{cases} x_1''(t) = -\lambda^2 M | x_1(t) \\ x_1(a) = 0, \\ x_1'(b) = 0. \end{cases}$$

By the maximum principle (cf. [8]), $x_1(t) \ge 0$ for every $t \in [a, b]$. Since $\lambda \ge 1$, (3.1) yields $x_1(t) = 0$ for each $t \in [a, b]$. Therefore x(t) = 0 for each $t \in [a, b]$, so (3.5) is proved.

Proof of (3.6). Let $x \in S_{(\lambda,\tau)}$ for some $\lambda \ge \alpha$ and $\tau \in [0,1)$. Then $\begin{cases} x'(t) = -\lambda p(x(t)) - (1-\tau)x^0(t), \\ l(x) = 0, \end{cases}$

hence

$$\begin{cases} x_1''(t) = -\lambda^2 M |x_1(t)| - \lambda (1-\tau) x_0(t), \\ x_1(a) = 0, \\ x_1'(b) = 0. \end{cases}$$

From (3.2) we conclude that the above problem has no solution. This completes the proof.

Proof of (3.7). Let $x \in S_{(\lambda,1)}$. By (iii) and (2.3) there exists $m_R \in L^1(a, b)$ such that

 $|(x_i)'(t)| \le m_R(t) + \lambda \psi_i(t)|x_i(t)|$ for a.e. $t \in [a, b]$ and $i = 3, 4, \dots, k$. From (3.5) we obtain

 $|(x_i)'(t)| \le m_R(t) + \alpha \psi_i(t)|x_i(t)|$ for a.e. $t \in [a, b]$ and $i = 3, 4, \dots, k$. Hence by the Gronwall inequality we have

$$|x_i(t)| \leq \int_a^b m_R(t) e^{\alpha \int_a^b \psi_i(t) \, dt} \, dt \quad \text{ for } t \in [a, b] \text{ and } i = 3, 4, \dots, k.$$

This completes the proof of (3.7).

Proof of (3.8). Suppose that (3.8) is not satisfied, i.e. there exist sequences $\{\lambda_n\} \subset (1,\infty)$ and $\{x^n\} \subset S_{(\lambda_n,1)}$ such that $\sum_{i=1}^k \|x_i^n\| \to \infty$ and $\lambda_n \to \lambda_0 \ge 1$. From (3.7) we obtain $\|x_1^n\| + \|x_2^n\| \to \infty$. Since $x^n \in S_{(\lambda_n,1)}$, we have for a.e. $t \in (a,b)$,

$$\begin{cases} (x_1^n)'(t) \in \lambda_n q_1(\lambda_n)(\Pi_1 \circ F)(t, x_n(t)) + \lambda_n q_2(\lambda_n) x_2^n(t), \\ (x_2^n)'(t) \in \lambda_n q_1(\lambda_n)(\Pi_2 \circ F)(t, x_n(t)) - \lambda_n q_2(\lambda_n) M |x_1(t)|, \\ x_1^n(a) = 0, \quad x_2^n(b) = 0. \end{cases}$$

So there exists a sequence $\{w_i^n\} \subset L^1(a, b)$ such that $w_i^n(t) \in (\Pi_i \circ F)(t, x^n(t))$ a.e. on [a, b] for i = 1, 2 and

$$x_1^n(t) = \lambda_n q_1(\lambda_n) \int_a^t (w_1^n(s) - x_2^n(s)) \, ds + \lambda_n \int_a^t x_2^n(s) \, ds,$$

$$x_2^n(t) = \lambda_n q_1(\lambda_n) \int_b^t (w_2^n(s) + M |x_1^n(s)|) \, ds - \lambda_n M \int_b^t |x_1^n(s)| \, ds.$$

S. Domachowski

Set $v_i^n(t) = x_i^n(t)/||x^n||_k$. From conditions (iii) and (2.2), and the Arzelà-Ascoli Theorem, there exists a subsequence of $\{v_i^n\}$ which is convergent to v_i for i = 1, 2 and the following conditions are satisfied:

$$\begin{cases} v_1'(t) = \lambda_0 v_2(t), \\ v_2'(t) = -\lambda_0 M |v_1(t)|, \\ v_1(a) = 0, \quad v_2(b) = 0 \end{cases}$$

Similarly to what we showed in (3.5), by (3.1) we have $\lambda_0 M = (\pi/2(b-a))^2$ so necessarily $\lambda_0 < 1$. This contradiction and finishes the proof of (3.8).

LEMMA 2. Assume that $F : [a, b] \times \mathbb{R}^k \to cf(\mathbb{R}^k)$ satisfies all assumptions of Theorem 2. Then there exists K > 0 such that

(3.9)
$$\sum_{i=3}^{\kappa} \|x_i\| \le K \text{ for } \lambda \in (0,\infty) \text{ and } x \in S_{(\lambda,1)}.$$

Proof of (3.9). Suppose (3.9) is not satisfied, i.e. there exist sequences $\{\lambda_n\}$ and $\{x^n\} \subset S_{(\lambda_n,1)}$ such that $\sum_{i=3}^k \|x_i^n\| \to \infty$ and $\lambda_n \to \lambda_0 < \alpha$. Set $y_n = (x_3^n, \ldots, x_k^n)$. By (iii) and (2.4) there exists $m_R \in L^1(a, b)$ such that

$$\int |y'_n(t)| \le m_R(t) + \lambda_n \psi(t) |y_n(t)| \quad ext{a.e. } t \in [a, b], \ \int |y'_n(t)| \le 0.$$

Observe that the function $v_n = y_n / ||y_n||_{k-2}$ is a solution of the problem

$$\begin{cases} |v'_n(t)| \le \frac{m_R(t)}{\|y_n\|_{k-2}} + \lambda_n \psi(t) |v_n(t)| & \text{a.e. } t \in [a, b], \\ l(v_n) = 0. \end{cases}$$

Therefore the sequence $\{v'_n\}$ of derivatives is bounded by the integrable function $\alpha \psi_1 + m_R$ for $n \in \mathbb{N}$ large enough. Then by the Pliś Lemma [7] there exists a subsequence $\{v_{n_k}\}$ of $\{v_n\}$ uniformly convergent to an absolutely continuous function $v_0 : [a, b] \to \mathbb{R}^{k-2}$ which is a non-trivial solution of the problem (3.3). This contradiction finishes the proof of (3.9).

4. Proofs of Theorems 1 and 2. To the Carathéodory mapping $F : [a,b] \times \mathbb{R}^k \to \operatorname{cf}(\mathbb{R}^k)$ we associate the Nemytskiĭ operator $\mathcal{F} : C([a,b],\mathbb{R}^k) \to \operatorname{cf}(L^1((a,b),\mathbb{R}^k))$, given by

$$\mathcal{F}(x) = \{ w \in L^1((a, b), \mathbb{R}^k) : w(t) \in F(t, x(t)) \text{ for a.e. } t \in (a, b) \}$$

Let $P: C([a, b], \mathbb{R}^k) \to L^1((a, b), \mathbb{R}^k)$ be the Nemytskiĭ operator for the mapping $p: \mathbb{R}^k \to \mathbb{R}^k$, and let $T = (T_1, \ldots, T_k) : L^1((a, b), \mathbb{R}^k) \to C([a, b], \mathbb{R}^k)$ be the integral operator given by

$$T(x) = (T_1(x_1), \dots, T_k(x_k))$$
 where $T_i(x_i)(t) = \int_{t_i}^{t} x_i(s) \, ds$.

With the family of boundary value problems $(2_{(\lambda,\tau)})$ we associate the family of vector fields $f_{\tau}: (0,\infty) \times C([a,b],\mathbb{R}^k) \to \mathrm{cf}(C([a,b],\mathbb{R}^k))$ given by $(4_{\tau}) \quad f_{\tau}(\lambda,x) = x - \lambda \tau q_1(\lambda) T \mathcal{F}(x) + \lambda q_2(\lambda) T P(x) + (1-\tau) q_2(\lambda) T(x^0).$

Observe that $x \in S_{(\lambda,\tau)}$ iff $0 \in f_{\tau}(\lambda,\tau)$. Moreover the vector field f_{τ} is completely continuous (cf. [9], [10]).

We call $(\mu, 0) \in (0, \infty) \times C([a, b], \mathbb{R}^k)$ a bifurcation point of the mapping f_1 if for every open subset $U \subset (0, \infty) \times C([a, b], \mathbb{R}^k)$ with $(\mu, 0) \in U$ there exists a point $(\lambda, x) \in U$ such that $x \neq 0$ and $0 \in f_1(\lambda, x)$. Denote by \mathcal{B}_{f_1} the set of all bifurcation points of f_1 . Let $\mathcal{R}_{f_1} \subset (0, \infty) \times C([a, b], \mathbb{R}^k)$ be the closure (in $(0, \infty) \times C^1([a, b], \mathbb{R}^k)$) of the set of non-trivial solutions of the inclusion $0 \in f_1(\lambda, x)$, i.e.

$$\mathcal{R}_{f_1} = \overline{\{(\lambda, x) \in (0, \infty) \times C([a, b], \mathbb{R}^k) : x \neq 0 \land 0 \in f_1(\lambda, x)\}}.$$

For each λ satisfying $(\lambda, 0) \notin \mathcal{B}_{f_1}$ there exists $r_0 > 0$ such that $0 \notin f_1(\lambda, x)$ for $||u|| = r \in (0, r_0]$, so the value $\deg(f_1(\lambda, \cdot), B(0, r), 0)$ is defined.

Assume that for an interval $[c, d] \subset (0, \infty)$ there exists $\delta > 0$ such that

$$(([c-\delta,c)\cup(d,d+\delta])\times\{0\})\cap\mathcal{B}_{f_1}=\emptyset.$$

Then we may define the *bifurcation index* $s[f_1, c, d]$ of the mapping f_1 with respect to the interval [c, d] as

$$s[f_1, c, d] = \lim_{\lambda \to d^+} \deg(f_1(\lambda, \cdot), B(0, r), 0) - \lim_{\lambda \to c^-} \deg(f_1(\lambda, \cdot), B(0, r), 0),$$

where $r = r(\lambda) > 0$ is small enough.

The main tool used in this section, Theorem A below, is a global bifurcation theorem for convex-valued completely continuous mappings which is a consequence of a generalization of the Rabinovitz global bifurcation alternative (see [1], [11]).

THEOREM A (see [3]). Let $f_1: (0,\infty) \times C([a,b],\mathbb{R}^k) \to cf(C([a,b],\mathbb{R}^k))$ be given by (4₁), and assume that there exists an interval $[c,d] \subset (0,\infty)$ such that $\mathcal{B}_{f_1} \subset [c,d] \times \{0\}$ and $s[f_1,c,d] \neq 0$. Then there exists a non-compact component $\mathcal{C} \subset \mathcal{R}_{f_1}$ satisfying $\mathcal{C} \cap \mathcal{B}_{f_1} \neq \emptyset$.

Proof of Theorem 1. According to (3.4) and (3.5), $\mathcal{B}_{f_1} \subset [\beta, \alpha]$. Observe that by (3.4) for $\lambda < \beta$ there exists r > 0 such that $f_1(\lambda, \cdot) : B(0, r) \rightarrow$ $\mathrm{cf}(C[a, b], \mathbb{R}^k)$ is homotopic to the identity mapping. Hence by the homotopy property of the topological degree we have $\mathrm{deg}(f_1(\lambda, \cdot), B(0, r), 0) = 1$. According to (3.5) and (3.6), for $\lambda > \alpha$ there exists r > 0 such that $f_1(\lambda, \cdot) : B(0, r) \to \mathrm{cf}(C[a, b], \mathbb{R}^k)$ is homotopic to the mapping $f_0(\lambda, \cdot)$ which has no zeros and $\mathrm{deg}(f_1(\lambda, \cdot), B(0, r), 0) = 0$. Therefore $s[f_1, \beta, \alpha] = -1$. According to Theorem A there exists a non-compact component $\mathcal{C} \subset \mathcal{R}_{f_1}$ satisfying $\mathcal{C} \cap \mathcal{B}_{f_1} \neq \emptyset$. Since \mathcal{C} is not compact there exists a sequence $\{(\lambda_n, x_n)\} \subset \mathcal{C}$ such that $||x_n||_k \to \infty$, or $\lambda_n \to \infty$, or $\lambda_n \to 0$. Observe that

S. Domachowski

by (3.5) the case $\lambda_n \to \infty$ is impossible. Now consider the case $||x_n||_k \to \infty$. Then it follows from (3.8) that $\lambda_n < 1$ for $n \in \mathbb{N}$ large enough. So the connected set \mathcal{C} contains pairs (λ_1, x_1) and (λ_2, x_2) with $\lambda_1 < 1$ and $\lambda_2 > 1$. Hence there exists $(1, x) \in \mathcal{C}$. This solution of the inclusion $0 \in f_1(1, x)$ must have $x \neq 0$ because $(1, 0) \notin \mathcal{R}_{f_1}$. The proof is complete.

Proof of Theorem 2. Since F satisfies assumptions (2.1) and (2.2) of Theorem 1, there exists a non-compact component $\mathcal{C} \subset \mathcal{R}_{f_1}$ satisfying $\mathcal{C} \cap \mathcal{B}_{f_1} \neq \emptyset$. Similarly to what we showed in the proof of Theorem 1, from (3.9) and (3.8) it follows that there exist $\lambda_1 < 1$ and $x \in C([a, b], \mathbb{R}^k)$ such that $(\lambda_1, x) \in \mathcal{C}$. Because $\mathcal{B}_{f_1} \subset [\beta, \alpha]$ we can see that the connected set \mathcal{C} contains pairs (λ_1, x_1) and (λ_2, x_2) with $\lambda_1 < 1$ and $\lambda_2 > 1$. Hence $(1, x) \in \mathcal{C}$ for some $x \neq 0$ as before. The proof is complete.

Acknowledgements. The author is grateful to Professor Tadeusz Pruszko for the inspiration and help during the preparation of this article.

References

- [1] N.-S. Chow and J. K. Hale, *Methods of Bifurcation Theory*, Springer, 1982.
- [2] E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.
- [3] S. Domachowski and J. Gulgowski, A global bifurcation theorem for convex-valued differential inclusions, Z. Anal. Anwendungen 23 (2004), 275–292.
- [4] P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982.
- [5] A. Lasota and C. Olech, An optimal solution of Nicoletti's boundary value problem, Ann. Polon. Math. 18 (1966), 131–139.
- [6] A. Lasota and Z. Opial, Fixed-point theorems for multi-valued mappings and optimal control problems, Bull. Acad. Polon. Sci. 16 (1968), 645–649.
- [7] A. Pliś, Measurable orientor fields, ibid. 13 (1965), 565–569.
- [8] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Springer, New York, 1984
- T. Pruszko, Topological degree methods in multi-valued boundary value problems, Nonlinear Anal. 5 (1981), 959–973.
- [10] —, Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229 (1984).
- P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.

Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland E-mail: mdom@math.univ.gda.pl

> Reçu par la Rédaction le 10.1.2005 Révisé le 27.6.2005

(1551)