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A new approah to the existene results for orientor �eldswith Nioletti's boundary onditionsby Stanisław Domachowski (Gda«sk)Abstrat. Applying a global bifuration theorem for onvex-valued ompletely on-tinuous mappings we prove some existene theorems for onvex-valued di�erential inlu-sions of the form x′
∈ F (t, x), where x satis�es the Nioletti boundary onditions.1. Introdution. In this paper we onsider the Nioletti boundary valueproblem for the �rst order di�erential inlusions

(1.1)

{

x′(t) ∈ F (t, x(t)) for a.e. t ∈ (a, b),
l(x) = 0,where F : [a, b]×R

k → cf(Rk) is a onvex-valued mapping and l : C([a, b],Rk)
→ R

k is given by
l(x1, . . . , xk) = (x1(a), x2(b), x3(t3), . . . , xk(tk)),where t3, . . . , tk ∈ [a, b].The Nioletti single-valued and multi-valued boundary value problemhas been onsidered by several authors (see for instane [5℄, [6℄, [10℄). Inthese papers it is assumed that the mapping F satis�es the Carathéodoryonditions and the inequality

(1.2) |F (t, x)| ≤ p(t)|x| + q(t) for x ∈ R
k and t ∈ [a, b],where p, q : [a, b] → R+ are integrable funtions, and p satis�es the inequality

(1.3)

b\
a

p(t) dt <
π

2
.Lasota and Oleh [6℄ onsidered the single-valued Nioletti problem. Theyshowed that for F satisfying (1.2) the ondition (1.3) is the best possiblesu�ient ondition for the existene of solution of (1.1).2000 Mathematis Subjet Classi�ation: Primary 47H04; Seondary 34A60.Key words and phrases: di�erential inlusion, global bifuration theorem, Niolettiboundary onditions. [23℄



24 S. DomahowskiOur assumptions refer to the behaviour of F (t, x) for |x| lose to 0 andto ∞. The main tool we use is a global bifuration theorem for onvex-valued ompletely ontinuous mappings. In Setion 2 we state the mainexistene theorems. In Setion 3 we give auxiliary lemmas, and transformthe Nioletti boundary value problem to appropriate seond order boundaryvalue problems. Finally, in Setion 4 we prove the existene theorems.2. Main theorems. Let E be a real Banah spae. We denote by cf(E)the family of all non-empty, losed, bounded and onvex subsets of E, andby D(A,B) the Hausdor� distane between A,B ∈ cf(E). In partiular weput |A| = D(A, {0}).Let X be a losed non-empty subset of E. A multi-valued mapping Φ :
X → cf(E) is alled upper semiontinuous (u.s..) if for eah open set U ⊂ Ethe set {x ∈ X : Φ(x) ⊂ U} is open in X.Let I ⊂ R be a losed interval. A multi-valued mapping Φ : I → cf(Rk) isalled measurable if for every open set U ⊂ R

k the set {x ∈ I : Φ(x)∩U 6= ∅}is Lebesgue measurable.For x = (x1, . . . , xk) ∈ R
k we write |x| = (

∑k
i=1 x

2
i )

1/2, and let Πi : R
k →

R be the linear projetion given by Πi(x1, . . . , xk) = xi for i = 1, . . . , k.Reall that the multi-valued mapping F : [a, b] × R
k → cf(Rk) satis�esthe Carathéodory onditions if:(i) for eah x ∈ R

k the mapping F (·, x) is measurable;(ii) for eah t ∈ [a, b] the mapping F (t, ·) is u.s..;(iii) for eah R > 0 there exists a funtion mR ∈ L1(a, b) suh that foreah x ∈ R
k with |x| ≤ R we have |F (t, x)| ≤ mR(t) a.e. on [a, b].Theorem 1. Assume that F : [a, b]×R

k → cf(Rk) satis�es the Carathéo-dory onditions and(2.1) there exists δ > 0 and an integrable funtion ψ : [a, b] → R+ suh that
|F (t, x)| ≤ ψ(t)|x| for t ∈ [a, b], |x| ≤ δ and b\

a

ψ(t) dt <
π

2
;(2.2) for every ε > 0 there exists R0 > 0 suh that

D((Π1 ◦ F )(t, x), {x2}) + D((Π2 ◦ F )(t, x), {−M |x1|}) ≤ ε|x|for t ∈ [a, b], |x1| + |x2| ≥ R0 and M > (π/2(b− a))2;(2.3) there exists R1 > 0 and integrable funtions ψi : [a, b] → R+ with
|(Πi ◦ F )(t, x)| ≤ ψi(t)|xi| for t ∈ [a, b], |x| ≥ R1 and i = 3, . . . , k.Then there exists a non-trivial solution of the boundary value problem (1.1).Theorem 2. Assume that F : [a, b]×R

k → cf(Rk) satis�es the Carathéo-dory onditions and onditions (2.1), (2.2), and



Existene results for orientor �elds 25(2.4) there exists R1 > 0 and an integrable funtion ψ : [a, b] → R+ suhthat
(

k
∑

i=3

|(Πi◦F )(t, x)|2
)1/2

≤ ψ(t)
(

k
∑

i=3

x2
i

)1/2 for t ∈ [a, b], |x| ≥ R1

and Tba ψ(t) dt < π/2.Then there exists a non-trivial solution of the boundary value problem (1.1).3. Auxiliary lemmas. Let ψ : [a, b] → R+ satisfy (2.1). Then thereexists α > 1 suh that αTba ψ(t) dt < π/2. Let q1, q2 : (0,∞) → [0, 1] be aontinuous partition of unity subordinate to the open over {(0, α), (β,∞)}of the interval (0,∞), where 1 < β < α, and let p : R
k → R

k be given by
p(x1, x2, . . . , xk) = (−x2,M |x1|, 0, . . . , 0).We start with the following salar boundary value problem:
(3.1)

{

x′′(t) + λx(t) = 0,

x(a) = x′(b) = 0.It is well known (f. [4℄) that there exists exatly one eigenvalue µ0 =
(π/2(b− a))2 of (3.1) for whih there exists an eigenvetor x0 : [a, b] → Rsuh that x0(t) > 0 for t ∈ (a, b).The following fat is a onsequene of the properties of Green's funtion(f. [2℄�[4℄).(3.2) If µ > (π/2(b− a))2, η > 0 and x0 : [a, b] → R is as above then thesalar problem







x′′(t) + µx(t) + ηx0(t) = 0,

x(a) = x′(b) = 0,

x(t) ≥ 0,has no solutions.Let x0 : [a, b] → R
k be given by x0(t) = (0, x0(t), 0, . . . , 0). We now asso-iate with the problem (1.1) the following two-parameter family of boundaryvalue problems:

(2(λ,τ))











x′(t) ∈ λτq1(λ)F (t, x(t)) − λq2(λ)p(x(t)) − (1 − τ)q2(λ)x0(t)for a.e. t ∈ (a, b),

l(x) = 0,for λ ∈ (0,∞) and τ ∈ [0, 1]. An absolutely ontinuous funtion x : [a, b] →
R
k satisfying (2(λ,τ)) is alled a solution of (2(λ,τ)). For every pair (λ, τ) ∈

(0,∞)× [0, 1] denote by S(λ,τ) the set of all solutions of the problem (2(λ,τ)).In what follows we will make use of the following fat.



26 S. Domahowski(3.3) (Lasota�Oleh [5℄) Let p : [a, b] → R+ be an integrable funtion withTb
a p(t) dt < π/2, let t1, . . . , tk ∈ [a, b] and let x = (x1, . . . , xk) :

[a, b] → R
k be an absolutely ontinuous mapping satisfying thesystem

{

|x′(t)| ≤ p(t)|x(t)| for a.e. t ∈ (a, b),
xi(ti) = 0 for i = 1, . . . , k.Then x(t) = 0 for every t ∈ [a, b].Let ‖·‖ be the supremum norm in C[a, b], let ‖·‖k be the norm in C([a, b],Rk)given by ‖x‖k =

∑k
i=1 ‖xi‖ for x = (x1, . . . , xk) ∈ C([a, b],Rk) and let

B(0, r) ⊂ C([a, b],Rk) be an open ball entred at 0 of radius r > 0.Lemma 1. Assume that F : [a, b]×R
k → cf(Rk) satis�es all assumptionsof Theorem 1. Then:(3.4) ∃r>0 ∀λ∈(0,β] ∀τ∈[0,1] B(0, r) ∩ S(λ,τ) = {0};(3.5) ∀λ≥α S(λ,1) = {0};(3.6) ∀τ∈[0,1) ∀λ≥α S(λ,τ) = ∅;(3.7) ∃K>0 ∀λ>0 ∀x∈C([a,b],Rk) x ∈ S(λ,1) ⇒

∑k
i=3 ‖xi‖ ≤ K;(3.8) ∃K>0 ∀λ≥1 ∀x∈C([a,b],Rk) x ∈ S(λ,1) ⇒ ‖x‖k ≤ K.Proof of (3.4). By (2.1) there exists r > 0 suh that |F (t, x)| ≤ ψ(t)|x|for eah t ∈ [a, b] and |x| ≤ r. Let λ ∈ (0, β] and x ∈ B(0, r) ∩ S(λ,1). Then

{

x′(t) ∈ τλF (t, x(t)) for a.e. t ∈ (a, b),
l(x) = 0.Hene

|x′(t)| ≤ τλ|F (t, x(t))| ≤ τλψ(t)|x(t)| ≤ βψ(t)|x(t)| for a.e. t ∈ (a, b),so aording to (3.3), x(t) = 0 for eah t ∈ [a, b].Proof of (3.5). Let λ ≥ α and x ∈ S(λ,1). Then
{

x′(t) = −λp(x(t)),

l(x) = 0.From the de�nition of p we obtain






x′1(t) = λx2(t),

x′2(t) = −λM |x1(t)|,

x1(a) = 0, x2(b) = 0,so










x′′1(t) = −λ2M |x1(t)|,

x1(a) = 0,

x′1(b) = 0.



Existene results for orientor �elds 27By the maximum priniple (f. [8℄), x1(t) ≥ 0 for every t ∈ [a, b]. Sine λ ≥ 1,(3.1) yields x1(t) = 0 for eah t ∈ [a, b]. Therefore x(t) = 0 for eah t ∈ [a, b],so (3.5) is proved.Proof of (3.6). Let x ∈ S(λ,τ) for some λ ≥ α and τ ∈ [0, 1). Then
{

x′(t) = −λp(x(t)) − (1 − τ)x0(t),

l(x) = 0,hene










x′′1(t) = −λ2M |x1(t)| − λ(1 − τ)x0(t),

x1(a) = 0,

x′1(b) = 0.From (3.2) we onlude that the above problem has no solution. This om-pletes the proof.Proof of (3.7). Let x ∈ S(λ,1). By (iii) and (2.3) there exists mR ∈

L1(a, b) suh that
|(xi)

′(t)| ≤ mR(t) + λψi(t)|xi(t)| for a.e. t ∈ [a, b] and i = 3, 4, . . . , k.From (3.5) we obtain
|(xi)

′(t)| ≤ mR(t) + αψi(t)|xi(t)| for a.e. t ∈ [a, b] and i = 3, 4, . . . , k.Hene by the Gronwall inequality we have
|xi(t)| ≤

b\
a

mR(t)eα
T
b

a
ψi(t) dt dt for t ∈ [a, b] and i = 3, 4, . . . , k.This ompletes the proof of (3.7).Proof of (3.8). Suppose that (3.8) is not satis�ed, i.e. there exist se-quenes {λn} ⊂ (1,∞) and {xn} ⊂ S(λn,1) suh that ∑k

i=1 ‖x
n
i ‖ → ∞ and

λn → λ0 ≥ 1. From (3.7) we obtain ‖xn1‖ + ‖xn2‖ → ∞. Sine xn ∈ S(λn,1),we have for a.e. t ∈ (a, b),






(xn1 )′(t) ∈ λnq1(λn)(Π1 ◦ F )(t, xn(t)) + λnq2(λn)x
n
2 (t),

(xn2 )′(t) ∈ λnq1(λn)(Π2 ◦ F )(t, xn(t)) − λnq2(λn)M |x1(t)|,

xn1 (a) = 0, xn2 (b) = 0.So there exists a sequene {wni }⊂L1(a, b) suh that wni (t)∈(Πi◦F )(t, xn(t))a.e. on [a, b] for i = 1, 2 and
xn1 (t) = λnq1(λn)

t\
a

(wn1 (s) − xn2 (s)) ds+ λn

t\
a

xn2 (s) ds,

xn2 (t) = λnq1(λn)

t\
b

(wn2 (s) +M |xn1 (s)|) ds− λnM

t\
b

|xn1 (s)| ds.



28 S. DomahowskiSet vni (t) = xni (t)/‖x
n‖k. From onditions (iii) and (2.2), and the Arzelà�Asoli Theorem, there exists a subsequene of {vni } whih is onvergent to

vi for i = 1, 2 and the following onditions are satis�ed:






v′1(t) = λ0v2(t),

v′2(t) = −λ0M |v1(t)|,

v1(a) = 0, v2(b) = 0.Similarly to what we showed in (3.5), by (3.1) we have λ0M = (π/2(b− a))2so neessarily λ0 < 1. This ontradition and �nishes the proof of (3.8).Lemma 2. Assume that F : [a, b]×R
k → cf(Rk) satis�es all assumptionsof Theorem 2. Then there exists K > 0 suh that

(3.9)
k

∑

i=3

‖xi‖ ≤ K for λ ∈ (0,∞) and x ∈ S(λ,1).Proof of (3.9). Suppose (3.9) is not satis�ed, i.e. there exist sequenes
{λn} and {xn} ⊂ S(λn,1) suh that ∑k

i=3 ‖x
n
i ‖ → ∞ and λn → λ0 < α. Set

yn = (xn3 , . . . , x
n
k). By (iii) and (2.4) there exists mR ∈ L1(a, b) suh that

{

|y′n(t)| ≤ mR(t) + λnψ(t)|yn(t)| a.e. t ∈ [a, b],
l(yn) = 0.Observe that the funtion vn = yn/‖yn‖k−2 is a solution of the problem







|v′n(t)| ≤
mR(t)

‖yn‖k−2
+ λnψ(t)|vn(t)| a.e. t ∈ [a, b],

l(vn) = 0.Therefore the sequene {v′n} of derivatives is bounded by the integrablefuntion αψ1+mR for n ∈ N large enough. Then by the Pli± Lemma [7℄ thereexists a subsequene {vnk
} of {vn} uniformly onvergent to an absolutelyontinuous funtion v0 : [a, b] → R

k−2 whih is a non-trivial solution of theproblem (3.3). This ontradition �nishes the proof of (3.9).4. Proofs of Theorems 1 and 2. To the Carathéodory mapping
F : [a, b]×R

k → cf(Rk) we assoiate the Nemytski�� operator F : C([a, b],Rk)
→ cf(L1((a, b),Rk)), given by

F(x) = {w ∈ L1((a, b),Rk) : w(t) ∈ F (t, x(t)) for a.e. t ∈ (a, b)}.Let P : C([a, b],Rk) → L1((a, b),Rk) be the Nemytski�� operator for the map-ping p : R
k → R

k, and let T = (T1, . . . , Tk) : L1((a, b),Rk) → C([a, b],Rk)be the integral operator given by
T (x) = (T1(x1), . . . , Tk(xk)) where Ti(xi)(t) =

t\
ti

xi(s) ds.



Existene results for orientor �elds 29With the family of boundary value problems (2(λ,τ)) we assoiate the familyof vetor �elds fτ : (0,∞) × C([a, b],Rk) → cf(C([a, b],Rk)) given by
(4τ ) fτ (λ, x) = x− λτq1(λ)TF(x) + λq2(λ)TP (x) + (1 − τ)q2(λ)T (x0).Observe that x ∈ S(λ,τ) i� 0 ∈ fτ (λ, τ). Moreover the vetor �eld fτ isompletely ontinuous (f. [9℄, [10℄).We all (µ, 0) ∈ (0,∞)×C([a, b],Rk) a bifuration point of the mapping
f1 if for every open subset U ⊂ (0,∞) × C([a, b],Rk) with (µ, 0) ∈ U thereexists a point (λ, x) ∈ U suh that x 6= 0 and 0 ∈ f1(λ, x). Denote by Bf1the set of all bifuration points of f1. Let Rf1 ⊂ (0,∞)×C([a, b],Rk) be thelosure (in (0,∞) × C1([a, b],Rk)) of the set of non-trivial solutions of theinlusion 0 ∈ f1(λ, x), i.e.

Rf1 = {(λ, x) ∈ (0,∞) × C([a, b],Rk) : x 6= 0 ∧ 0 ∈ f1(λ, x)}.For eah λ satisfying (λ, 0) 6∈ Bf1 there exists r0 > 0 suh that 0 6∈ f1(λ, x)for ‖u‖ = r ∈ (0, r0], so the value deg(f1(λ, ·), B(0, r), 0) is de�ned.Assume that for an interval [c, d] ⊂ (0,∞) there exists δ > 0 suh that
(([c− δ, c) ∪ (d, d+ δ]) × {0}) ∩ Bf1 = ∅.Then we may de�ne the bifuration index s[f1, c, d] of the mapping f1 withrespet to the interval [c, d] as

s[f1, c, d] = lim
λ→d+

deg(f1(λ, ·), B(0, r), 0) − lim
λ→c−

deg(f1(λ, ·), B(0, r), 0),where r = r(λ) > 0 is small enough.The main tool used in this setion, Theorem A below, is a global bifur-ation theorem for onvex-valued ompletely ontinuous mappings whih isa onsequene of a generalization of the Rabinovitz global bifuration alter-native (see [1℄, [11℄).
Theorem A (see [3℄). Let f1 : (0,∞) × C([a, b],Rk) → cf(C([a, b],Rk))be given by (41), and assume that there exists an interval [c, d] ⊂ (0,∞) suhthat Bf1 ⊂ [c, d] × {0} and s[f1, c, d] 6= 0. Then there exists a non-ompatomponent C ⊂ Rf1 satisfying C ∩ Bf1 6= ∅.Proof of Theorem 1. Aording to (3.4) and (3.5), Bf1 ⊂ [β, α]. Observethat by (3.4) for λ < β there exists r > 0 suh that f1(λ, ·) : B(0, r) →

cf(C[a, b],Rk) is homotopi to the identity mapping. Hene by the homo-topy property of the topologial degree we have deg(f1(λ, ·), B(0, r), 0) = 1.Aording to (3.5) and (3.6), for λ > α there exists r > 0 suh that
f1(λ, ·) : B(0, r) → cf(C[a, b],Rk) is homotopi to the mapping f0(λ, ·) whihhas no zeros and deg(f1(λ, ·), B(0, r), 0) = 0. Therefore s[f1, β, α] = −1.Aording to Theorem A there exists a non-ompat omponent C ⊂ Rf1satisfying C ∩ Bf1 6= ∅. Sine C is not ompat there exists a sequene
{(λn, xn)} ⊂ C suh that ‖xn‖k → ∞, or λn → ∞, or λn → 0. Observe that



30 S. Domahowskiby (3.5) the ase λn → ∞ is impossible. Now onsider the ase ‖xn‖k → ∞.Then it follows from (3.8) that λn < 1 for n ∈ N large enough. So the on-neted set C ontains pairs (λ1, x1) and (λ2, x2) with λ1 < 1 and λ2 > 1.Hene there exists (1, x) ∈ C. This solution of the inlusion 0 ∈ f1(1, x) musthave x 6= 0 beause (1, 0) 6∈ Rf1 . The proof is omplete.Proof of Theorem 2. Sine F satis�es assumptions (2.1) and (2.2) ofTheorem 1, there exists a non-ompat omponent C ⊂ Rf1 satisfying C ∩
Bf1 6= ∅. Similarly to what we showed in the proof of Theorem 1, from (3.9)and (3.8) it follows that there exist λ1 < 1 and x ∈ C([a, b],Rk) suh that
(λ1, x) ∈ C. Beause Bf1 ⊂ [β, α] we an see that the onneted set C ontainspairs (λ1, x1) and (λ2, x2) with λ1 < 1 and λ2 > 1. Hene (1, x) ∈ C for some
x 6= 0 as before. The proof is omplete.Aknowledgements. The author is grateful to Professor Tadeusz Pru-szko for the inspiration and help during the preparation of this artile.
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