
ANNALES

POLONICI MATHEMATICI

86.1 (2005)

The Jacobian Conjecture for

symmetric Drużkowski mappings

by Michiel de Bondt and Arno van den Essen (Nijmegen)

Abstract. Let k be an algebraically closed field of characteristic zero and F :=
x+ (Ax)∗d : kn → kn a Drużkowski mapping of degree ≥ 2 with det JF = 1. We classify
all such mappings whose Jacobian matrix JF is symmetric. It follows that the Jacobian
Conjecture holds for these mappings.

Introduction. The Jacobian Conjecture asserts that every polynomial
map F : kn → kn with detJF ∈ k∗ is invertible. In the classical papers [1]
and [4] it is shown that it suffices to investigate this conjecture for polynomial
mappings of the form x+H, whereH is homogeneous of degree 3. This result
was improved a little later in the paper [3] of Drużkowski: he showed that
one may even assume that each component of H is a third power of a linear
form. More recently another type of reduction theorem was obtained by
the authors in [2]. They showed that it suffices to investigate the Jacobian
Conjecture for polynomial mappings of the form x+H with H homogeneous
of degree 3 and JH symmetric. This raises the question: does the Jacobian
Conjecture hold for Drużkowski mappings with symmetric Jacobian matrix?
The main result of this paper gives an affirmative answer to this question.

More precisely we completely classify all these mappings (see Theorem 1
below).

1. Notations and the main theorem. Throughout this paper k de-
notes an algebraically closed field of characteristic zero and n a positive inte-
ger. For any d ≥ 2 and A ∈Mn(k) the Drużkowski mapping (D-mapping for
short) of degree d associated to A is the mapping given by FA := x+(Ax)

∗d,
where (v1, . . . , vn)

∗d denotes the vector (vd1 , . . . , v
d
n). The main result of this

paper, Theorem 1, classifies all D-mappings with invertible and symmetric
Jacobian matrix. It turns out that all these mappings are “products” in a
sense defined below of the D-mappings described in the following lemma (in
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which we use 〈 , 〉 to denote the standard bilinear form on kn, i.e. 〈x, y〉 = xty
for all x, y ∈ kn, and ∇f to denote the gradient of a polynomial f , i.e.
(fx1 , . . . , fxn)).

Lemma 1. Let F = x + (Ax)∗d with rkA ≤ 1. Then JF is invertible
and symmetric iff F is of the form x + ∇f , where f = 〈v, x〉d+1 for some
v ∈ kn with 〈v, v〉 = 0. In this case F is invertible with inverse x−∇f .

Proof. Let Ai denote the ith row of A and assume that A has rank 1.
Then there exist a non-zero vector a ∈ kn and λi ∈ k such that Ai = λia

T

for all i. Furthermore

J := J((Ax)∗d) = d〈a, x〉d−1µaT ,

where µ = λ∗d.

(i) Now assume that JF is symmetric and invertible. Then J is sym-
metric. Since 〈a, x〉 6= 0 it follows that µaT is symmetric. So µiaj = µjai
for all i, j, i.e. µ and a are linearly dependent over k, say µ = ca for some
c ∈ k∗. Since J is also nilpotent (for JFA is invertible) it follows that µa

T

is nilpotent. So in particular TrµaT = 0, i.e. 〈µ, a〉 = 0. From µ = ca with
c ∈ k∗ we deduce that 〈a, a〉 = 0. Finally, observe that

((Ax)∗d)i = λ
d
i 〈a, x〉

d = µi〈a, x〉
d = cai〈a, x〉

d.

So if we choose z ∈ k such that zd = cai/(d+ 1) and put v := za, then one
easily verifies that (Ax)∗d = ∇(〈v, x〉d+1).

(ii) Conversely, if F = x + ∇f , where f = 〈v, x〉d+1 and 〈v, v〉 = 0,
then clearly F is a D-mapping of degree d with symmetric Jacobian matrix.
Furthermore, F = x + (d + 1)〈v, x〉dv. So 〈v, F 〉 = 〈v, x〉 (since 〈v, v〉 = 0).
Hence if we put G := x−∇f = x− (d+ 1)〈v, x〉dv, then

G(F ) = F − (d+ 1)〈v, x〉dv = x.

So F is invertible with inverse x − ∇f and hence JF is invertible, which
completes the proof.

A polynomial mapping of the form x + ∇f with f = 〈v, x〉d+1 and
〈v, v〉 = 0 is called of type 1. To describe how all D-mappings with invertible
and symmetric Jacobian matrix can be obtained from these mappings, we
introduce some terminology.

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be two sets of indepen-
dent variables. We say that a polynomial map F : kn+m → kn+m ad-
mits a separation in the variables x and y if there exist polynomial map-
pings G,H : kn+m → kn+m of the form G = (G1(x), . . . , Gn(x), y) and
H = (x,H1(y), . . . , Hm(y)) such that F = G ◦H (= H ◦G). For simplicity
we write F = G(x) ◦H(y). In a similar way we can define when a polyno-
mial map F : kn1+···+ns → kn1+···+ns admits a separation in a finite set of
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variables x(1) = (x
(1)
1 , . . . , x

(1)
n1 ), . . . , x

(s) = (x
(s)
1 , . . . , x

(s)
ns ). Finally, a permu-

tation map is a linear map corresponding to a permutation matrix. Now we
are able to formulate the main result of this paper:

Theorem 1. Let F = x + (Ax)∗d be a D-mapping of degree ≥ 2. If
JF is invertible and symmetric, then there exists a permutation map P
such that P−1 ◦ F ◦ P admits a separation in a finite set of variables, say
F (1)(x(1)) ◦ · · · ◦ F (s)(x(s)), where each F (i) is a D-mapping of type 1. In
particular , the Jacobian Conjecture holds for D-mappings with symmetric
Jacobian matrices.

For the proof we need the following lemma:

Lemma 2. Let d ≥ 2, A = (aij) ∈ Mn(k) and denote by Ai the ith row
of A. Assume furthermore that J((Ax)∗d) is symmetric. Then:

(i) aij = 0 iff aji = 0.

(ii) If aij 6= 0, then Aj = cAi for some c ∈ k
∗.

Proof. Assume aij 6= 0. To prove (i) it suffices to show that aji 6= 0.
Therefore observe that since J((Ax)∗d) is symmetric we get ∂j((Aix)

d) =
∂i((Ajx)

d). So d(Aix)
d−1aij = d(Ajx)

d−1aji, which implies that aji 6= 0.
Furthermore, also (ii) follows from this equality since both Aix and Ajx are
linear (and hence irreducible) polynomials in the UFD k[x].

Proof of Theorem 1. We proceed by induction on n. The case n = 1 is
obvious, so let n ≥ 2. We may assume that A 6= 0, so it has some non-zero
row. One easily verifies that if P is a permutation map, then P−1 ◦FA ◦P =
FP−1AP . So by permuting the variables we may assume that the first row of
A is non-zero. Put

E := {i | a1i 6= 0}.

We claim that a11 6= 0, i.e. 1 ∈ E. Otherwise, since E is not empty, there
exists i > 1 such that a1i 6= 0. Then by Lemma 2 also ai1 6= 0 and A1 = cAi
for some c ∈ k∗. Consequently, a11 = cai1 6= 0, a contradiction. So 1 ∈ E.
Then, again permuting the variables we may assume that E = {1, . . . , r}
for some 1 ≤ r ≤ n.

If 1 ≤ i ≤ r, then a1i 6= 0. So by Lemma 2, Ai = ci(a11, . . . , a1r, 0, . . . , 0)
for some ci 6= 0. In particular, aij = 0 and hence aji = 0, if j > r and
1 ≤ i ≤ r. So we get

Fi = xi + c
d
i (a11x1 + · · ·+ a1rxr)

d for all 1 ≤ i ≤ r,

Fj = xj + (aj(r+1)xr+1 + · · ·+ ajn)
d for all j > r.

In case r = n the result follows from Lemma 1 and if r < n the result follows
from the induction hypothesis.
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