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Bi-Legendrian connections

by Beniamino Cappelletti Montano (Bari)

Abstract. We define the concept of a bi-Legendrian connection associated to a bi-
Legendrian structure on an almost S-manifold M2n+r. Among other things, we compute
the torsion of this connection and prove that the curvature vanishes along the leaves of the
bi-Legendrian structure. Moreover, we prove that if the bi-Legendrian connection is flat,
then the bi-Legendrian structure is locally equivalent to the standard structure on R

2n+r.

1. Introduction. Given a symplectic manifold (M, ω) of dimension 2n,
a foliation F of dimension n on M is said to be Lagrangian if ω(X, X ′) = 0
for any vectors X, X ′ tangent to F . In [5] H. Hess, working on geometric
quantization, proved that, given two complementary Lagrangian distribu-
tions L and Q on M , there exists a unique connection ∇ satisfying the
following conditions:

(1) ∇ω = 0;
(2) ∇(ΓL) ⊂ ΓL and ∇(ΓQ) ⊂ ΓQ;
(3) T (X, Y ) = 0 if X ∈ ΓL and Y ∈ ΓQ, where T is the torsion tensor

of ∇.

This connection is called bi-Lagrangian and if L and Q are involutive sub-
bundles of TM , i.e. if they are Lagrangian foliations on M , then ∇ is torsion
free and it is flat along the leaves of the foliations (for more details, see also
[10] and [11]).

Analogues of symplectic manifolds in odd dimensions are contact man-
ifolds and analogues of Lagrangian foliations are the so-called Legendrian
foliations (cf. [9], [8] or [6]). The aim of this paper is to give an answer
to the natural question of defining an analogue, for contact manifolds, of
the notion of bi-Lagrangian connection. More generally, we define the bi-

Legendrian connection associated to a bi-Legendrian structure on an almost
S-manifold M2n+r and we can regard bi-Lagrangian connections as a partic-
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ular case of our definition (namely, for r = 0). Moreover, we investigate the
properties of this connection, in particular those involving its torsion and
curvature tensors. Finally, we present some basic examples of bi-Legendrian
structures and bi-Legendrian connections, recognizing that they are very fa-
miliar geometrical objects. More precisely, we prove that if the bi-Legendrian
connection is flat, then the bi-Legendrian structure is locally equivalent to
the standard structure on R

2n+r, where 2n + r is the dimension of the almost
S-manifold M .
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2. Preliminaries

2.1. Almost S-manifolds. An f -structure on a smooth manifold M is
defined by a non-vanishing tensor field φ of type (1, 1) of constant rank 2n
which satisfies φ3 + φ = 0. It can be proved that TM then splits into two
complementary subbundles Im(φ) and ker(φ). When ker(φ) is parallelizable
we say that we have an f -structure with parallelizable kernel, briefly an
f · pk-structure. In this case there exist global sections ξ1, . . . , ξr of ker(φ)
and 1-forms η1, . . . , ηr such that ηi(ξj) = δij and

φ2 = −I +

r∑

i=1

ηi ⊗ ξi,

from which it follows that φ(ξi) = 0 and ηi ◦ φ = 0 for all i ∈ {1, . . . , r}.
Almost complex and almost contact structures are f · pk-structures with
r = 0 and r = 1, respectively. It is known that, given an f · pk-structure
(φ, ξi, ηi), there exists a Riemannian metric g on M such that

(1) g(φV, φW ) = g(V, W ) −

r∑

i=1

ηi(V )ηi(W )

for all V, W ∈ Γ (TM). Such a metric is not, in general, unique. If g is any
metric satisfying (1) we say that (φ, ξi, ηi, g) is a metric f · pk-structure. We
denote by Φ the 2-form defined by Φ(V, W ) = g(V, φW ). A metric f · pk-
manifold M2n+r with structure (φ, ξi, ηi, g) is called an almost S-manifold

if dη1 = · · · = dηr = Φ. This definition reduces to that of contact metric
manifold for r = 1 and of almost Hermitian manifold for the extreme case
r = 0. In this paper we will assume that Φ is closed. This is always true
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for r ≥ 1; for r = 0 this hypothesis implies that (M2n, Φ) is a symplectic
manifold and g is an associated metric with respect to the almost complex
structure φ. We conclude these preliminaries with some useful properties of
almost S-manifolds.

Lemma 2.1. Let (M2n+r, φ, ηi, ξi, g) be an almost S-manifold and let H
denote the 2n-dimensional distribution on M given by H =

⋂r
i=1 ker(ηi).

Then, for all i, j ∈ {1, . . . , r}, we have:

(i) Φ(W, ξi) = 0 for all W ∈ Γ (TM),
(ii) [ξi, ξj ] = 0 and [Z, ξi] ∈ ΓH for all Z ∈ ΓH,
(iii) Lξi

ηj = Lξi
dηj = 0.

For more details good references are, for example, [1], [2] and [4].

2.2. Legendrian foliations. Let (M2n+r, φ, ξi, ηi, g) be an almost S-mani-
fold. An n-dimensional distribution L on M is called a Legendrian if L is a
subbundle of H and

(2) Φ(X, X ′) = 0

for any X, X ′ ∈ ΓL. When L is involutive, the foliation F whose tangent
bundle is L is called a Legendrian foliation. Note that for r = 0 and under
the hypothesis dΦ = 0, our definition of Legendrian distribution reduces to
that of Lagrangian distribution on symplectic manifolds.

We denote by L⊥ the orthogonal bundle of L. Then, setting Q = H ∩ L⊥,
we obtain another n-dimensional distribution on M and we get the decom-
position TM = L⊕Q⊕E1⊕· · ·⊕Er = L⊕Q⊕E, where Ei denotes the line
bundle generated by ξi and E =

⊕r
i=1 Ei. It is not difficult to prove that

φ(L) = Q and φ(Q) = L, from which one can see that, for each i ∈ {1, . . . , r}
and Y ∈ ΓQ, ηi(Y ) = ηi(φ(X)) = 0, where X is the section of L such that
φ(X) = Y . In general Q is not involutive, even if L is; precisely, [Y, Y ′] ∈ ΓH
for any Y, Y ′ ∈ ΓQ. Hence, when Q is integrable, we obtain another Leg-
endrian foliation on M2n+r, called the conjugate Legendrian foliation of F .
A bi-Legendrian structure on M is a pair (F ,G) of two complementary Leg-
endrian foliations on M . For instance, a typical example of bi-Legendrian
structure is given by the pair of a Legendrian foliation and its conjugate
whenever the conjugate Legendrian foliation exists.

Let ξ denote the vector field defined by ξ :=
∑r

i=1 ξi. A Legendrian

foliation is said to be flat (respectively, strongly flat) if ξ (respectively, each
ξ1, . . . , ξr) is projectable (or foliated) with respect to F , i.e. if [X, ξ] ∈ ΓL
whenever X ∈ ΓL.

Everywhere in this paper, we will denote by L and Q two Legendrian
distributions on M and, when L and Q are integrable, by F and G the cor-
responding Legendrian foliations. We will make use of the following lemma,
whose proof is given in [3].
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Lemma 2.2. Let (M, φ, ηi, ξi, g) be an almost S-manifold such that each

ξi is a Killing vector field , and F a Legendrian foliation on M such that the

conjugate Legendrian foliation of F exists. Then if F is strongly flat also its

conjugate is strongly flat.

3. Bi-Legendrian connections. Let (M, φ, ηi, ξi, g), i ∈ {1, . . . , r},
be an almost S-manifold of dimension 2n + r and take two vector fields
V, W ∈ Γ (TM). We define a section H(V, W ) of H to be the unique section
of H such that

iH(V,W )Φ|H = (LV iW Φ)|H,

that is, Φ(H(V, W ), Z) = V (Φ(W, Z))−Φ(W, [V, Z]) for every Z ∈ ΓH. The
existence and uniqueness of this vector field depends on the fact that the
2-form Φ is non-degenerate on H.

Remark 3.1. Observe that the above definition yields H(ξi, W ) =
pH([ξi, W ]) and H(V, ξi) = 0 for all V, W ∈ Γ (TM) and i ∈ {1, . . . , r}.
Indeed, using Lemma 2.1(iii) we have, for all Z ∈ ΓH,

Φ(H(ξi, W ), Z) = ξi(Φ(W, Z)) − Φ(W, [ξi, Z])

= (Lξi
Φ)(W, Z) + Φ([ξi, W ], Z) = Φ([ξi, W ], Z),

so H(ξi, W ) = pH([ξi, W ]). Finally, since Φ(H(V, ξi), Z) = V (Φ(ξi, Z)) −
Φ(ξi, [V, Z]) = 0 for all Z ∈ ΓH, we get H(V, ξi) = 0.

Lemma 3.2. For every f ∈ C∞(M) and V, V ′, W, W ′ ∈ Γ (TM) we have:

(i) H(V + V ′, W ) = H(V, W ) + H(V ′, W ),
(ii) H(V, W + W ′) = H(V, W ) + H(V, W ′),
(iii) H(V, fW ) = fH(V, W ) + V (f)WH,
(iv) H(fV, W ) = fH(V, W ) if Φ(V, W ) = 0,

where WH denotes the projection of W onto the subbundle H of TM .

Proof. We prove (iii) and (iv), (i) and (ii) being obvious. For every Z ∈
ΓH, we have

Φ(H(V, fW ), Z) = Φ(V (f)W + fH(V, W ), Z)

so H(V, fW ) = fH(V, W ) + V (f)WH. Moreover,

Φ(H(fV, W ), Z) = fV (Φ(W, Z)) − Φ(W, [fV, Z])

= fΦ(H(V, W ), Z) − Z(f)Φ(V, W )

and (iv) follows.

Let (L, Q) be a pair of complementary distributions on the almost S-
manifold (M, φ, ηi, ξi, g). We want to associate to (L, Q) a canonical connec-
tion on M . For this purpose let VL, VQ and VE denote the projections of a
vector field V ∈ Γ (TM) onto L, Q and E, respectively. Then we have
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Proposition 3.3. For all W ∈ Γ (TM), X ∈ ΓL, Y ∈ ΓQ and Z ∈
ΓEi, define

∇L
W X := H(WL, X)L + [WQ, X]L + [WE, X]L,

∇Q
W Y := H(WQ, Y )Q + [WL, Y ]Q + [WE, Y ]Q,

∇
(i)
W Z := WE(ηi(Z))ξi + [WL, Z]Ei

+ [WQ, Z]Ei
= W (ηi(Z))ξi.

Then ∇L is a connection on the bundle L, ∇Q a connection on Q, and ∇(i)

on Ei, i ∈ {1, . . . , r}.

Proof. Indeed, for all f ∈ C∞(M), by Lemma 3.2 we have

∇L
fW X =∇L

fWL
X +∇L

fWQ
X +∇L

fWE
X

=H(fWL,X)L + [fWQ,X]L + [fWE,X]L
=fH(WL,X)L +(f [WQ,X]−X(f)WQ)L +(f [WE ,X]−X(f)WE)L

=f∇L
W X.

Moreover,

∇L
W (fX) = ∇L

WL
(fX) + ∇L

WQ
(fX) + ∇L

WE
(fX)

= H(WL, fX)L + [WQ, fX]L + [WE, fX]L
= fH(WL, X)L + WL(f)X + f [WQ, X]L + WQ(f)X

+ f [WE, X]L + WE(f)X

= f∇L
W X + W (f)X,

so ∇L is a connection on L. In the same way one can prove that ∇Q is a
connection on Q. To end the proof we have to show that ∇(i) is a connection

on Ei. Indeed, ∇
(i)
fW Z = fW (ηi(Z))ξi = f∇

(i)
W Z and

∇
(i)
W (fZ)=W (ηi(fZ))ξi =W (f)ηi(Z)ξi+fW (ηi(Z))ξi =W (f)Z + f∇

(i)
W Z.

Now we can define a global connection on M by setting, for any V, W ∈
Γ (TM),

∇W V := ∇L
W VL + ∇Q

W VQ +
r∑

i=1

∇
(i)
W VEi

.

It follows that, for all W ∈ Γ (TM), ∇W ξi = ∇
(i)
W ξi = W (ηi(ξi))ξi = 0, and

∇ξi
W = [ξi, WL]L + [ξi, WQ]Q +

r∑

j=1

ξi(ηj(W ))ξj.

Proposition 3.4. The connection ∇ has the following properties:

(i) ∇(ΓL) ⊂ ΓL, ∇(ΓQ) ⊂ ΓQ and ∇(ΓEi) ⊂ ΓEi for i ∈ {1, . . . , r};
(ii) ∇η1 = · · · = ∇ηr = 0;
(iii) ∇Φ = 0.
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Proof. (i) is a direct consequence of the definition of ∇. We prove (ii).
For any V, W ∈ Γ (TM) we have

(∇W ηi)V = W (ηi(V )) − ηi(∇W V ) = W (ηi(V )) −
r∑

j=1

ηi(∇
(j)
W VEj

)

= W (ηi(V )) −

r∑

j=1

ηi(W (ηj(VEj
))ξj)

= W (ηi(V )) − W (ηi(VEi
)) = 0,

so ∇ηi = 0 for each i ∈ {1, . . . , r}. It remains to prove that (∇ZΦ)(V, W ) = 0
for all V, W, Z ∈ Γ (TM). This clearly holds if V, W ∈ ΓL or V, W ∈ ΓQ,
since

(∇ZΦ)(V, W ) = Z(Φ(V, W )) − Φ(∇ZV, W ) − Φ(V,∇ZW )

and each term of the right hand side vanishes (by (i)). Also the case V ∈
Γ (TM), W ∈ ΓEi is obvious. Indeed, W can be written as W = fξi for
some f ∈ C∞(M) and we have

(∇ZΦ)(V, fξi) = Z(Φ(V, fξi)) − Φ(∇ZV, fξi) − Φ(V,∇Z(fξi))

= −Φ(V, f∇Zξi) = 0.

So we only have to prove that (∇ZΦ)(X, Y ) = 0 for X ∈ ΓL and Y ∈ ΓQ.
It is sufficient to consider the two cases Z ∈ ΓH and Z = ξi. In the first
case we have

(∇ZΦ)(X, Y ) = Z(Φ(X, Y )) − Φ(∇L
ZX, Y ) − Φ(X,∇Q

ZY )

= Z(Φ(X, Y )) − Φ(H(ZL, X)L + [ZQ, X]L, Y )

− Φ(X, H(ZQ, Y )Q + [ZL, Y ]Q)

= Z(Φ(X, Y )) − Φ(H(ZL, X), Y ) − Φ([ZQ, X], Y )

+ Φ(H(ZQ, Y ), X) + Φ([ZL, Y ], X)

= Z(Φ(X, Y )) − ZL(Φ(X, Y )) − ZQ(Φ(X, Y )) = 0

by the definition of H. Finally, by Lemma 2.1,

(∇ξi
Φ)(X, Y ) = ξi(Φ(X, Y )) − Φ([ξi, X]L, Y ) − Φ(X, [ξi, Y ]Q)

= ξi(Φ(X, Y )) − Φ([ξi, X], Y ) − Φ(X, [ξi, Y ])

= (Lξi
Φ)(X, Y ) = 0.

Now we compute the torsion of ∇.

Proposition 3.5. The torsion of ∇ is given by

(i) T (X, X ′) = −pL⊥([X, X ′]) for X, X ′ ∈ ΓL,
(ii) T (Y, Y ′) = −pQ⊥([Y, Y ′]) for Y, Y ′ ∈ ΓQ,

(iii) T (X, Y ) = 2Φ(X, Y )ξ for X ∈ ΓL and Y ∈ ΓQ,
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(iv) T (W, ξi) = [ξi, WL]Q + [ξi, WQ]L for W ∈ Γ (TM).

In particular , by (iv), T (ξi, ξj) = 0.

Proof. First take X ∈ ΓL and Y ∈ ΓQ. Then

T (X, Y ) = ∇Q
XY −∇L

Y X − [X, Y ] = [X, Y ]Q − [Y, X]L − [X, Y ]

= −
r∑

i=1

ηi([X, Y ])ξi =
r∑

i=1

2dηi(X, Y )ξi = 2Φ(X, Y )ξ.

Moreover, for any W ∈ Γ (TM), we have

T (W, ξi) = − [ξi, WL]L − [ξi, WQ]Q −
r∑

j=1

ξi(ηj(W ))ξj − [W, ξi]

= − [ξi, WL]L − [ξi, WQ]Q −
r∑

j=1

ξi(ηj(W ))ξj + [ξi, WL] + [ξi, WQ]

+
r∑

j=1

[ξi, ηj(W )ξj]

= [ξi, WL]Q + [ξi, WQ]L.

It remains to prove the statement for X, X ′ ∈ ΓL and Y, Y ′ ∈ ΓQ. Indeed,

T (X, X ′) = H(X, X ′)L − H(X ′, X)L − [X, X ′]

= (H(X, X ′) − H(X ′, X) − [X, X ′])L − [X, X ′]L⊥ ,

so it is sufficient to prove that H(X, X ′) − H(X ′, X) = [X, X ′]H. Indeed,
from the definition of H we have, for every Z ∈ ΓH,

Φ(H(X, X ′), Z) = X(Φ(X ′, Z)) − Φ(X ′, [X, Z]),

Φ(H(X ′, X), Z) = X ′(Φ(X, Z)) − Φ(X, [X ′, Z]).

Subtracting the last two equations we get

Φ(H(X, X ′) − H(X ′, X), Z)

= X(Φ(X ′, Z)) − X ′(Φ(X, Z)) − Φ(X ′, [X, Z]) + Φ(X, [Y, Z])

= 3dΦ(X, X ′, Z) + Φ([X, X ′], Z) = Φ([X, X ′], Z),

from which, since Φ is closed and non-degenerate on H, we conclude that
H(X, X ′) − H(X ′, X) = [X, X ′]H. In the same way one can prove that
T (Y, Y ′) = −pQ⊥([Y, Y ′]).

Corollary 3.6. If L and Q are involutive then ∇ is torsion free along

the leaves of the Legendrian foliations F and G.

Corollary 3.7. If L and Q are strongly flat then T (V, ξi) = 0 for every

V ∈ Γ (TM).
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Now we can prove that the connection ∇ is uniquely determined by the
properties stated in Proposition 3.4 and 3.5:

Theorem 3.8. Let L and Q be two complementary Legendrian distri-

butions on the almost S-manifold (M2n+r, φ, ηi, ξi, g). There exists a unique

connection ∇ on M with the following properties:

(i) ∇Φ = 0;
(ii) ∇(ΓL) ⊂ ΓL, ∇(ΓQ) ⊂ ΓQ and ∇(ΓEi) ⊂ ΓEi for i ∈ {1, . . . , r};
(iii) T (X, Y ) = 2Φ(X, Y )ξ for all X ∈ ΓL and Y ∈ ΓQ,

T (V, ξi)=[ξi, VL]Q + [ξi, VQ]L for all V ∈Γ (TM) and i∈{1, . . . , r},

where T denotes the torsion tensor of ∇.

Proof. We only have to prove the uniqueness. Let ∇′ be any connec-
tion on M2n+r satisfying (i)–(iii). First we show that our hypotheses yield
∇′

W ξi = 0 for all W ∈ Γ (TM). Indeed, it is sufficient to consider the two
cases W ∈ ΓH and W = ξj. In the first case we have

∇′
W ξi = ∇′

ξi
W + [W, ξi] + T ′(W, ξi)

= ∇′
ξi

W + [W, ξi] + [ξi, WQ]L + [ξi, WL]Q

= ∇′
ξi

W − [ξi, WL]L − [ξi, WQ]Q ∈ ΓH.

On the other hand, ∇′
W ξi ∈ ΓEi, so necessarily ∇′

W ξi = 0, from which we
also deduce

(3) ∇′
ξi

W = [ξi, WL]L + [ξi, WQ]Q.

In the case W = ξj we have

∇′
ξj

ξi = ∇′
ξi

ξj + [ξj, ξi] + T ′(ξj, ξi) = ∇′
ξi

ξj ∈ ΓEj ,

so ∇′
ξj

ξi = 0. Thus, for all Z ∈ ΓEi and W ∈ Γ (TM) we have

∇′
W Z = ∇′

W (ηi(Z)ξi) = ηi(Z)∇′
W ξi + W (ηi(Z))ξi = W (ηi(Z))ξi = ∇

(i)
W Z.

Now take X, X ′ ∈ ΓL and Y ∈ ΓQ. Then, as Φ is parallel with respect
to ∇′, we get

Φ(∇′
X′X, Y ) = X ′(Φ(X, Y )) − Φ(X,∇′

X′Y ).

On the other hand, the conditions on the torsion yield

∇′
X′Y = ∇′

Y X ′ + [X ′, Y ] + T (X ′, Y ) = ∇′
Y X ′ + [X ′, Y ] + 2Φ(X ′, Y )ξ,

so

Φ(∇′
X′X, Y ) = X ′(Φ(X, Y )) − Φ(X,∇′

Y X ′) − Φ(X, [X ′, Y ])

− 2Φ(X ′, Y ′)Φ(X, ξ)

= X ′(Φ(X, Y )) − Φ(X, [X ′, Y ]),
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from which we deduce ∇′
X′X = H(X, X ′)L = ∇L

X′X. In a similar way one

can show that ∇′
Y ′Y = H(Y, Y ′)Q = ∇Q

Y ′Y for any Y, Y ′ ∈ ΓQ. Moreover,
if X ∈ ΓL and Y, Y ′ ∈ ΓQ, we have

Φ(∇′
Y X, Y ′) = Y (Φ(X, Y ′)) + Φ(∇′

Y Y ′, X)

= Y (Φ(X, Y ′)) + Φ(H(Y, Y ′)Q, X)

= Y (Φ(X, Y ′)) + Φ(H(Y, Y ′), X)

= Y (Φ(X, Y ′)) + Y (Φ(Y ′, X)) − Φ(Y ′, [Y, X])

= Φ([Y, X], Y ′)

from which we get ∇′
Y X = [Y, X]Q = ∇L

Y X. Finally, if Z is any section
of Ei, then, by (3),

∇′
ZX = ∇′

ηi(Z)ξi
X = ηi(Z)∇′

ξi
X = ηi(Z)[ξi, X]L = [ηi(Z)ξi, X]L

= [Z, X]L = ∇L
ZX.

Therefore, for any W ∈ Γ (TM) and X ∈ ΓL,

∇′
W X = ∇′

WL
X + ∇′

WQ
X + ∇′

WE
X

= H(WL, X)L + [WQ, X]L + [WE, X]L = ∇L
W X.

In a similar way one can show that ∇′
W Y = ∇Q

W Y for all W ∈ Γ (TM) and
Y ∈ ΓQ.

The connection of the previous theorem is called the bi-Legendrian con-

nection associated to the pair (L, Q) of complementary Legendrian distri-
butions.

Proposition 3.9. Let (F ,G) a strongly flat bi-Legendrian structure

on M . Then the bi-Legendrian connection ∇ associated to (F ,G) is flat

along the leaves of the foliations F and G.

Proof. As usual, let L and Q denote the tangent bundles of the fo-
liations F and G, respectively. Let X, X ′ ∈ ΓL. We have to prove that
R(X, X ′)Z = 0 for any Z ∈ Γ (TM). Clearly this is true for Z = ξi, i ∈
{1, . . . , r}, so it remains to check it for Z ∈ ΓL and Z ∈ ΓQ. In the first
case we have

R(X, X ′)Z = ∇L
X(H(X ′, Z)L) −∇L

X′(H(X, Z)L) − H([X, X ′], Z)L

= H(X, H(X ′, Z)L)L − H(X ′, H(X, Z)L)L − H([X, X ′], Z)L.

We examine separately the three terms of the last formula. For any Y ∈ ΓQ,

Φ(H(X, H(X ′, Z)L)L, Y ) = Φ(H(X, H(X ′, Z)L), Y )

= X(Φ(H(X ′, Z)L, Y )) − Φ(H(X ′, Z)L, [X, Y ])

= X(Φ(H(X ′, Z), Y )) − Φ(H(X ′, Z), [X, Y ]Q)
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= X(X ′(Φ(Z, Y ))) − X(Φ(Z, [X ′, Y ]))

− X ′(Φ(Z, [X, Y ])) + Φ(Z, [X ′, [X, Y ]])

−
r∑

i=1

ηi([X, Y ])Φ(Z, [X ′, ξi])

= X(X ′(Φ(Z, Y ))) − X(Φ(Z, [X ′, Y ]))

− X ′(Φ(Z, [X, Y ])) + Φ(Z, [X ′, [X, Y ]]),

Φ(H(X ′, H(X, Z)L)L, Y ) = Φ(H(X ′, H(X, Z)L), Y )

= X ′(Φ(H(X, Z)L, Y )) − Φ(H(X, Z)L, [X ′, Y ])

= X ′(Φ(H(X, Z), Y )) − Φ(H(X, Z), [X ′, Y ]Q)

= X ′(X(Φ(Z, Y ))) − X ′(Φ(Z, [X, Y ]))

− X(Φ(Z, [X ′, Y ])) + Φ(Z, [X, [X ′, Y ]])

−
r∑

i=1

ηi([X, Y ])Φ(Z, [X, ξi])

= X ′(X(Φ(Z, Y ))) − X ′(Φ(Z, [X, Y ]))

− X(Φ(Z, [X ′, Y ])) + Φ(Z, [X, [X ′, Y ]])

and

Φ(H([X, X ′], Z)L, Y ) = [X, X ′](Φ(Z, Y )) − Φ(Z, [[X, X ′], Y ]),

where in the first two equations we have used the strong flatness of L. Thus

Φ(H(X, H(X ′, Z)), Y ) − Φ(H(X ′, H(X, Z)), Y ) − Φ(H([X, X ′], Z), Y )

= [X, X ′](Φ(Z, Y )) + Φ(Z, [X ′, [X, Y ]]) − Φ(Z, [X, [X ′, Y ]])

− [X, X ′](Φ(Z, Y )) + Φ(Z, [[X, X ′], Y ])

= Φ(Z, [[X, X ′], Y ] + [[X ′, Y ], X] + [[Y, X], X ′]) = 0

as a consequence of the Jacobi identity. Thus, R(X, X ′)Z = 0 if Z ∈ ΓL.
Now we prove the same in the case Z ∈ ΓQ. We have

R(X, X ′)Z = ∇Q
X([X ′, Z]Q) −∇Q

X′([X, Z]Q) − [[X, X ′], Z]Q
= [X, [X ′, Z]Q]Q − [X ′, [X, Z]Q]Q − [[X, X ′], Z]Q

= −
r∑

i=1

ηi([X
′, Z])[X, ξi]Q + [X, [X ′, Z]]Q

− [X, [X ′, Z]L]Q − [X ′, [X, Z]]Q

+ [X ′, [X, Z]L]Q − [[X, X ′], Z]Q +

r∑

i=1

[X, Z][X ′, ξi]Q

= pQ([X, [X ′, Z]] + [X ′, [Z, X]] + [Z, [X, X ′]]) = 0,
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since L is strongly flat and hence [X, ξi]Q = [X ′, ξi]Q = 0. This shows that
R(X, X ′) = 0. Similarly one can prove the flatness along Q.

Proposition 3.10. Let (F ,G) be a strongly flat bi-Legendrian structure

on M2n+r. Then R(V, ξi) = 0 for all V ∈ Γ (TM) and i ∈ {1, . . . , r}.

Proof. Indeed, by a straightforward computation,

Φ(R(X, ξi)X
′, Y ) = (L[X,ξi]QΦ)(X ′, Y ) − Φ([ξi, X

′]Q, [X, Y ]),

Φ(R(X, ξi)Y, X ′) = (L[X,ξi]QΦ)(X ′, Y ) − Φ([[X, Y ]L, ξi], X
′),

for all X, X ′ ∈ ΓL and Y ∈ ΓQ, from which we deduce that if (F ,G)
is strongly flat then R(X, ξi) = 0 for all X ∈ ΓL and, in the same way,
R(Y, ξi) = 0 for all Y ∈ ΓQ. Moreover it is easy to see that

R(ξi, ξj)X = pL([ξj, [ξi, X]Q] − [ξi, [ξj, X]Q]),

R(ξi, ξj)Y = pQ([ξj, [ξi, Y ]L] − [ξi, [ξj, Y ]L]),

from which we have R(ξi, ξj) = 0.

Remark 3.11. It is easy to see that the last proposition is also true
when L and Q are not integrable.

4. Examples and further remarks. Now we can give a basic example
of bi-Legendrian structure with its relative bi-Legendrian structure.

Example 4.1. Consider R
2n+r with coordinates x1, . . . , xn, y1, . . . , yn,

z1, . . . , zr and its standard f ·pk-metric structure (φ, ηi, ξi, g), i ∈ {1, . . . , r},
where

(4)

ηi = dzi −

n∑

j=1

yjdxj, ξi =
∂

∂zi
,

g =
r∑

i=1

ηi ⊗ ηi +
1

2

n∑

j=1

((dxj)
2 + (dyj)

2)

and φ is given, with respect the frame (∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn,
∂/∂z1, . . . , ∂/∂zr), by the (2n + r) × (2n + r)-matrix

(5)




0 In 0

−In 0 0

0 Y 0




where Y is the r × n-matrix given by



y1 · · · yn

...
. . .

...

y1 · · · yn


 .
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Note that from (4) it follows that Φ = dη1 = · · · = dηr =
∑n

i=1 dxi ∧ dyi.
For all k ∈ {1, . . . , n}, let

Xk :=
∂

∂yk
and Yk :=

∂

∂xk
+ yk

∂

∂z1
+ · · · + yk

∂

∂zr

and set L = span{X1, . . . , Xn}, Q = span{Y1, . . . , Yn}. It is easy to check
that L, Q are Legendrian distributions on R

2n+r, φ(L) = Q (more precisely,
φ(Xk) = Yk for each k ∈ {1, . . . , r}) and L, Q are integrable. Thus (F ,G) is
a bi-Legendrian structure on R

2n+r, where, as usual, we have denoted by F
and G the integral foliations of L and Q, respectively. Since [Xk, ξα] = 0 and
[Yk, ξα] = 0 for each k ∈ {1, . . . , n} and α ∈ {1, . . . , r}, F and G are strongly
flat. Consider the bi-Legendrian connection ∇ associated to (F ,G). We show
that the curvature tensor of ∇ vanishes identically. First of all it is easy
to check that H(∂/∂xi, ∂/∂xj) = H(∂/∂yi, ∂/∂yj) = H(∂/∂xi, ∂/∂yj) =
H(∂/∂yj, ∂/∂xi) = 0 for all i, j ∈ {1, . . . , n}. Then ∇ is flat. For example
we compute R(∂/∂xi, ∂/∂xj)∂/∂xk, the other cases being similar. Indeed,
by a direct computation we obtain

∇∂/∂xj

∂

∂xk
=

∑

β

(
ykH

(
∂

∂xj
, ξβ

)
+

(
∂yk

∂xj
ξβ

)

H

)

Q

+
∑

α

yjH

(
ξα,

∂

∂xk

)

Q

+
∑

α

∑

β

(
yjyk

[
∂

∂zα
,

∂

∂zβ

]
+ yj

∂yk

∂zα

∂

∂zβ

)

Q

= 0,

and R(∂/∂xi, ∂/∂xj)∂/∂xk = 0.

The relevance of this example lies in the fact that, locally, the converse
holds, as stated in the following

Theorem 4.2. Let (F ,G) be a strongly flat bi-Legendrian structure on

the almost S-manifold (M2n+r, φ, ηi, ξi, g) and suppose that the correspond-

ing bi-Legendrian connection ∇ is flat. Then the bi-Legendrian structure

(F ,G) is locally equivalent to the standard bi-Legendrian structure on R
2n+r.

Proof. Let p ∈ M be a point and U ⊂ M a chart containing p. Since Φp

is a symplectic form on the subspace Hp ⊂ TpM , it follows that there exists
a g-orthogonal basis {e1, . . . , en, en+1, . . . , e2n, ξ1p, . . . , ξrp} of TpM such that
{e1, . . . , en} is a basis of Lp, {en+1, . . . , e2n} is a basis of Qp, en+i = φ(ei)
and

Φ(ei, ej) = Φ(en+i, en+j) = 0, Φ(ei, en+j) = −
1

2
δij(6)

for all i, j ∈ {1, . . . , n}. For each k ∈ {1, . . . , 2n} we define a vector field
Ek on U by the ∇-parallel transport along curves. More precisely, for any
q ∈ U we consider a curve γ : [0, 1] → U such that γ(0) = p, γ(1) = q and
we define Ek(q) := τγ(ek), τγ : TpM → TqM being the parallel transport
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along γ. Note that Ek(q) does not depend on the curve joining p and q, since
R = 0. So we obtain 2n vector fields E1, . . . , E2n on U such that, for each
i ∈ {1, . . . , n}, Ei ∈ ΓL and En+i ∈ ΓQ, since the bi-Legendrian connection
∇ preserves the foliations F and G. Moreover, (6) holds at any point of U ,
that is, for any q ∈ U and i, j ∈ {1, . . . , n},

Φ(Ei(q), Ej(q)) = Φ(En+i(q), En+j(q)) = 0,(7)

Φ(Ei(q), En+j(q)) = −
1

2
δij .(8)

Indeed, since Φ is parallel with respect to ∇, for all h, k ∈ {1, . . . , 2n},

d

dt
Φγ(t)(Eh(γ(t)), Ek(γ(t))) = Φγ(t)(∇γ′Eh, Ek) + Φγ(t)(Eh,∇γ′Ek) = 0

so that Φp(eh, ek) = Φq(Eh(q), Ek(q)) for all q ∈ U . Note that, by construc-
tion, we have ∇Eh

Ek = 0 and ∇ξα
Ek = 0 for all h, k ∈ {1, . . . , 2n} and

α ∈ {1, . . . , r}. From this, Proposition 3.5 and Corollary 3.7, we get

[Ei, Ej ] = 0,(9)

[En+i, En+j ] = 0,(10)

[Ek, ξα] = 0,(11)

[Ei, En+j] = −T (Ei, En+j) = −2Φ(Ei, En+j)ξ = δij

r∑

α=1

ξα,(12)

for all i, j ∈ {1, . . . , n}, k ∈ {1, . . . , 2n} and α ∈ {1, . . . , r}, and (9)–(12)
imply that there exist coordinates {x1, . . . , xn, y1, . . . , yn, z1, . . . , zr} such
that Ei = ∂/∂yi, En+j = ∂/∂xj + yj

∑r
α=1 ∂/∂zα, ξα = ∂/∂zα for any

i ∈ {1, . . . , n} and α ∈ {1, . . . , r}. Note that from (7) it follows that, in these
coordinates, Φ =

∑n
k=1 dxk∧dyk, from which we have, for each i ∈ {1, . . . , r},

d(ηi+
∑n

k=1 ykdxk) = 0 and ηi = dfi−
∑n

k=1 ykdxk for some fi ∈ C∞(U). But
ηi(Ej) = 0, ηi(En+j) = 0 and ηi(ξl) = δil imply ∂fi/∂yj = 0, ∂fi/∂xj = 0
and ∂fi/∂zl = δil, respectively. So dfi = dzi and, in this coordinate sys-
tem,

(i) L is spanned by ∂/∂yh, h = 1, . . . , n,
(ii) Q is spanned by ∂/∂xh + yh

∑r
α=1 ∂/∂zα, h = 1, . . . , n,

(iii) the 1-forms ηi, i ∈ {1, . . . , r}, are given by ηi = dzi −
∑n

k=1 ykdxk.

Finally, from (7) we deduce that En+i = φ(Ei) and so φ is represented,
in the local frame (∂/∂x1, . . . , ∂/∂xn, ∂/∂y1, . . . , ∂/∂yn, ∂/∂z1, . . . , ∂/∂zr),
by the matrix (5). Hence this coordinate system gives the local equivalence
between (F ,G) and the standard bi-Legendrian structure on R

2n+r.

We conclude with another example, showing the relation between the
bi-Legendrian connection and the Bott connection. Consider an almost S-
manifold (M2n+r, φ, ηi, ξi, g) such that each ξi is a Killing vector field and
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there exists a strongly flat Legendrian foliation F on M such that the con-
jugate Legendrian foliation exists, i.e. Q = φ(L) is involutive. Then, by
Lemma 2.1, also G is a strongly flat Legendrian foliation, where, as usual,
G denotes the integral foliation of Q. In this situation, as shown in [3], we
can define a connection ∇ on M in the following way. First of all we consider
the Bott connection on L⊥ = Q ⊕ E1 ⊕ · · · ⊕ Er given by

∇L⊥

X Y := pL⊥([X, Y ])

for all X ∈ ΓL and Y ∈ ΓL⊥, where pL⊥ denotes the projection onto L⊥.

Then ∇L⊥

defines a Bott partial connection ∇L⊥
∗

in the dual bundle L⊥∗

by

(∇L⊥
∗

X v)Y = X(v(Y )) − v([X, Y ]) = 2dv(X, Y )

for X ∈ ΓL, Y ∈ ΓL⊥ and v ∈ ΓL⊥∗

, which induces a partial connection
∇Q∗

defined by

∇Q∗

X v := pQ∗(∇L⊥
∗

X v)

for X ∈ ΓL and v ∈ ΓQ∗. Now, we consider the isomorphism Ψ : L → Q∗

given by Ψ(X) = 1
2 iXΦ and define a partial connection along L by setting

∇̃L
XX ′ := Ψ−1(∇Q∗

X Ψ(X ′)).

This connection was introduced for the case r = 1 by Pang (cf. [9]) who

proved that ∇̃L is torsion free and its curvature vanishes if, as in our case,
the Legendrian foliation F is flat. These results are still valid in the general
case (see [3]). The Bott connection ∇L⊥

also induces a connection ∇Q on Q
given by the formula

∇Q
XY := pQ([X, Y ]).

It can be proved that the hypothesis of strong flatness of F implies that
the curvature tensor of ∇Q vanishes identically. Now, let ∇

′
be the partial

connection along L defined by

∇
′

XV := ∇̃L
XVL + ∇Q

XVQ + pL⊥([X, VE])

for all X ∈ ΓL and V ∈ Γ (TM). Then ∇
′

is a flat connection along L,

that is, R′(X, X ′) = 0 for all X, X ′ ∈ ΓL, since both ∇̃L and ∇Q are flat
connections along L. The same construction can be repeated for Q, as also
G is a strongly flat Legendrian foliation, so we have a partial connection ∇′′

along Q given by

∇
′′

Y V := ∇̃Q
Y VQ + ∇L

Y VL + pQ⊥([Y, VE])

for all Y ∈ ΓQ and V ∈ Γ (TM), which, as before, is flat along Q. Finally,
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for each i ∈ {1, . . . , r}, we set, for all Z ∈ ΓEi and V ∈ Γ (TM),

∇
(i)
Z V := pL([Z, VL]) + pQ([Z, VQ]) +

r∑

j=1

Z(ηj(V ))ξj,

thus obtaining a connection along the bundle Ei. Using these connections
we can define a global connection ∇ on M by setting

∇W V := ∇
′

WL
V + ∇

′′

WQ
V +

r∑

i=1

∇
(i)
WEi

V

for all V, W ∈ Γ (TM). It is not difficult to check that ∇ is a connection

and, as a consequence of the flatness of ∇
′
and ∇

′′
, it is flat along the leaves

of the foliations F and G. Moreover, for all i ∈ {1, . . . , r},

∇W ξi = ∇
′

WL
ξi + ∇

′′

WQ
ξi +

r∑

j=1

∇
(j)
WEj

ξi

= pQ([WL, ξi]) − pL([WQ, ξi]) −
r∑

j=1

r∑

k=1

WEj
(δki) = 0,

since both L and Q are strongly flat. It can be easily showed that the torsion
T of ∇ vanishes along L and Q as a consequence of the symmetry of ∇̃L

and ∇̃Q, and, for any X ∈ ΓL and Y ∈ ΓQ,

T (X, Y ) = ∇Q
XY −∇L

Y X − [X, Y ] = [X, Y ]Q − [Y, X]L − [X, Y ]

= −
r∑

i=1

ηi([X, Y ])ξi = 2Φ(X, Y )ξ.

Theorem 4.3. ∇ coincides with the bi-Legendrian connection ∇ asso-

ciated to the bi-Legendrian structure (F ,G).

Proof. By the uniqueness of the bi-Legendrian connection associated to
(F ,G), it is enough to verify that ∇ has all the properties stated in Theorem
3.8. First, directly by our definitions, we see that ∇ preserves the foliations
F , G and Ei. Moreover, for all W ∈ Γ (TM),

T (W, ξi) = ∇W ξi −∇ξi
W − [W, ξi] = −[ξi, WL]L − [ξi, WQ]Q

−

r∑

j=1

ξi(ηj(W ))ξj − [WL, ξi] − [WQ, ξi] −

r∑

j=1

[ηj(W )ξj, ξi]

= [ξi, WL]Q + [ξi, WQ]L −
r∑

j=1

ξi(ηj(W ))ξj +
r∑

j=1

ξi(ηj(W ))ξj

= [ξi, WL]Q + [ξi, WQ]L.
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Since ∇ξi
Z = ∇Zξi = 0 for all Z ∈ Γ (TM), conditions (i) and (ii) of

Theorem 3.8 are satisfied. Finally, as ∇ preserves the foliations, we see di-
rectly that (∇ZΦ)(V, W ) = Z(Φ(V, W ))−Φ(∇ZV, W )−Φ(V,∇ZW ) = 0 for
V, W ∈ ΓL or V, W ∈ ΓQ, so it remains to check that (∇ZΦ)(X, Y ) = 0 for
all Z ∈ Γ (TM), X ∈ ΓL and Y ∈ ΓQ. We consider the two cases Z = ξi

and Z ∈ ΓH. We have

(∇ξi
Φ)(X, Y ) = ξi(Φ(X, Y )) − Φ([ξi, X]L, Y ) − Φ(X, [ξi, Y ]Q)

= ξi(Φ(X, Y )) − Φ([ξi, X], Y ) − Φ(X, [ξi, Y ])

= (Lξi
Φ)(X, Y ) = 0,

and, if Z ∈ ΓH,

(∇ZΦ)(X, Y ) = Z(Φ(X, Y )) − Φ(∇̃L
ZL

X + [ZQ, X]L, Y )

− Φ(X, [ZL, Y ]Q + ∇̃Q
ZQ

Y )

= Z(Φ(X, Y )) − Φ(∇̃L
ZL

X, Y )

− Φ([ZQ, X], Y ) − Φ(X, [ZL, Y ]) − Φ(X, ∇̃Q
ZQ

Y )

= Z(Φ(X, Y )) − Φ(Ψ−1(∇Q∗

ZL
Ψ(X)), Y ) − Φ([ZQ, X], Y )

− Φ(X, [ZL, Y ]) − Φ(X, Ψ−1(∇L∗

ZQ
Ψ(Y )))

= Z(Φ(X, Y )) − ZL(Ψ(X)(Y )) + Ψ(X)([ZL, Y ])

− Φ([ZQ, X], Y ) − Φ(X, [ZL, Y ]) + ZQ(Ψ(Y )(X)) − Ψ(Y )([ZQ, X])

= Z(Φ(X, Y )) − ZL(Φ(X, Y )) + Φ(X, [ZL, Y ]) − Φ([ZQ, X], Y )

− Φ(X, [ZL, Y ]) + ZQ(Φ(Y, X)) − Φ(Y, [ZQ, X]) = 0.

Therefore ∇ has all the properties which characterize the bi-Legendrian
connection ∇ associated to the bi-Legendrian structure (F ,G), hence, by
the uniqueness of this connection, ∇ = ∇.

In particular, from Theorem 4.3 and Proposition 3.10 it follows that,
for the connection ∇ associated to a strongly flat bi-Legendrian structure
(F ,G),

(13) R(V, ξi) = 0

for every V ∈ Γ (TM) and i ∈ {1, . . . , r}. Note that (13) is rather difficult
to check directly.

Remark 4.4. We emphasize that for r = 0 the theory of bi-Legendrian
connections reduces to the theory of bi-Lagrangian connections in symplectic
geometry. In particular Theorem 4.2 is a generalization of the well known
theorem of Hess which states that if the curvature of the bi-Lagrangian
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connection associated to a bi-Lagrangian structure on a symplectic manifold
(M2n, ω) vanishes identically, then the bi-Lagrangian structure is locally
isomorphic to the standard structure (F ,G) on R

2n given by F = {x1 =
const, . . . , xn = const} and G = {y1 = const, . . . , yn = const}.

For r = 1 we obtain the theory of bi-Legendrian connections on contact
manifolds, which was the initial motivation for this work. We note that in
this case the notions of flatness and strong flatness of a Legendrian foliation
are equivalent.
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151–161.

[3] B. Cappelletti Montano, Legendrian foliations on almost S-manifolds, Balkan J.
Geom. Appl. 10 (2005), no. 2, 11–32.

[4] K. L. Duggal, S. Ianus and A. M. Pastore, Maps interchanging f-structures and

their harmonicity, Acta Appl. Math. 67 (2001), 91–115.
[5] H. Hess, Connections on symplectic manifolds and geometric quantization, in: Lec-

ture Notes in Math. 836, Springer, 1980, 153–166.
[6] N. Jayne, Contact metric structures and Legendre foliations, New Zealand J. Math.

27 (1998), 49–65.
[7] —, Legendre foliations on contact metric manifolds, Ph.D. thesis, Massey Univ.,

1992.
[8] P. Liebermann, Legendre foliations on contact manifolds, Differential Geom. Appl.

1 (1991), 57–76.
[9] M. Y. Pang, The structure of Legendre foliations, Trans. Amer. Math. Soc. 320

(1990), 417–453.
[10] I. Vaisman, Basics of Lagrangian foliations, Publ. Mat. 33 (1989), 559–575.
[11] —, df -cohomology of Lagrangian foliations, Monatsh. Math. 106 (1988), 221–224.

Department of Mathematics
University of Bari
via E. Orabona, 4
70125 Bari, Italy
E-mail: cappelletti@dm.uniba.it
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