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Estimates of capacity of self-similar measures

by Józef Myjak (L’Aquila and Kraków) and
Tomasz Szarek (Katowice and Rzeszów)

Abstract. We give lower and upper estimates of the capacity of self-similar mea-
sures generated by iterated function systems {(Si, pi) : i = 1, . . . , N} where Si are bi-
lipschitzean transformations.

1. Introduction. The idea of dimension of measures is fundamental
in measure theory and it also occurs in diverse branches of mathemat-
ics. For example, it is a basic tool in the study of attractors of dynamical
systems, in particular in the study of attractors (also called fractals) gen-
erated by iterated function systems, or more generally, fractals generated
by Markov chains (see [1–6, 15, 16, 18, 23]). Various notions of dimension
have been proposed: Hausdorff dimension, box dimension, entropy dimen-
sion, correlation dimension. These concepts were widely investigated and
used. Closely related to Hausdorff dimension is capacity, introduced by Kol-
mogorov (see [14]). This capacity, however, does not distinguish between
a set and its closure. Ledrappier [17] has made some modification to cor-
rect this insensitivity. While the other concepts mentioned here have been
extensively studied, Ledrappier’s version of capacity does not seem to be
sufficiently explored. In this paper we give lower and upper estimates of
Ledrappier’s capacity of measures invariant with respect to iterated func-
tion systems of functions which are bi-lipschitzean.

The calculation of dimensions has been performed by several authors
inspired by Hutchinson’s elegant treatment [13]. For an account of the tech-
nique involved, generalizations and improvements see [2–4, 12, 18, 20]. Our
approach is also based on this idea.

2. Notations and preliminaries. Throughout this paper (X, %) de-
notes a Polish space and this assumption will not be repeated in the state-
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ment of theorems. By B(x, r) we denote the closed ball in X with center
at x and radius r. For A ⊂ X, A 6= ∅, we denote by diamA the diameter
of A and by 1A the characteristic function of A. Moreover, for A,B ⊂ X,
A,B 6= ∅, we define

dist(A,B) = inf{%(x, y) : x ∈ A, y ∈ B}.
As usual, R stands for the set of all reals and N for the set of all positive

integers. Moreover set R+ = [0,∞).
We denote by B(X) the σ-algebra of Borel subsets of X and by M the

family of all finite Borel measures on X. Moreover, M1 denotes the family
of all µ ∈ M such that µ(X) = 1, and Ms = {µ1 − µ2 : µ1, µ2 ∈ M} is the
space of all finite signed measures.

Finally, B(X) stands for the space of all bounded Borel measurable func-
tions f : X → R and C(X) for the subspace of B(X) of all bounded contin-
uous functions. In both spaces the norm is given by the formula

‖f‖0 = sup
x∈X
|f(x)|.

For f ∈ B(X) and ν ∈ Ms we write

〈f, ν〉 =
�

X

f(x) ν(dx).

We say that a sequence (µn)n≥1 ⊂M converges weakly to a measure µ ∈M
if limn→∞〈f, µn〉 = 〈f, µ〉 for every f ∈ C(X).

We endow Ms with the Fortet–Mourier norm (see [11]) given by

‖ν‖ = sup{|〈f, ν〉| : f ∈ F},
where F is the set of all functions f ∈ C(X) such that ‖f‖0 ≤ 1 and
|f(x)− f(y)| ≤ %(x, y) for x, y ∈ X. It is known that the convergence

lim
n→∞

‖µn − µ‖ = 0 for µn, µ ∈ M1

is equivalent to the weak convergence of the sequence (µn)n≥1 to µ (see [7]).
An operator P :M→M is called a Markov operator if

P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2Pµ2 for λ1, λ2 ∈ R+ and µ1, µ2 ∈ M
and

Pµ(X) = µ(X) for µ ∈ M.

A measure µ is called stationary (or invariant) with respect to the op-
erator P if Pµ = µ. A Markov operator P is called asymptotically stable if
there exists an invariant probability measure µ∗ such that

lim
n→∞

‖Pnµ− µ∗‖ = 0 for µ ∈M1.

Clearly, the stationary measure is unique if P is asymptotically stable.
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Let µ ∈ M1. For given ε > 0 and C ⊂ X we denote by NC(ε) the
minimal number of ε-balls needed to cover the set C. Further, for ε, η > 0
we define

N(ε, η) = inf{NC(ε) : C ⊂ X and µ(C) > 1− η}.
Then the quantities

Cap
L

(µ) = sup
η>0

lim inf
ε→0

logN(ε, η)
− log ε

and

CapL(µ) = sup
η>0

lim sup
ε→0

logN(ε, η)
− log ε

are called the lower and upper capacity of µ, respectively.
The above definitions were introduced by Ledrappier (see [17, 22, 25])

and are closely related to Kolmogorov dimensions.

Remark 2.1. In the definitions of the lower and upper capacity we can
replace the continuous variable ε by a decreasing sequence (εn)n≥1 with
log εn+1/log εn → 1.

Assume now we are given a sequence of continuous transformations

Si : X → X for i = 1, . . . , N

and a probability vector

pi : X → [0, 1] for i = 1, . . . , N,

where the pi are continuous functions satisfying

pi(x) > 0 and
N∑

i=1

pi(x) = 1 for x ∈ X.

Such a system is denoted by (S, p)N and called an iterated function system
(briefly IFS ).

Having an IFS (S, p)N we define the corresponding Markov operator
P :M→M by

(2.1) Pµ(A) =
N∑

i=1

�

S−1
i (A)

pi(x)µ(dx) for A ∈ B(X)

and its dual operator U : B(X)→ B(X) by

(2.2) Uf(x) =
N∑

i=1

pi(x)f(Si(x)).
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We say that an IFS (S, p)N is asymptotically stable if the corresponding
Markov operator P is asymptotically stable. A measure µ∗ ∈ M is called in-
variant for the IFS (S, p)N if it is invariant with respect to the corresponding
Markov operator P .

We assume that Si : X → X, i = 1, . . . , N , are bi-lipschitzean transfor-
mations, i.e. there exist constants li, Li > 0 such that

(2.3) li%(x, y) ≤ %(Si(x), Si(y)) ≤ Li%(x, y) for x, y ∈ X.
Throughout this paper l1, . . . , lN and L1, . . . , LN always stand for the con-
stants satisfying (2.3). Moreover, we assume that

Γ0 = sup
x∈X

N∏

i=1

L
pi(x)
i < 1,(2.4)

α0 = min
1≤i≤N

inf
x∈X

pi(x) > 0,(2.5)

N∑

i=1

|pi(x)− pi(y)| ≤ ω(%(x, y)) for x, y ∈ X,(2.6)

where ω : R+ → R+ is a nondecreasing concave function satisfying the Dini
condition

(2.7)
η�

0

ω(t)
t

dt <∞ for some η > 0.

The following constants will play a crucial role:

∆0 = sup
x∈X

N∏

i=1

pi(x)pi(x),(2.8)

δ0 = inf
x∈X

N∏

i=1

pi(x)pi(x),(2.9)

γ0 = inf
x∈X

N∏

i=1

l
pi(x)
i .(2.10)

Obviously ∆0, δ0, γ0 ∈ (0, 1).
We say that a family of transformations S1, . . . , SN satisfies the strong

Moran condition (see [19]) if there exists a bounded closed subset F of X
and a constant σ > 0 such that

(2.11)
N⋃

i=1

Si(F ) ⊂ F,

(2.12) dist(Si(F ), Sj(F )) ≥ σ for i 6= j.
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Proposition 2.1. If an IFS (S, p)N satisfies conditions (2.3)–(2.7),
then it is asymptotically stable.

Proof. See [23].

Let Ω = {1, . . . , N}∞ = {(i1, i2, . . .) : ik ∈ {1, . . . , N} for every k ∈ N}
and Ω∗ =

⋃∞
n=1Ωn, where Ωn = {1, . . . , N}n. Observe that Ω∗ (resp.

Ω) is the space of all finite (resp. infinite) sequences of elements ik ∈
{1, . . . , N}. For k ∈ N we set Ω≤k =

⋃k
n=1Ωn and Ω≥k =

⋃∞
n=k Ωn. For

i = (i1, . . . , in) ∈ Ω∗ let |i| = n denote the length of i. If i ∈ Ω we assume
that |i| =∞. For i ∈ Ω ∪Ω∗ and m ∈ N, m ≤ |i|, we set i|m = (i1, . . . , im).
We say that i < j with i ∈ Ω∗ and j ∈ Ω ∪Ω∗ if |j| > n and j|n = i, where
n = |i|. Finally, for i = (i1, . . . , in) ∈ Ω∗, we write i−1 = (in, . . . , i1).

A subset Λ ⊂ Ω is called a cylinder if there exists i = (i1, . . . , in) ∈ Ω∗
such that

Λ = Λ(i) = {j ∈ Ω : j|n = i}.
We denote by A the σ-algebra of subsets of Ω which is generated by such
cylinders.

Given an IFS (S, p)N and a point x ∈ X we denote by Px the probability
measure on A defined on the cylinder Λ(i), i = (i1, . . . , in) ∈ Ω∗, by the
formula

(2.13) Px(Λ(i)) = pi1(x)pi2(Si1(x)) . . . pin(Sin−1 ◦ . . . ◦ Si1(x)).

It is clear that the above formula defines the unique probability measure
for realization of the Markov process starting from the point x for the given
IFS (S, p)N (see [2]).

For convenience, in what follows we write Px(i) instead of Px(Λ(i)) and
Px(A) instead of Px(Λ(A)), where A ⊂ Ω∗ and Λ(A) =

⋃
i∈A Λ(i). Moreover,

for i ∈ Ωn we write
Si = Sin ◦ . . . ◦ Si1 .

Proposition 2.2. For every i = (i1, . . . , in) ∈ Ω∗, we have

(2.14) Px(i) = pi1(x)PSi1 (x)((i2, . . . , in)),

(2.15) Px(i) = pin(Sin−1 ◦ . . . ◦ S1(x))Px((i1, . . . , in−1)),

(2.16)
N∑

i=1

Px((i, i)) = Px(i),

(2.17) Px(i|k) ≥ Px(i|m) if k ≤ m ≤ n.
Proof. Follows immediately from the definition of Px.

3. Auxiliary results. Throughout this section we assume that an IFS
(S, p)N is given and Px is the corresponding probability measure on Ω given
by (2.13). Using a standard martingale argument we prove the following
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Lemma 3.1. Assume that an IFS (S, p)N satisfies conditions (2.3)–(2.7).
Let fi : X → R+, i = 1, . . . , N , be bounded continuous functions such that

min
1≤i≤N

inf
x∈X

fi(x) > 0.

Then for every x ∈ X there exists a measurable set Ωx ⊂ Ω with Px(Ωx) = 1
such that , for all (i1, i2, . . .) ∈ Ωx,

lim sup
n→∞

1
n

log(fi1(x)fi2(Si1(x)) . . . fin(Sin−1 ◦ . . . ◦ Si1(x))) ≤ log∆,(3.1)

lim inf
n→∞

1
n

log(fi1(x)fi2(Si1(x)) . . . fin(Sin−1 ◦ . . . ◦ Si1(x))) ≥ log δ(3.2)

where

∆ = sup
x∈X

N∏

i=1

fi(x)pi(x),(3.3)

δ = inf
x∈X

N∏

i=1

fi(x)pi(x).(3.4)

Proof. To prove (3.1), fix x ∈ X and for each n ∈ N define Xn : Ω → R
by

Xn(i) = log(fin(Sin−1 ◦ . . . ◦ Si1(x))).

For i = (i1, . . . , in) ∈ Ω∗, we denote by A(i) the σ-algebra generated by the
cylinders {Λ(j) : j ∈ Ω∗, j ≥ i}. Moreover, let Ex denote the expectation
with respect to the probability measure Px on Ω.

Fix i = (i1, i2, . . .) ∈ Ω. We have

Ex(Xn | A(i1, . . . , in−1)) =
N∑

i=1

pi(Sin−1 ◦ . . . ◦ Si1(x))Xn((i1, . . . , in−1, i)).

By (3.3) we have
N∑

i=1

pi(Sin−1 ◦ . . . ◦ Si1(x)) log(fi(Sin−1 ◦ . . . ◦ Si1(x))) ≤ log∆.

Now let Yn = Xn − Ex(Xn | A(i1, . . . , in−1)). Then

|Yn(i)| ≤ 2 sup
i∈Ω
|Xn(i)| Px-a.s.

Write
M = 2 sup

i∈Ω
|Xn(i)| <∞.

Define

Zn =
n∑

k=1

Yk
k

for n ∈ N.
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It is easy to see that (Zn)n≥1 is a martingale. Since Yk and Yl for k 6= l are
mutually orthogonal, we have

Ex(Z2
n) ≤M2

∞∑

k=1

1
k2 .

Hence (Zn)n≥1 is an L2-bounded martingale, and so (Zn)n≥1 is convergent
a.s. Then by Kronecker’s lemma (see [7])

lim
n→∞

1
n

n∑

k=1

Yk = 0 Px-a.s.

Thus

lim sup
n→∞

1
n

∞∑

k=1

Xk − log∆ ≤ 0 Px-a.s.,

whence (3.1) follows immediately.
Replacing fi with 1/fi and using the same argument gives (3.2).

A finite set L ⊂ Ω∗ is called fundamental for the IFS (S, p)N if

(3.5)
∑

i∈L
Px(i) = 1 for every x ∈ X

and there are no i, j ∈ L such that i < j. Set

|L| = max{|i| : i ∈ L}.
Lemma 3.2. Let L ⊂ Ω∗ be a fundamental set for the IFS (S, p)N . If

i = (i1, . . . , in) ∈ L and n = |L|, then (i1, . . . , in−1, i) ∈ L for every i ∈
{1, . . . , N}.

Proof. First observe that Λ(i) ∩ Λ(j) = ∅ for every i, j ∈ L, i 6= j.
Now, suppose for a contradiction that there is i = (i1, . . . , in) ∈ L such
that (i1, . . . , in−1, i) 6∈ L for some i ∈ {1, . . . , N}. It is easy to verify that
Λ(i1, . . . , in−1, i)∩Λ(j) = ∅ for every j ∈ L. Since Px is a probability measure
and Px(i) > 0 for every i ∈ Ω∗, we have

∑

i∈L
Px(i) ≤ 1− Px((i1, . . . , in−1, i)) < 1,

which contradicts (3.5).

Remark 3.1. Note that for every n ∈ N there exists a fundamental set
L for (S, p)N such that L ⊂ Ω≤n.

Lemma 3.3. Assume that an IFS (S, p)N satisfies conditions (2.3)–(2.7).
Let µ∗ ∈ M1 be its unique invariant measure. Then for every fundamental
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set L ⊂ Ω∗ we have

(3.6) µ∗(A) =
∑

i∈L

�

X

Px(i−1)1A(Si−1(x))µ∗(dx) for A ∈ B(X).

Proof. We use induction on n, where L ⊂ Ω≤n.
Suppose first that L ⊂ Ω1. Since pi(x) > 0 for x ∈ X and i = 1, . . . , N ,

it follows immediately that L = {1, . . . , N} and (3.6) is obviously satisfied.
Now suppose that (3.6) holds for every L ⊂ Ω≤n, and take L ⊂ Ω≤n+1.

Using the invariance of µ∗ and (2.2), for f ∈ B(X) we have
�

X

f(x)µ∗(dx) =
�

X

f(x)Pµ∗(dx) =
�

X

Uf(x)µ∗(dx)(3.7)

=
N∑

i=1

�

X

pi(x)f(Si(x))µ∗(dx).

Set

(3.8) Ln+1 = {i ∈ L : |i| = n+ 1}, Lnn+1 = {i|n : i ∈ Ln+1}.
We assume that Ln+1 6= ∅ (otherwise there is nothing to prove). Let
A ∈ B(X). Using in succession Lemma 3.2, formula (2.14) and (3.7) we have

(3.9)
∑

i∈Ln+1

�

X

Px(i−1)1A(Si−1(x))µ∗(dx)

=
∑

j∈Lnn+1

N∑

i=1

�

X

Px((j, i)−1)1A(S(j,i)−1(x))µ∗(dx)

=
∑

j∈Lnn+1

N∑

i=1

�

X

pi(x)PSi(x)(j
−1)1A(Sj−1(Si(x)))µ∗(dx)

=
∑

j∈Lnn+1

�

X

Px(j−1)1A(Sj−1(x))µ∗(dx).

Now setting L∗ = (L \ Ln+1) ∪ Lnn+1 and using (3.9) we obtain

(3.10)
∑

i∈L

�

X

Px(i−1)1A(Si−1(x))µ∗(dx)

=
∑

i∈Ln+1

�

X

Px(i−1)1A(Si−1(x))µ∗(dx)

+
∑

i∈L\Ln+1

�

X

Px(i−1)1A(Si−1(x))µ∗(dx)

=
∑

i∈L∗

�

X

Px(i−1)1A(Si−1(x))µ∗(dx).
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Clearly L∗ is fundamental and L∗ ⊂ Ω≤n. Now apply the induction hy-
pothesis.

Let Li, i = 1, . . . , N , be Lipschitz constants of Si and let Γ0 be given
by (2.4). For i = (i1, . . . , ik) ∈ Ω∗, we write

(3.11) Li = Li1 . . . Lik .

For Γ > Γ0 and n0, n ∈ N, n ≥ n0 we define

(3.12) Qnn0
(Γ ) = {i ∈ Ω≥n : Li|k ≤ Γ k for n0 ≤ k ≤ n}.

Lemma 3.4. Let F be a bounded subset of X. Then for every Γ ∈ (Γ0, 1)
and n0 ∈ N there exists α > 0 such that

Px(i) ≥ αPy(i) for all i ∈ Qnn0
(Γ ) ∩Ωn, n ≥ n0 and x, y ∈ F.

Proof. Fix Γ ∈ (Γ0, 1) and let d = diamF . Let ω be as in (2.6), (2.7).
Set

ω0 =
∞∑

k=1

ω(Γ kd).

Clearly ω0 <∞. Fix n0 ∈ N. Let n ≥ n0 and x, y ∈ F . For i ∈ Qnn0
(Γ )∩Ωn

we have

Py(i) = pi1(y)pi2(Si1(y)) . . . pin(Sin−1 . . . Si1(y))

=
pi1(y) . . . pin0

(Sin0−1 ◦ . . . ◦ Si1(y))

pi1(x) . . . pin0
(Sin0−1 ◦ . . . ◦ Si1(x))

× pi1(x) . . . pin0
(Sin0−1 ◦ . . . ◦ Si1(x))

×
n∏

k=n0+1

[(
1 +

pik(Sik−1 ◦ . . . ◦Si1(y))− pik(Sik−1 ◦ . . . ◦Si1(x))
pik(Sik−1 ◦ . . . ◦ Si1(x))

)

× pik(Sik−1 ◦ . . . ◦ Si1(x))
]
.

Using the inequality pi(x) ≥ α0, conditions (2.6), (2.3) and definition (3.12)
we obtain

Py(i) ≤ (1− α0)n0

αn0
0

×
n∏

k=n0+1

(
1 +

ω(%(Sik−1 ◦ . . . ◦Si1(x), Sik−1 ◦ . . . ◦ Si1(y)))
α0

)
Px(i)

≤
(

1− α0

α0

)n0 n∏

k=n0+1

(
1 +

ω(Γ k−1d)
α0

)
Px(i).
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Consequently,

Py(i) ≤
(

1− α0

α0

)n0 ∞∏

k=n0+1

eω(Γk−1d)/α0Px(i) =
(

1− α0

α0

)n0

eω0/α0Px(i).

Setting α = αn0
0 (1− α0)−n0e−ω0/α0 we complete the proof.

From now on assume that the constants li ∈ (0, 1), i = 1, . . . , N , sat-
isfy (2.3). Let γ0 be given by (2.10). For γ ∈ (0, γ0) and n ∈ N define

Jn(γ) = {i ∈ {1, . . . , N} : li ≤ γn} ∪ {i ∈ Ω∗ : |i| > 1 and li ≤ γn < li||i|−1},
where li is given by (3.11).

Lemma 3.5. For every γ ∈ (0, γ0) and n ∈ N the set Jn(γ) is funda-
mental for (S, p)N .

Proof. Fix γ ∈ (0, γ0) and n ∈ N. It is easy to verify that Jn(γ) ⊂ Ω≤m,
where m is the least integer such that (max1≤i≤N li)m ≤ γn. Consequently,
Jn(γ) is finite. Moreover, from the definition of Jn(γ) it follows that if i ∈
Jn(γ), j ∈ Ω∗ and j > i, then j 6∈ Jn(γ). This implies that

(3.13) Λ(i) ∩ Λ(j) = ∅ for i, j ∈ Jn(γ), i 6= j.

Finally, observe that for every i ∈ Ω there is k ∈ N such that i|k ∈ Jn(γ).
Consequently,

(3.14) Ω =
⋃

i∈Jn(γ)

Λ(i).

By (3.13) and (3.14) for all x ∈ X we have
∑

i∈Jn(γ)

Px(i) = Px
( ⋃

i∈Jn(γ)

Λ(i)
)

= Px(Ω) = 1.

Lemma 3.6. Assume that a family S1, . . . , SN satisfies the strong Moran
condition and condition (2.3) with li ∈ (0, 1). Then for every γ ∈ (0, γ0),
n ∈ N and i, j ∈ Jn(γ), i 6= j, we have

(3.15) dist(Si−1(F ), Sj−1(F )) ≥ γnσ,
where the set F and the constant σ satisfy (2.11), (2.12).

Proof. Fix γ ∈ (0, γ0), n ∈ N and i, j ∈ Jn(γ), i 6= j. Suppose i =
(i1, . . . , ip) and j = (j1, . . . , jq). Since Jn(γ) is fundamental, there exists
an integer m ≤ min{p, q} such that im 6= jm, but ik = jk for k < m.
From the strong Moran condition it follows immediately that Si−1(F ) ⊂
Si1 ◦. . .◦Sim(F ), Sj−1(F ) ⊂ Sj1 ◦. . .◦Sjm(F ) and dist(Sim(F ), Sjm(F )) ≥ σ.
Consequently,

dist(Si−1(F ), Sj−1(F )) ≥ dist(Si1 ◦ . . . ◦ Sim(F ), Sj1 ◦ . . . ◦ Sjm(F ))

≥ li1 . . . lim−1σ ≥ γnσ.
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Lemma 3.7. Assume that an IFS (S, pN ) satisfies (2.3) with li ∈ (0, 1),
i = 1, . . . , N . Let γ0 be given by (2.10). Then for every γ ∈ (0, γ0) there is
β > 0 such that

∑

i∈J∗n(γ)

Px(i) ≥ β for every x ∈ X,

where

(3.16) J∗n(γ) = {i ∈ Jn(γ) : i−1 ∈ Jn(γ)}.

Proof. Without any loss of generality we can assume that

l1 ≤ li ≤ lN for i = 1, . . . , N.

Observe that if i = (i1, . . . , ik) ∈ Jn(γ) and ik = N then i−1 ∈ Jn(γ).
Moreover, for every i = (i1, . . . , ik) ∈ Jn(γ) there exists a unique element

(3.17) τ(i) = (i1, . . . , ik−1, N, . . . , N)

which belongs to Jn(γ). In this way formula (3.17) defines a one-to-one map
from Jn(γ) into Jn(γ). Note also that

(3.18) (τ(i))−1 ∈ Jn(γ) for every i ∈ Jn(γ).

Fix i = (i1, . . . , ik) ∈ Jn(γ) and let m0 be such that lm0
N ≤ l1. Since

li ≤ γn and l1 ≤ li for i = 1, . . . , N , we have

|τ(i)| ≤ |i| − 1 +m0,

which means that in (3.17) the number N appears at most m0 times. Now
it is easy to see that for every i ∈ Jn(γ),

(3.19) card{j ∈ Jn(γ) : τ(j) = τ(i)} ≤ Nm0

(card stands for cardinality). By (3.17), (2.15) and (2.17) for every x ∈ X
we have

Px(τ(i)) = Px(i1, . . . , ik−1, N, . . . , N)(3.20)

≥ Px(i1, . . . , ik−1)αm0
0 ≥ Px(i)αm0

0 ,

where α0 is given by (2.5). By Lemma 3.5 and (3.5), (3.20) and (3.19) we
have

1 =
∑

i∈Jn(γ)

Px(i) ≤ α−m0
0

∑

i∈Jn(γ)

Px(τ(i)) ≤ Nm0α−m0
0

∑

i∈J∗n(γ)

Px(i).

Setting β = (α0/N)m0 completes the proof.
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4. Upper estimate of capacity

Theorem 4.1. Assume that an IFS (S, p)N satisfies (2.3)–(2.7) and let
µ∗ ∈M1 be the corresponding invariant measure. Then

(4.1) CapL(µ∗) ≤
log δ0

logΓ0
,

where Γ0 and δ0 are given by (2.4) and (2.9), respectively.

Proof. Fix η > 0. Let µ∗ be the unique invariant probability measure
for the IFS (S, p)N and let K be a compact subset of X such that µ∗(K) ≥
1− η/4. Set d = diamK. Fix x0 ∈ K. By Lemma 3.1 (with Li and pi(x) in
place of fi(x) and Γ0 and δ0 in place of ∆ and δ, respectively) there exists
a measurable set Ω0 ⊂ Ω with Px0(Ω0) = 1 such that, for all i ∈ Ω0,

lim sup
n→∞

1
n

log(Li|n) ≤ logΓ0,(4.2)

lim inf
n→∞

1
n

log(Px0(i|n)) ≥ log δ0,(4.3)

where Li|n = Li1 . . . Lin . By Lemma 3 of [8] the measure Px, x ∈ X, is
absolutely continuous with respect to Px0 . Thus Px(Ω0) = 1 for x ∈ X.

Choose Γ ∈ (Γ0, 1), δ ∈ (0, δ0) and define the sequence (Ω0(n))n≥1 of
measurable subsets of Ω0 by

Ω0(n) = {i ∈ Ω0 : Px0(i|k) ≥ δk and Li|k ≤ Γ k for k ≥ n}.
Obviously Ω0(n) ⊂ Ω0(n+1) for n ∈ N. Moreover, from (4.2), (4.3) and the
choice of Γ and δ it follows that Ω0 =

⋃∞
n=1Ω0(n). Consequently,

(4.4) lim
n→∞

Px(Ω0(n)) = 1 for x ∈ X.

By Lemma 4.1 of [24] the function x 7→ Px(Ω0(n)) is Borel measurable for
each n ∈ N. By (4.4) the sequence (Px(Ω0(n)))n≥1 is a.s. convergent and so
convergent with respect to the measure µ∗. Hence there exists n0 ∈ N such
that

(4.5) µ∗({x ∈ K : Px(Ω0(n)) > 1− η/2}) ≥ 1− η/2 for n ≥ n0.

By the invariance of µ∗, for all n ∈ N and A ∈ B(X) we have

(4.6) µ∗(A) = Pnµ∗(A) =
∑

i∈Ωn

�

X

Px(i)1A(Si(x))µ∗(dx).

Now, for n ∈ N define

Dn =
⋃

i∈Ωn0 (n)

B(Si(x0), εn),

where
Ωn0 (n) = {i|n : i ∈ Ω0(n)} and εn = Γn diamK.
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Observe that

(4.7) %(Si(x), Si(x0)) ≤ εn for i ∈ Ωn0 (n) and x ∈ K.
Using (4.5)–(4.7) and the inclusion Ω0(n) ⊂ Λ(Ωn0 (n))), for every n ≥ n0

we have

µ∗(Dn) =
∑

i∈Ωn

�

X

Px(i)1Dn(Si(x))µ∗(dx)

≥
∑

i∈Ωn0 (n)

�

X

Px(i)1Dn(Si(x))µ∗(dx)

≥
�

K

∑

i∈Ωn0 (n)

Px(i)µ∗(dx) =
�

K

Px(Ωn0 (n))µ∗(dx)

≥
�

K

Px(Ω0(n))µ∗(dx) ≥ (1− η/2)(1− η/2) > 1− η.

From this inequality and the definition of Dn it follows that N(εn, η) ≤ N0,
where N0 = cardΩn0 (n) and N(εn, η) comes from the definition of capacity.
Since Px0(i) ≥ δn for i ∈ Ωn0 (n) and

∑
i∈Ωn0 (n) Px0(i) ≤ 1, we have N0δ

n ≤ 1.
Consequently, N(εn, η) ≤ δ−n. By Remark 2.1 we now have

lim sup
ε→0

logN(ε, η)
− log ε

= lim sup
n→∞

logN(εn, η)
− log εn

≤ lim sup
n→∞

log δ−n

− log(Γn diamK)
=

log δ
logΓ

.

Letting δ → δ0 and Γ → Γ0 we conclude that

lim sup
ε→0

logN(ε, η)
− log ε

≤ log δ0

logΓ0
.

Since η > 0 was arbitrary, the proof is complete.

5. Lower estimate of capacity

Theorem 5.1. Assume that an IFS (S, p)N satisfies (2.3)–(2.7) and
µ∗ ∈M1 is the corresponding unique invariant measure. Moreover , assume
that the functions S1, . . . , SN satisfy the strong Moran condition. Then

(5.1) Cap
L

(µ∗) ≥
log∆0

log γ0
,

where ∆0 and γ0 are given by (2.8) and (2.9), respectively.

Proof. Consider first the case li < 1, i = 1, . . . , N , where the li sat-
isfy (2.3). Let F be a closed set satisfying (2.11) and (2.12). Since F is in-
variant for S1, . . . , SN , we have suppµ∗ ⊂ F . Choose x0 ∈ F . By Lemma 3.1
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(with pi and ∆0 or Li and Γ0 in place of fi and ∆, and li and γ in place of
fi and γ0, respectively) we have

lim sup
n→∞

1
n

log(Px0(i|n)) ≤ log∆0 Px0-a.s.,(5.2)

lim sup
n→∞

1
n

log(Li|n) ≤ logΓ0 Px0-a.s.,(5.3)

lim inf
n→∞

1
n

log(li|n) ≥ log γ0 Px0-a.s.(5.4)

Fix γ ∈ (0, γ0), Γ ∈ (Γ0, 1) and ∆ ∈ (∆0, 1). Let n0 ∈ N and let α be as
in Lemma 3.4. By (5.2)–(5.4) there exists n1 ≥ n0 such that

Px0({i ∈ Ω : Px0(i|n) ≤ ∆n for n ≥ n1}) ≥ 1− β/6,(5.5)

Px0({i ∈ Ω : Li|n ≤ Γn for n ≥ n1}) ≥ 1− β/6,(5.6)

Px0({i ∈ Ω : li|n ≥ γn for n ≥ n1}) ≥ 1− β/6,(5.7)

where β is as in Lemma 3.7. Now choose n∗ ∈ N such that

(5.8) min{|i| : i ∈ Jn(γ)} ≥ n1 for n ≥ n∗.
For n ≥ n∗ define

J0
n(γ) = {i ∈ Jn(γ) : Px0(i−1|k) ≤ ∆k, Li−1|k ≤ Γ k

and li−1|k ≥ γk for k ∈ N, n1 ≤ k ≤ |i|}.
By (5.5)–(5.8) and Lemma 3.7 we have

(5.9)
∑

i∈J0
n(γ)

Px0(i−1) ≥ β/2 for n ≥ n1.

Since i−1 ∈ Qnn1
(γ) for i ∈ J0

n(γ), Lemma 3.4 yields

(5.10) α−1Px0(i−1) ≥ Px(i−1) ≥ αPx0(i−1) for i ∈ J0
n(γ) and x ∈ F.

From (5.9) and (5.10) it follows that
∑

i∈J0
n(γ)

Px(i−1) ≥ αβ/2,(5.11)

Px(i−1) ≤ α−1∆|i|,(5.12)

for all n ≥ n∗, x ∈ F and i ∈ J0
n(γ). Since for i ∈ J0

n(γ) we have li ≤ γn and
li−1|k ≥ γk for n1 ≤ k ≤ |i|, it follows that |i| ≥ n. Hence

(5.13) Px(i−1) ≤ α−1∆n for i ∈ J0
n(γ).

For n ≥ n∗ define

(5.14) Dn =
⋃

i∈J0
n(γ)

Si−1(F ).
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Since by Lemma 3.5 the set Jn(γ) is fundamental, Lemma 3.3 and (5.11)
show that

µ∗(Dn) =
∑

i∈Jn(γ)

�

X

Px(i−1)1Dn(Si−1(x))µ∗(dx)(5.15)

≥
�

F

∑

i∈J0
n(γ)

Px(i−1)1Dn(Si−1(x))µ∗(dx)

=
�

F

∑

i∈J0
n(γ)

Px(i−1)µ∗(dx) ≥ αβ/2

for n ≥ n∗.
By Lemmas 3.3, 3.5 and 3.6, the inclusion suppµ∗ ⊂ F and inequal-

ity (5.13), for every j ∈ J0
n(γ) and n ≥ n∗, we have

µ∗(Sj−1(F )) =
∑

i∈Jn(γ)

�

X

Px(i−1)1Sj−1 (F )(Si−1(x))µ∗(dx)

=
∑

i∈J0
n(γ)

�

F

Px(i−1)1Sj−1 (F )(Si−1(x))µ∗(dx)

=
�

F

Px(j−1)µ∗(dx) ≤ ∆n/α,

since Si−1(F ) ∩ Sj−1(F ) = ∅ for i 6= j, i, j ∈ J0
n(γ). Define εn = γnσ/2 for

n ≥ n∗, where σ > 0 is given by (2.12). By (3.15) every ball B with radius
εn meets at most one set Si−1(F ) for i ∈ J0

n(γ). The inclusion suppµ∗ ⊂⋃
i∈Jn(r) Si−1(F ) then implies that to cover a set of µ∗-measure greater than

or equal to 1− η (with η ≤ αβ/2) we need at least α(1− η)∆−n balls with
radius εn. Thus N(εn, η) ≥ α(1− η)∆−n for n ≥ n∗. Consequently,

lim inf
ε→0

logN(ε, η)
− log ε

≥ lim inf
n→∞

log(α(1− η)∆−n)
− log εn

=
log∆
log γ

.

Thus

Cap
L

(µ∗) ≥
log∆
log γ

and letting ∆→ ∆0 and γ → γ0 we conclude that

Cap
L

(µ∗) ≥
log∆0

log γ0
.

Suppose now that some of the li’s are equal to 1. Choose li < li, i =
1, . . . , N . Since

sup
x∈X

N∏

i=1

l
pi(x)
i → sup

x∈X

N∏

i=1

l
pi(x)
i

as li → li for i ∈ {1, . . . , N}, the statement of Theorem 5.1 follows.
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H. Poincaré 24 (1988), 367–394.

[3] M. Barnsley, J. Elton and D. Hardin, Recurrent iterated function systems, Constr.
Approx. 5 (1989), 3–31.

[4] T. Bedford, Dimension and dynamics for fractal recurrent sets, J. London Math.
Soc. 33 (1986), 98–100.

[5] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic
Theory Dynam. Systems 10 (1990), 451–462.

[6] P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev. 41 (1999),
45–76.

[7] R. M. Dudley, Probabilities and Metrics, Aarhus Univ., Aarhus, 1976.
[8] J. H. Elton, An ergodic theorem for iterated maps, Ergodic Theory Dynam. Systems

7 (1987), 481–488.
[9] S. Ethier and T. Kurtz, Markov Processes, Wiley, New York, 1986.

[10] W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New
York, 1981.

[11] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition
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Révisé le 19.3.2001 et 5.7.2001 (1224)


