Borel methods of summability and ergodic theorems

by Ryszard Jajte (Łódź)

Abstract. Passing from Cesàro means to Borel-type methods of summability we prove some ergodic theorem for operators (acting in a Banach space) with spectrum contained in $\mathbb{C} \setminus (1, \infty)$.

1. Introduction. Let X be a Banach space. Denote by B(X) the algebra of bounded linear operators acting in X. Take $u \in B(X)$. If the Cesàro averages

$$n^{-1}\sum_{k=0}^{n-1}u^k$$

converge, say, weakly then the spectrum of u is necessarily contained in the unit disc $\{|z| \leq 1\}$. Passing from the Cesàro means to the Borel-type methods of summability [4], [5] one can extend the ergodic theorems to the case of operators u with the spectrum $\sigma(u)$ contained in the Mittag-Leffler star for $z \mapsto (1-z)^{-1}$, i.e. with $\sigma(u) \subset \mathbb{C} \setminus (1, \infty)$. A discussion of such possibilities is the main goal of the paper.

Let us begin with some notation and definitions. For $\alpha > 0$ and a sequence $x = (\xi_n)$ of numbers (or vectors), put

(1)
$$B_{\alpha}(t,x) = \alpha e^{-t} \sum_{n=0}^{\infty} \frac{t^{n\alpha}}{\Gamma(n\alpha+1)} \xi_n, \quad t > 0.$$

The function $B_{\alpha}(t,x)$ is called the B_{α} -transform of the sequence $x = (\xi_n)$. If $\lim_{t\to\infty} B_{\alpha}(t,x) = \xi$, then we say that (ξ_n) is summable to ξ by the method B_{α} , and write $\xi_n \to \xi(B_{\alpha})$, or B_{α} -lim_{n\to\infty} \xi_n = \xi. The family of methods $\{B_{\alpha} : \alpha > 0\}$ is consistent, i.e. for every $\alpha', \alpha'' > 0$, $B_{\alpha'}$ -lim $\xi_n = \xi$ and $B_{\alpha''}$ -lim $\xi_n = \eta$ implies $\xi = \eta$ (cf. [5]). For our purposes it will be enough to take $\alpha = 2^{-k}, k = 0, 1, \ldots$, so in what follows we consider only the family $\mathcal{B} = \{B_{2^{-k}} : k = 0, 1, \ldots\}$. By the consistency just mentioned the family \mathcal{B}

²⁰⁰⁰ Mathematics Subject Classification: 47A35, 60F15.

Key words and phrases: summability method, ergodic theorem.

may be treated as a \mathcal{B} -method of summability: a sequence x is \mathcal{B} -summable when it is $B_{2^{-k}}$ -summable for some $k \in \mathbb{N}$. Borel methods of summability are *right-translative*, i.e. the B_{α} -summability of $x = (\xi_0, \xi_1, \ldots)$ implies the B_{α} -summability of $x^- = (0, \xi_0, \xi_1, \ldots)$. Notice that the B_{α} -method is not *left-translative*, i.e. the B_{α} -summability of x does not imply, in general, the B_{α} -summability of $x^+ = (\xi_1, \xi_2, \ldots)$ (cf. [5]).

Before formulating the main results let us start with the following lemma.

2. LEMMA. Fix $\alpha = 2^{-k}$ and 0 < d < 1. Put

$$D_{\alpha,d} = \{ z \in \mathbb{C} : \operatorname{Re} z \le 0 \} \cup \{ z \in \mathbb{C} : \operatorname{Re} z^{1/\alpha} \le 1 - d \}$$

Let Δ be a bounded Borel subset of $D_{\alpha,d}$. Here and elsewhere let $\zeta = (z^n)$. Then, for t > 0 and $z \in \Delta$,

(2)
$$|B_{\alpha}(t,\zeta)| \le Ce^{-dt/2},$$

for some constant C depending only on Δ .

Proof. A crucial point in the proof is a suitable representation of the Mittag-Leffler function

$$E_{\alpha}(w) = \sum_{n=0}^{\infty} \frac{w^n}{\Gamma(n\alpha+1)}, \quad \alpha > 0, \quad \text{for } w = t^{\alpha} z.$$

We follow Włodarski [5]. Let us remark that, for a fixed $\alpha = 2^{-k}$, the function

(3)
$$f(t) = E_{\alpha}(t^{\alpha}z) = \sum_{n=0}^{\infty} \frac{t^{n\alpha}}{\Gamma(n\alpha+1)} z^{n}$$

(as a function of t > 0) satisfies the differential equation

$$f'(t) = g(t) + z^{2^k} f(t)$$
 with $g(t) = \sum_{\nu=1}^{2^k-1} \frac{t^{\nu 2^{-k}-1}}{\Gamma(\nu 2^{-k})} z^{\nu}.$

This is easy to check. Consequently, we have

$$f(t) = \exp(z^{2^{k}}t) \left[1 + \int_{0}^{t} \exp(-z^{2^{k}}u) \sum_{\nu=1}^{2^{k}-1} \frac{u^{\nu 2^{-k}-1}}{\Gamma(\nu 2^{-k})} z^{\nu} du \right].$$

The substitution $z^{2^k} = vt$ leads to the formula

(4)
$$\sum_{n=0}^{\infty} \frac{t^{n2^{-k}}}{\Gamma(n2^{-k}+1)} z^n = \exp(tz^{2^k}) \left[1 + \sum_{\nu=1}^{2^k-1} \alpha_{\nu}^{(k)}(z) \int_{[0,z^{2^k}t]} \frac{e^{-\nu}v^{\nu2^{-k}-1}}{\Gamma(\nu2^{-k})} dv \right],$$

where

$$\alpha_{\nu}^{(k)}(z) = \frac{z^{\nu}}{[x^{2^{k}\nu}]^{1/2^{k}}} = e^{i\theta_{\nu}^{(k)}(z)}.$$

The functions $\alpha_{\nu}^{(k)}(z)$ are determined by fixing the rational power $w \mapsto w^{1/2^k}$ as taking its values in the angle $\{z = re^{i\theta} : r \ge 0, -\pi/2^{k-1} < \theta \le \pi/2^{k-1}\}$. In particular, $\alpha_1^{(1)}(z) = -1$ for $\operatorname{Re} z < 0$, and $\alpha_{\nu}^{(k)}(1) = 1$ for $1 \le \nu \le 2^k - 1, k = 1, 2, \ldots$

For z = 1, the formula (4) gives

(5)
$$\sum_{n=0}^{\infty} \frac{t^{n2^{-k}}}{\Gamma(n2^{-k}+1)} = e^t \left[1 + \sum_{\nu=1}^{2^k-1} \frac{1}{\Gamma(\nu2^{-k})} \int_{[0,t]} e^{-u} u^{\nu2^{-k}-1} du \right]$$

(cf. [5], p. 144).

Put $Q = \{z \in \mathbb{C} : \operatorname{Re} z^{2^k} \le 1 - d\}.$

For $\operatorname{Re} z < 1$, t > 1 and $\beta > -1$, we have the inequality

(6)
$$\left| e^{t(z-1)} \int_{[0,zt]} u^{\beta} e^{-u} du \right| \le C |zt|^{\beta+1} \max(e^{-t}, e^{-t(1-\operatorname{Re} z)}).$$

We omit a rather standard proof.

Let $z \in \Delta \cap Q$, where Δ is a fixed bounded set. Then by (4) and (6), we get (2).

Now assume that $\operatorname{Re} z \leq 0$. Then, clearly,

(7)
$$B_1(t,\zeta) = e^{-t(1-z)}$$

so $|B_1(t,\zeta)| \le e^{-t}$.

Consider the following transformation W:

(8)
$$W(f)(t) = \frac{e^{-t}}{2\sqrt{\pi t}} \int_{0}^{\infty} \exp\left(-\frac{u^2}{4t} + u\right) f(u) \, du,$$

defined for continuous functions $f : (0, \infty) \to \mathbb{R}$ (cf. [5], p. 140). The transformation W is *regular* in the sense that $\lim_{n\to\infty} f(u) = \beta$ implies $\lim_{t\to\infty} W(f)(t) = \beta$. Moreover, we have

(9)
$$W(B_{2^{-k}}(\cdot, x))(t) = B_{2^{-(k+1)}}(t), \quad t > 0,$$

Applying to both sides of (7) the kth iteration of the transformation W defined in (8) and taking into account the positivity of W and (9) we easily get

$$|B_{2^{-k}}(t,\zeta)| \le Ce^{-t}$$
 for $\operatorname{Re} z \le 0$.

As an easy consequence of Lemma 2, we get the following result.

R. Jajte

3. THEOREM (Uniform ergodic theorem). Let $u \in B(X)$ with $\sigma(u) \subset \mathbb{C} \setminus (1, \infty)$. If $1 \notin \sigma(u)$ then there exists a $k \in \mathbb{N}$ such that

 $B_{2^{-k}}$ - $\lim_{n \to \infty} u^n = 0$ in the uniform operator topology.

If $1 \in \sigma(u) \subset \mathbb{C} \setminus (1, \infty)$ and 1 is a pole of u of order one, then

$$B_{2^{-k}}$$
- $\lim_{n \to \infty} u^n = \mathbb{E}\{1\}$ uniformly,

where $\mathbb{E}\{1\}$ denotes the spectral projection of u at $\{1\}$.

Proof. Suppose $1 \notin \sigma(u)$. Since $\sigma(u)$ is compact and $\sigma(u) \subset \mathbb{C} \setminus [1, \infty)$, there exist 0 < d < 1 and $k \in \mathbb{N}$ such that $\sigma(u) \subset D_{2^{-k},d} = \{\operatorname{Re} z \leq 0\}$ $\cup \{\operatorname{Re} z^{2^k} \leq 1 - d\}$. Let $R(\cdot, u)$ be the resolvent of u and, for $x = (u^n)$, $\zeta = (z^n)$, let

$$B_{2^{-k}}(t,x) = \frac{1}{2\pi i} \int_{K} B_{2^{-k}}(t,\zeta) R(z,u) \, dz$$

be a representation of the Borel transform $B_{2^{-k}}(t,x)$ as a Cauchy integral, i.e. K is the (oriented) boundary of an open set $V \supset \sigma(u)$; K consists of a finite number of rectifiable Jordan curves (cf. [3], p. 568). By Lemma 2 we easily get

$$||B_{2^{-k}}(t,x)|| \le Ce^{-dt/2}, \quad t > 1.$$

Now, let $1 \in \sigma(u) \subset \mathbb{C} \setminus (1, \infty)$. Then, putting

$$f_t(u) = B_{2^{-k}}(t, x), \quad x = (u^n),$$

we can write

$$f_t(u) = f_t(u)\mathbb{E}(\sigma(u) \setminus \{1\}) + B_{2^{-k}}(t, \mathbf{1})\mathbb{E}\{1\},$$

with $\mathbf{1} = (1, 1, \ldots)$, where, for a spectral set A of u, $\mathbb{E}(A)$ denotes the corresponding projection operator (cf. [3], p. 573). To conclude the proof it is enough to pass with t to infinity.

Taking discrete Borel methods, i.e. considering the transforms $B_{\alpha}(m, x)$ only for $m = 1, 2, \ldots$, we can easily prove the following theorem.

4. THEOREM (Individual ergodic theorem). Let $X = \mathbb{L}_p(\mu), p \ge 1$, and let $u \in B(X)$ with $\sigma(u) \subset \mathbb{C} \setminus (1, \infty)$. If $1 \notin \sigma(u)$ then there exists a $k \in \mathbb{N}$ such that

 $B_{2^{-k}} - \lim_{n \to \infty} u^n f = 0$ μ -almost everywhere, for every $f \in X$.

If $1 \in \sigma(u) \subset \mathbb{C} \setminus (1, \infty)$ and 1 is a pole of u of order one then, for every $f \in X$,

$$B_{2^{-k}} - \lim_{n \to \infty} u^n f = \mathbb{E}\{1\}f \quad \mu\text{-almost everywhere.}$$

178

Proof. The proof can be obtained as an easy modification of the previous argument. Namely, using the above estimates we get easily

$$\sum_{m=1}^{\infty} \|B_{2^{-k}}(m,x)f\|_{p}^{p} < \infty,$$

for every $f \in X$. The rest is trivial.

In the case $1 \in \sigma(u) \subset \mathbb{C} \setminus (1, \infty)$ and when 1 is not a simple pole one cannot expect the results as clear as the above theorems. The asymptotic behaviour of u heavily depends on its spectral properties near the value 1. The sequence (z^n) with z close to 1 is rather slowly divergent and Borel summability methods are efficient for rapidly divergent sequences (cf. [4]). It is worth noting here that for a sequence (X_n) of independent identically distributed random variables the limit B_1 -lim $X_n = \mathcal{E}X_1$ (expectation of X_1) exists almost everywhere if and only if $\mathcal{E}(X_1^2) < \infty$, so in the classical context of the Strong Law of Large Numbers, the Borel methods are *less* efficient than the Cesàro means (cf. [1], [2]).

Let X be again an arbitrary Banach space. For $u \in B(X)$, we say that (u^n) is strongly B_{α} -summable to P when B_{α} -lim_{$n\to\infty$} $u^n \xi = P\xi$ for every $\xi \in$ X. By the right-translativity of B_{α} , we then also have B_{α} -lim $u^{n-1}\xi = P\xi$. By the continuity of u, we get $uP\xi = P\xi$. Consequently, B_{α} -lim $u^{n+1}\xi = P\xi$ (left-translativity of B_{α} for sequences of the form $(u^n\xi)$), and also $P^2 = P$, uP = Pu.

For $x = (u^n)_{n=0}^{\infty}$, let $x^+ = (u^{n+1})_{n=0}^{\infty}$.

5. THEOREM (Mean ergodic theorem). Let $u \in B(X)$, where X is a Banach space. Then the sequence $x = (u^n)_{n=0}^{\infty}$ is strongly B_{α} -summable to a projection Q if and only if the following conditions are satisfied:

- (i) $\sup_{0 < t < \infty} ||B_{\alpha}(t, x)|| < \infty$, (ii) $B_{\alpha}(t, x^{+} x) \to 0$ strongly as $t \to \infty$,
- (iii) the family $\{B_{\alpha}(t,x): t > 0\}$ is weakly sequentially compact.

Proof. Necessity. (i) is a consequence of the Banach–Steinhaus theorem. (ii) follows from the translativity of B_{α} for the sequence $(u^n\xi)$. (iii) is obvious.

Sufficiency. Put

$$X_0 = \{\xi \in X : u\xi = \xi\}, \quad X_1 = \{u\xi - \xi : \xi \in X\}^-.$$

Obviously, B_{α} -lim $u^n \xi = \xi = Q\xi$ for $\xi \in X_0$. Put $Y = \{u\xi - \xi : \xi \in X\}$. If $\eta \in Y$ then $\eta = u\xi - x$ for some $\xi \in X$, and we have, for $x = (u^n)$,

$$\alpha e^{-t} \sum_{n=0}^{\infty} \frac{t^{n\alpha}}{\Gamma(n\alpha+1)} u^n \eta = B_{\alpha}(t, x^+ - x) \to 0$$

strongly as $t \to \infty$, by (ii).

It is enough to show that $X = X_0 + X_1$, because in this case the proof can be completed by a standard approximation. Fix $\xi \in X$. By (iii), we find a vector $\overline{\xi}$ such that

$$\overline{\xi} = w \text{-}\lim_{k \to \infty} B_{\alpha}(t_k, x)\xi,$$

for some $t_k \nearrow \infty$ (here *w*-lim denotes the weak limit).

We have

$$u\overline{\xi} = w \lim_{k \to \infty} u(B_{\alpha}(t_k, x)\xi)$$

= $w \lim_{k \to \infty} B_{\alpha}(t_k, x^+ - x)\xi + w \lim_{k \to \infty} B_{\alpha}(t_k, x)\xi = \overline{\xi},$

by (ii). We have just proved that $\overline{\xi} \in X_0$, and we shall show that $\xi - \overline{\xi} \in X_1$. By the Hahn–Banach theorem it is enough to check that, for every $\phi \in X^*$ which disappears on X_1 , we have $\phi(\xi - \overline{\xi}) = 0$. But if $\phi = 0$ on X_1 then, in particular, $\phi(u\xi) = \phi(\xi)$ for every $\xi \in X$, so $\phi(\xi) = \phi(u^n\xi)$, $n = 1, 2, \ldots$ Consequently,

$$\phi(B_{\alpha}(t_k, x)\xi) = \alpha e^{-t_k} \sum_{n=0}^{\infty} \frac{t_k^{n\alpha}}{\Gamma(n\alpha+1)} \phi(u^n\xi) = \phi(\xi)B_{\alpha}(t_k, \mathbf{1}).$$

Passing with k to infinity we get $\phi(\overline{\xi}) = \phi(\xi)$, i.e. $\phi(\xi - \overline{\xi}) = 0$.

References

- N. H. Bingham, Summability methods and dependent strong laws, in: Progr. in Probab. Statist. 11, Birkhäuser, 1986, 291–300.
- N. H. Bingham and M. Maejima, Summability methods and almost sure convergence, Z. Wahrsch. Verw. Gebiete 68 (1985), 383–392.
- [3] N. Dunford and J. T. Schwartz, *Linear Operators*, Part I: General Theory, Interscience, New York, 1964.
- [4] G. W. Hardy, *Divergent Series*, Oxford Univ. Press, 1956.
- [5] L. Włodarski, Sur les méthodes continues de limitation du type de Borel, Ann. Polon. Math. 4 (1958), 137–174.

Faculty of Mathematics University of Łódź Banacha 22 90-238 Łódź, Poland E-mail: rjajte@math.uni.lodz.pl

Reçu par la Rédaction le 28.5.2001

(1266)