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Nullstellensatz and cycles
of zeroes of holomorphic mappings

by Ewa Cygan (Kraków)

Abstract. The local Nullstellensatz exponent for holomorphic mappings via inter-
section theory for the cases of isolated and quasi-complete intersection is considered.

1. Introduction. One of the natural problems in local intersection the-
ory concerns the Nullstellensatz exponent. It is already a classical result that
in the case of a set-theoretic complete intersection the degree of the cycle
of zeroes of a holomorphic mapping (see [PT], [TW]) is a good exponent
for an ideal generated by their components. The general local case seems
to be much more difficult; moreover the definition of the cycles of zeroes in
this case is quite new. Improper intersections in complex-analytic geometry
were first studied by P. Tworzewski [T]. Some interesting applications of the
index of intersection for analytic cycles proposed in his paper were found in
[Cy], [CKT].

Obviously the natural question arises: does this index always give an
exponent for Nullstellensatz? This question is also important in algebraic
geometry (cf. [Br], [JKS], [K1], [K2], [Te]). In this paper we consider two
special local cases: the so-called quasi-complete intersection and isolated
intersection. The main tool we use to describe the first one is Theorem 3.5
which gives a kind of generalization of Schumacher’s Theorem ([Ł]). The
latter case is treated using only the basic properties of improper isolated
intersection presented in [ATW]. One can find another approach to this
result in [S].

2. Intersection multiplicity. For the convenience of the reader we
compile in this section some basic notions of local intersection theory (see
[Ch], [D], [T] for more details).
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I. Analytic cycles, their multiplicities and proper intersection. In this pa-
per analytic means complex-analytic, and manifold means a complex man-
ifold satisfying the second axiom of countability. Let M be a manifold of
dimension m. An analytic cycle on M is a formal sum

A =
∑

j∈J
αjZj

where αj 6= 0 for j ∈ J are integers and {Zj}j∈J is a locally finite family of
distinct irreducible analytic subsets of M .

The analytic set
⋃
j∈J Zj is called the support of the cycle A and is

denoted by |A|. If all the components of A have the same dimension k, then
A is called a k-cycle. We say that A is positive if αj > 0 for all j ∈ J .

For the cycleA, we consider the natural extension of the local multiplicity
of analytic sets. Namely, if a ∈ M and ν(Zj , a) denotes the multiplicity of
Zj at the point a (see [D, p. 194]), then the sum

ν(A, a) =
∑

j∈J
αjν(Zj , a)

is well defined and called the multiplicity of A at a.
There exists a unique decomposition

A = T(m) + T(m−1) + . . .+ T(0),

where T(j) is a j-cycle for j = 0, . . . ,m. For our purpose it will be useful to
introduce the notion of the extended multiplicity of A at a defined by

ν̃(A, a) = (ν(T(m), a), . . . , ν(T(0), a)) ∈ Zm+1.

Denote by ν(A) and ν̃(A) the functions

ν(A) : M 3 x 7→ ν(A, x) ∈ Z, ν̃(A) : M 3 x 7→ ν̃(A, x) ∈ Zm+1.

Observe that ν(A, x) = ̂ν̃(A, x), where ν̂ denotes the sum of the coordinates
of ν ∈ Zm+1.

Let now X and Y be pure dimensional analytic subsets of M . We say
that X and Y meet properly on M if dim(X∩Y ) = dimX+dimY −m. Then
we have the intersection product X · Y of X and Y , which is an analytic
cycle on M defined by the formula

X · Y =
∑

Z

i(X · Y,Z)Z,

where the summation extends over all analytic components Z of X ∩ Y
and i(X · Y,Z) denotes the intersection multiplicity along Z in the sense of
Draper ([D, Def. 4.5]; cf. [Ch]). Such multiplicities are positive integers.

II. Intersections of analytic sets with submanifolds. Let M be an m-
dimensional manifold. Fix a closed s-dimensional submanifold S of M and
an open subset U of M such that U ∩ S 6= ∅.
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For a given cycle A =
∑
j∈J αjZj analytic on M , by its part supported

by S we mean the cycle AS =
∑
j∈J, Zj⊂S αjZj . Denote by H(U) the set of

all H := (H1, . . . ,Hm−s) satisfying the following conditions:

(1) Hj is a smooth hypersurface of U containing U∩S if j = 1, . . . ,m−s,
(2)

⋂m−s
j=1 Tx(Hj) = TxS for each x ∈ U ∩ S.

For a given analytic subset Z of M of pure dimension k we denote by
H(U,Z) the set of all H ∈ H(U) such that ((U \S)∩Z)∩H1∩ . . .∩Hj is an
analytic subset of U \S of pure dimension k− j (or empty) for j = 1, . . . , k.
Each system H ∈ H(U,Z) will be called an admissible system for the set Z
and submanifold S.

Following [T] we present an algorithm which allows us to produce for
every H ∈ H(U,Z) an analytic cycle Z · H in S ∩ U . In each step of the
algorithm we get a cycle Zi = ZSi +(Zi−ZSi ). Denote by iH ∈ {0, . . . ,m−s}
the first index i for which |Zi − ZSi | = ∅.

Algorithm 2.1.

Step 0. Let Z0 = Z ∩ U . Then Z0 = ZS0 + (Z0 − ZS0 ), where ZS0 is the
part of Z0 supported by S ∩ U .

Step 1. Let Z1 = (Z0−ZS0 ) ·H1. Then Z1 = ZS1 + (Z1 −ZS1 ), where ZS1
is the part of Z1 supported by S ∩ U .

Step 2. Let Z2 = (Z1−ZS1 ) ·H2. Then Z2 = ZS2 + (Z2 −ZS2 ), where ZS2
is the part of Z2 supported by S ∩ U .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step iH. Let ZiH = (ZiH−1 − ZSiH−1) ·HiH . Now we have the decompo-
sition

ZiH = ZSiH + (ZiH − ZSiH), and |ZiH − ZSiH | ∩ S = ∅.
We call the positive analytic cycle Z · H = ZS0 + ZS1 + . . . + ZSiH in S ∩ U
the result of the above algorithm.

We will say that Z and an admissible system H realize a quasi-complete
intersection at a if every irreducible component of the support of the cycle
Zi−ZSi is a complete ideal intersection at a for i ∈ {0, . . . , iH}. Recall that
an analytic subset X of a manifold M is a complete ideal intersection at a
if the ideal of its germ I(Xa) has a system of p = codimXa generators.

At an arbitrary point a ∈ S ∩ Z we define g(a) as follows. Let

g̃(a) = g̃(Z, S)(a) := minlex{ν̃(Z · H, a) : H ∈ H(U,Z), a ∈ U} ∈ Ns+1

and g(a) = g(Z, S)(a) = ̂̃g(a). The number g(a) is called the index of inter-
section of Z and S at the point a (see [T, Def. 4.2]).
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Let now M be an open subset of a normed linear space N . We are
interested in more convenient systems where hypersurfaces have the form of
parts of linear hyperplanes from the grassmannian manifold Gm−1(N).

Denote by A(Z, S)(a) ⊂ (Gm−1(N))m−s the set of all admissible linear
systems H for Z and S at the point a such that g̃(Z, S)(a) = ν̃(Z · H, a).

We will say that Z and S realize a quasi-complete intersection at a ∈
Z ∩ S if there exists a system H ∈ A(Z, S)(a) such that Z and H realize a
quasi-complete intersection at a.

Remark 2.2 ([AR], [N]). If S is a linear subspace of a normed linear
space M then to obtain the result of the algorithm it suffices to consider the
admissible systems H which consist of parts of linear hyperplanes. Moreover
in such a case the index of intersection of Z and S at a is realized for generic
systems of linear hyperplanes in M .

III. Intersection of analytic sets—general case. Let X and Y be irre-
ducible analytic subsets of an m-dimensional manifold M and let a ∈ M .
By standard diagonal construction the multiplicity of intersection of the sets
X and Y at a is defined to be

d(a) = d(X,Y )(a) = g(X × Y,∆M , (a, a)).

The intersection product of the irreducible analytic sets X and Y is the
unique analytic cycle X • Y in M such that ν(X • Y ) = d(X,Y ) (see [T,
Def. 6.3]).

The above definition can be naturally extended to the case of the in-
tersection of a finite number of irreducible analytic subsets and next to
arbitrary analytic cycles by multilinearity.

Remark 2.3 ([AR], [N]). The index and multiplicity of intersection of
an analytic set X with a submanifold S at the point a, and of the analytic
set X × S with the diagonal ∆M at the point (a, a), coincide.

Roughly speaking we are not obliged to pass by the diagonal construction
for the case of intersection with a submanifold. This remark will be very
useful in our considerations of the cycles of zeroes of holomorphic mappings.

3. Cycles of zeroes of holomorphic mappings and Nullstellen-
satz. Let U be a neighbourhood of zero in Cm and (f1, . . . , fr) : U → Cr
be a holomorphic mapping. Consider two analytic subsets of U × Cr: the
graph of f , Gf = {(x, y) ∈ U × Cr : yi = fi(x)}, and Yf = U × {0}r.

Definition 3.1. In this situation we define the cycle Zf on U given by

Zf × {0} = Gf • Yf
to be the cycle of zeroes of f .
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Obviously Zf is an analytic cycle in U but is not necessarily pure dimen-
sional. Note that if the mapping realizes a set-theoretic complete intersection
(which means in particular that dimf−1(0) = m − r), then this definition
coincides with [TW].

Let us start by recalling the following two results that gave the motiva-
tion for this paper. We denote by Iz(f1, . . . , fr) the ideal of Oz generated
by the germs of fi at z ∈ U .

The first theorem is just a special case of [PT, Theorem 1.2].

Theorem 3.2. Suppose that the mapping (f1, . . . , fr) : U → Cr is holo-
morphic, realizes a set-theoretic complete intersection and g : U → C is a
holomorphic function vanishing on the set f−1(0). Let a ∈ U . Then there
exist an open neighbourhood Ω ⊂ U of a and h1, . . . , hr ∈ O(Ω) such that

g(z)µ = f1(z)h1(z) + . . .+ fr(z)hr(z) for z ∈ Ω
where µ = ν(Zf , a) is the degree of the cycle of zeroes of f at a.

The second one is a reformulation of [CKM, Theorem 1].

Theorem 3.3. Let f = (f1, . . . , fr) be a holomorphic mapping in a
neighbourhood of a ∈ Cm realizing a set-theoretic complete intersection at
the point a. Then the following conditions are equivalent :

(i) Ia(f1, . . . , fr) = Rad Ia(f1, . . . , fr).
(ii) If Rad Ia(f1, . . . , fr) = I1 ∩ . . .∩ Is, where Ij are prime ideals in Oa

and Ii 6⊂ Ij for i 6= j then Ia(f1, . . . , fr)OIj = IjOIj for all j ∈ {1, . . . , s}.
In particular, as a direct consequence of Theorem 3.3 (cf. [CKM, Re-

mark 1]) we get the following:

Corollary 3.4. Suppose that X is an (m − r)-dimensional analytic
subset of a neighbourhood of a ∈ Cm with the irreducible germ Xa. If g =
(g1, . . . , gr) where g1, . . . , gr are generators of the ideal Ia(X) then ν(X, a) =
ν(Zg, a).

We start with the following generalization of Schumacher’s Theorem (see
[Ł]).

Theorem 3.5. Let X be the zero set of the mapping (f1, . . . , fr) : U→Cr
which realizes a set-theoretic complete intersection in U , g be a holomorphic
function in U and a ∈ X. Suppose that there exists a dense subset X̃ of X
such that gz ∈ Iz(f1, . . . , fr) for z ∈ X̃. Then ga ∈ Ia(f1, . . . , fr).

Proof. First recall that the family Iz(f1, . . . , fr) ⊂ Oz is a coherent
family of ideals.

As (f1, . . . , fr) realizes a set-theoretic complete intersection in U , there
exists a neighbourhood Ω of a such that the primary decomposition of the
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ideal Ia(f1, . . . , fr) = J1
a∩. . .∩Jsa corresponds to the irreducible components

of the set X ∩Ω, so in Ω we have:

(1) X ∩Ω = X1 ∪ . . . ∪Xs,
(2) Iz(f1, . . . , fr) = J1

z ∩ . . . ∩ Jsz and J iz are primary ideals for z ∈ Ω,
(3) I(Xi

z) = RadJ iz for z ∈ Ω and i = 1, . . . , s.

Consider a new coherent family of ideals Jz := {hz ∈ Oz : hzgz ∈
Iz(f1 . . . , fr)}, z ∈ Ω. The coherence implies that the zero set Z = V ({Jz})
of this family is an analytic subset in Ω.

Fix now i ∈ {1, . . . , s}; we will show that ga ∈ J ia. As X̃ is a dense subset
of X, by assumption we obtain X i

a 6⊂ Za and hence I(Za) 6⊂ I(Xi
a). So there

exists ha ∈ I(Za) such that ha 6∈ I(Xi
a). By the Nullstellensatz, hla ∈ Ja for

some l ∈ N and as I(Xi)a is a prime ideal, hla 6∈ Rad J ia = I((Xi)a).
By definition of Ja we have hlaga ∈ Ia and so hlaga ∈ J ia. As J ia is a

primary ideal we get ga ∈ J ia and Ia(f1, . . . , fr) = J1
a ∩ . . . ∩ Jsa .

Corollary 3.6. Suppose that f = (f1, . . . , fr) realizes a set-theoretic
complete intersection in U and Zf =

∑
i kiXi. Let gi : U → C be a holomor-

phic function such that gi|Xi = 0 for i = 1, . . . , s. Then there exists a neigh-
bourhood W ⊂ U of zero in Cm such that

∏s
i=1 g

ki
i (z) =

∑r
j=1 hj(z)fj(z)

for some functions hj holomorphic in W .

Proof. Take h := gk1
1 . . . gkss and note that for each i = 1, . . . , s there

exists a dense subset X̃i of Xi such that hz ∈ Iz(f1, . . . , fr) for z ∈ X̃i. This
is a direct consequence of Theorem 3.2 and the fact that at regular points
of Xi we have ν(Zf , z) = ki.

Now Theorem 3.5 implies the result.

From the above corollary we get immediately the following separation
type inequality ([Cy], [CKT]):

Remark 3.7. (a) In the situation of Theorem 3.5 there exists a neigh-
bourhood of zero in Cm in which

|g1(z)|k1 . . . |gs(z)|ks ≤ C|(f1, . . . , fr)(z)| ≤ cd(z,X)

for some constants C, c > 0, where d(·,X) denotes the distance to the set
X ⊂ Cm.

(b) Working with separation problems one can naturally wonder if a
more general inequality with the distance functions could hold:

d(z,X1)k1 . . . d(z,Xs)ks ≤ c|(f1, . . . , fr)(z)|
for some constant c > 0. Unfortunately, this inequality is false as the ex-
ample of the function f(x, y) = x3 − y2 shows.

Theorem 3.8. Let f = (f1, . . . , fp) : U → Cp be a holomorphic mapping
where U is an open neighbourhood of a ∈ Cn. Let H = (H1, . . . ,Hp) be an
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admissible system of linear hyperplanes for S = Yf at a and suppose that Gf
and H realize a quasi-complete intersection at b = (a, f(a)). If g : U → C
is a holomorphic function vanishing on the zero set of (f1, . . . , fp), then
gda ∈ Ia(f1, . . . , fp) for d = ν(Gf · H, b).

Proof. First note that without loss of generality we can assume that in
the neighbourhood U we have Hi = {yi = 0}.

Step (1). By assumption, every component of the cycle Z1−ZS1 = k1Y1+
. . .+kr1Yr1 is a complete ideal intersection. Let Ia(Yi) = (g1,i). As g vanishes
in a neighbourhood of a on the support of ZS1 , by Corollary 3.6 we obtain

g
ν(ZS1 ,a)
a

r1∏

i=1

gki1,i ∈ Ia(f1).

Step (2). Fix now i ∈ {1, . . . , r1} and consider the intersection

Yi ·H2 = (Yi ·H2)S + Yi ·H2 − (Yi ·H2)S =
pi,2∑

m=1

li,mXi,m +
ri,2∑

m=1

ki,mYi,m.

Once more we know that each Yi,m is a complete ideal intersection at a,
so we can write Ia(Yi,m) = (g2,1

i,m, g
2,2
i,m) for some germs from Oa. Applying

again Corollary 3.6 and the fact that g vanishes in a neighbourhood of a on
the support of the first part of the sum, we get

g
∑pi,2
m=1 li,m

a

ri,2∏

m=1

(g2,s
i,m)ki,m ∈ Ia(g1,i, f2),

and as
r1∑

i=1

ki

( pi,2∑

m=1

li,m

)
≤ ν(ZS2 , a)

(Corollary 3.4), we have

g
ν(ZS1 ,a)+ν(ZS2 ,a)
a

r1∏

i=1

ri,2∏

m=1

(g2,s
i,m)ki,mki ∈ Ia(f1, f2)

for s = 1, 2.
It is important to remember that thanks to Corollary 3.4 the generators

g1,i do not create any “outer” multiplicity if we take their cycle.
Step (t). By assumption, every component of the cycle Zt−1 − ZSt−1 =

kt−1
1 Y t−1

1 + . . . + kt−1
rt−1

Y t−1
rt−1

is a complete ideal intersection. Fix now i ∈
{1, . . . , rt−1} and let Ia(Y t−1

i ) = (gt−1,1
i,m , gt−1,2

i,m , . . . , gt−1,t−1
i,m ). Consider the
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intersection

Y t−1
i ·Ht = (Y t−1

i ·Ht)S + Y t−1
i ·Ht − (Y t−1

i ·Ht)S

=
pi,t∑

m=1

lti,mX
t
i,m +

ri,t∑

m=1

kti,mY
t
i,m.

Once more we know that each Y ti,m is a complete ideal intersection at
a, so we can write Ia(Y ti,m) = (gt,1i,m, g

t,2
i,m, . . . , g

t,t
i,m) for some germs from Oa.

Applying again Corollary 3.6 and the fact that g vanishes in a neighbourhood
of a on the support of the first part of the sum, we get

g
∑pi,t
m=1 l

t
i,m

a

ri,t∏

m=1

(gt,si,m)k
t
i,m ∈ Ia(gt−1,1

i,m , gt−1,2
i,m , . . . , gt−1,t−1

i,m , ft),

and as
rt−1∑

i=1

kt−1
i

( pi,t∑

m=1

lti,m

)
≤ ν(ZSt , a)

(Corollary 3.4), for s = 1, . . . , t we have

g
ν(ZS1 ,a)+...+ν(ZSt ,a)
a

rt∏

i=1

ri,t∏

m=1

(gt,si,m)k
t
i,mk

t−1
i ∈ Ia(f1, . . . , ft).

By assumption we can repeat the same considerations at each step of the
algorithm and finally in the last step we obtain a cycle totally supported by
S, so g vanishes on this support in a neighbourhood of a and we get

g
ν(ZS1 ,a)+...+ν(ZSp ,a)
a ∈ Ia(f1, . . . , fp).

As ν(ZS1 , a) + . . .+ ν(ZSp , a) = ν(Z · H, a) this ends the proof.

As a direct consequence of the definition of the cycle of zeroes for a
holomorphic mapping we get the following corollary.

Corollary 3.9. Let f = (f1, . . . , fp) : U → Cp be a holomorphic map-
ping where U is an open neighbourhood of a ∈ Cn. Suppose that Gf and Yf
realize a quasi-complete intersection at the point b = (a, f(a)). If g : U → C
is a holomorphic function vanishing on the zero set of (f1, . . . , fp), then
gda ∈ Ia(f1, . . . , fp) for d = ν(Zf , a).

4. Multiplicity of isolated intersection. In the case of an isolated
intersection we can use another, equivalent approach to the definition of
isolated intersection multiplicity. As in this section we apply the definitions
from [ATW], we first recall basic facts on isolated intersections of analytic
sets. For the equivalence of this definition with the general one, see [T,
Th. 6.6].
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Let Z be a pure k-dimensional locally analytic subset of a complex man-
ifold M of dimension m. Let N be a submanifold of M of dimension n such
that N intersects Z at an isolated point a ∈M . We denote by Fa(Z,N) the
set of all locally analytic subsets V of M satisfying:

(1) V has pure dimension m− k,
(2) Na ⊂ Va,
(3) a is an isolated point of V ∩ Z,

where Na, Va denote the germs of N and V at a.
Observe that for V ∈ Fa(Z,N) the intersection of Z and V is proper at

a and we can consider the classical intersection multiplicity i(Z ·V ; a) in the
sense of Draper [D] (cf. [W]). We define

ĩ(Z ·N ; a) = min{i(Z · V ) : V ∈ Fa(Z,N)},
Pa(Z,N) = {V ∈ Fa(Z,N) : i(Z · V ; a) = ĩ(Z ·N ; a)}.

Note that [ATW, Th. 4.4] gives a full characterization of the family Pa(Z,N).
Having disposed of this preliminary step we can now turn to the general

case. Let X, Y be pure dimensional locally analytic subsets of a complex
manifold M such that a is an isolated point of X ∩ Y . The positive integer

i(X · Y ; a) = ĩ((X × Y ) ·∆M ; (a, a))

is defined to be the multiplicity of intersection of X and Y at a. It is the
same multiplicity as defined in Section 2 [T, Th. 6.6].

If Y is a submanifold the definition of i(X·Y ; a) presented above coincides
with that of ĩ(X · Y ; a) introduced earlier.

Let f = (f1, . . . , fk) : U → Ck be a holomorphic mapping on U ⊂ Cn,
a ∈ U and assume that f−1(0) = {a}. Define Z = Gf to be the graph of f
in M = U × Ck and N = Yf = U × {0}k. Suppose that g is a holomorphic
function on U such that g(a) = 0.

Theorem 4.1 (cf. [S]). In the above situation there exists a neighbour-
hood W ⊂ U of the point a in Cn and a system of functions h1, . . . , hk
holomorphic on W such that gd = f1h1 + . . . + fkhk on W where d =
i(Z ·N, (a, 0)) = ν(Zf , a).

Proof. Write c = (a, 0) and let V ∈ Pc(Z;N). We know that i(Z ·N ; c) =
i(Z · V ; c), and [ATW, Th. 4.4] implies that Vc is a germ of a manifold. We
also have dimZ = dimN = n. As the intersection is isolated it is obvious
that k ≥ n.

Using the standard properties of intersection theory we can assume to
have the following situation:

(1) c = 0 and M = U × B ×D ⊂ Cnx × Cnz × Ck−nw , where B and D are
the unit balls in Cn, Ck−n respectively,



190 E. Cygan

(2) N = U × {0}k,
(3) V = U × {0}n ×D,
(4) Z ∩ V = {0},
(5) π|Z : Z → B is an analytic covering of multiplicity d = i(Z · N ; 0),

where π : M → B is the natural projection.

We will now define on M × C ⊂ Cnx × Cnz × Ck−nw × Ct the following
function:

P (x, z, w, t) =
d∏

i=1

(t− g(xi))

for (π|Z)−1(π(x, z, w)) = {(x1, z, w1), . . . , (xd, z, wd)}, where (xi, z, wi) ∈
Z are counted with their multiplicities. Using standard arguments about
symmetric polynomials and the Riemann theorem it is easy to see that
P (x, z, w, t) is a holomorphic function.

Observe now that as N ⊂ V and (z, w) = (y1, . . . , yn, yn+1, . . . , yk), the
above function has the following properties:

(1) If (x, z, w) = (x, y1, . . . , yk) = (x, 0) then (π|Z)−1(z) = {0}, so we
have P (x, z, w, t) = td,

(2) P (x, f(x), g(x)) = 0.

The first property implies that P (x, z, w, t)−td lies in the ideal generated by
y1, . . . , yk, so there exist holomorphic functions h1, . . . , hk in a neighbour-
hood W of zero in M×C such that P (x, z, w, t) = td+y1h1(x, z, w, t)+ . . .+
ykhk(x, z, w, t) on W . Application of the second property ends the proof.
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