# Existence and uniqueness of periodic solutions for a kind of nonlinear $n$th order differential equations with delays 

by Weiwen Shao (Beijing), Fuxing Zhang (Shaoyang) and Ya Li (Changsha)


#### Abstract

By applying the continuation theorem of coincidence degree theory, we establish new results on the existence and uniqueness of $2 \pi$-periodic solutions for a class of nonlinear $n$th order differential equations with delays.


1. Introduction. In this paper, we study the existence and uniqueness of $2 \pi$-periodic solutions of the nonlinear $n$th order delay differential equation

$$
\begin{equation*}
x^{(n)}+\sum_{j=1}^{n-1} a_{j} x^{(j)}+g(t, x(t-\tau(t)))=p(t) \tag{1.1}
\end{equation*}
$$

where $\tau, p: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ are continuous functions, $\tau(t)$ and $p(t)$ are $2 \pi$-periodic with respect to $t, g$ is $2 \pi$-periodic in the first variable, $n \geq 2$ is an integer, and $a_{j}(j=1, \ldots, n-1)$ are constants.

During the past thirty years, there has been a great amount of work on the existence of periodic solutions for the higher-order Duffing equation

$$
\begin{equation*}
x^{(2 k)}+\sum_{j=1}^{k-1} a_{j} x^{(2 j)}+(-1)^{k+1} g(t, x)=0 \tag{1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{(2 k+1)}+\sum_{j=1}^{k-1} a_{j} x^{(2 j+1)}+g(t, x)=0 \tag{1.3}
\end{equation*}
$$

Many of these results can be found in $[1,5,6,12-14,16]$ and the references cited therein. However, to the best of our knowledge, there exist few results on the existence and uniqueness of $2 \pi$-periodic solutions of (1.1).

[^0]The main purpose of this paper is to establish sufficient conditions for the existence and uniqueness of $2 \pi$-periodic solutions of (1.1). Our results are new and they complement previously known results. An illustrative example is given in Section 4.

If $n$ is even, let $n=2 k$; then equation (1.1) becomes

$$
\begin{equation*}
x^{(2 k)}+\sum_{j=1}^{2 k-1} a_{j} x^{(j)}+g(t, x(t-\tau(t)))=p(t) \tag{1.4}
\end{equation*}
$$

If $n$ is odd, let $n=2 k+1$; then (1.1) becomes

$$
\begin{equation*}
x^{(2 k+1)}+\sum_{j=1}^{2 k} a_{j} x^{(j)}+g(t, x(t-\tau(t)))=p(t) \tag{1.5}
\end{equation*}
$$

For ease of exposition, throughout this paper we will adopt the following notations:

$$
\begin{gathered}
|x|_{p}=\left(\int_{0}^{2 \pi}|x(t)|^{p} d t\right)^{1 / p}, \quad|x|_{\infty}=\max _{t \in[0,2 \pi]}|x(t)|, \quad a^{+}=\max \{0, a\} \\
\|x\|=\sum_{j=0}^{n-1}\left|x^{(j)}\right|_{\infty}, \quad x^{(0)}=x \\
A_{1}=1-a_{2(k-1)}^{+}-\left|a_{2(k-2)}\right|-\cdots-\left|a_{4}\right|-a_{2}^{+} \\
A_{2}=a_{2 k-1}-a_{2 k-3}^{+}-\left|a_{2 k-5}\right|-\cdots-\left|a_{3}\right|-a_{1}^{+} \\
\bar{A}_{1}=1-a_{2(k-1)}^{+}-\left|a_{2(k-2)}\right|-\cdots-a_{4}^{+}-\left|a_{2}\right| \\
\bar{A}_{2}=a_{2 k-1}-a_{2 k-3}^{+}-\left|a_{2 k-5}\right|-\cdots-a_{3}^{+}-\left|a_{1}\right| \\
A_{3}=1-a_{2 k-1}^{+}-\left|a_{2 k-3}\right|-\cdots-a_{3}^{+}-\left|a_{1}\right| \\
A_{4}=a_{2 k}-a_{2 k-2}^{+}-\left|a_{2 k-4}\right|-\cdots-\left|a_{4}\right|-a_{2}^{+} \\
\bar{A}_{3}=1-a_{2 k-1}^{+}-\left|a_{2 k-3}\right|-\cdots-\left|a_{3}\right|-a_{1}^{+} \\
\bar{A}_{4}=a_{2 k}-a_{2 k-2}^{+}-\left|a_{2 k-4}\right|-\cdots-\cdots-a_{4}^{+}-\left|a_{2}\right|
\end{gathered}
$$

It is convenient to introduce the following assumptions:
$\left(H_{1}\right)$ There exists a constant $d_{1}>0$ such that

$$
x[g(t, x)-p(t)]>0 \quad \text { for all } t \in \mathbb{R},|x| \geq d_{1}
$$

$\left(H_{2}\right)$ There exists a constant $d_{2}>0$ such that

$$
x[g(t, x)-p(t)]<0 \quad \text { for all } t \in \mathbb{R},|x| \geq d_{2}
$$

2. Several lemmas. Let us introduce the auxiliary equation

$$
\begin{equation*}
x^{(n)}+\lambda\left[\sum_{j=1}^{n-1} a_{j} x^{(j)}+g(t, x(t-\tau(t)))\right]=\lambda p(t), \quad \lambda \in(0,1) \tag{2.1}
\end{equation*}
$$

Let

$$
X=\left\{x \in C^{n-1}(\mathbb{R}, \mathbb{R}) \mid x(t+2 \pi)=x(t) \text { for all } t \in \mathbb{R}\right\}
$$

and

$$
Y=\{x \in C(\mathbb{R}, \mathbb{R}) \mid x(t+2 \pi)=x(t) \text { for all } t \in \mathbb{R}\}
$$

be Banach spaces with the norms

$$
\|x\|_{X}=\|x\|=\sum_{j=0}^{n-1}\left|x^{(j)}\right|_{\infty} \quad \text { and } \quad\|x\|_{Y}=|x|_{\infty}=\max _{t \in[0,2 \pi]}|x(t)|
$$

Define a linear operator $L: D(L) \subset X \rightarrow Y$ by setting

$$
D(L)=\left\{x \in X \mid x^{(n)} \in C(\mathbb{R}, \mathbb{R})\right\}
$$

and for $x \in D(L)$,

$$
\begin{equation*}
L x=x^{(n)} \tag{2.2}
\end{equation*}
$$

We also define a nonlinear operator $N: X \rightarrow Y$ by setting

$$
\begin{equation*}
N x(t)=-\left[\sum_{j=1}^{n-1} a_{j} x^{(j)}+g(t, x(t-\tau(t)))\right]+p(t) \tag{2.2}
\end{equation*}
$$

It is easy to see that

$$
\operatorname{Ker} L=\mathbb{R} \quad \text { and } \quad \operatorname{Im} L=\left\{x \in Y \mid \int_{0}^{2 \pi} x(s) d s=0\right\}
$$

Thus $L$ is a Fredholm operator with index zero.
Define the continuous projectors $P: X \rightarrow \operatorname{Ker} L$ and $Q: Y \rightarrow Y / \operatorname{Im} L$ by setting

$$
P x(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(s) d s
$$

and

$$
Q x(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(s) d s
$$

Hence, $\operatorname{Im} P=\operatorname{Ker} L$ and Ker $Q=\operatorname{Im} L$. Denoting by $L_{P}^{-1}: \operatorname{Im} L \rightarrow D(L) \cap$ Ker $P$ the inverse of $\left.L\right|_{D(L) \cap \operatorname{Ker} P}$, one can observe that $L_{P}^{-1}$ is a compact operator. Therefore, $N$ is $L$-compact on $\bar{\Omega}$, where $\Omega$ is an open bounded subset of $X$.

In view of (2.2) and (2.2) , the operator equation

$$
L x=\lambda N x, \quad \lambda \in(0,1)
$$

is equivalent to the auxiliary equation $(2.1)_{\lambda}$.
We now recall the continuation theorem of [8].
Lemma 2.1. Let $X$ and $Y$ be Banach spaces. Suppose that $L: D(L) \subset$ $X \rightarrow Y$ is a Fredholm operator with index zero, and $N: \bar{\Omega} \rightarrow Y$ is L-compact on $\bar{\Omega}$, where $\Omega$ is an open bounded subset of $X$. Moreover, assume that the following conditions are satisfied.
(1) $L x \neq \lambda N x, \forall x \in \partial \Omega \cap D(L), \lambda \in(0,1)$;
(2) $N x \notin \operatorname{Im} L, \forall x \in \partial \Omega \cap \operatorname{Ker} L$;
(3) The Brouwer degree

$$
\operatorname{deg}\{Q N, \Omega \cap \operatorname{Ker} L, 0\} \neq 0
$$

Then the equation $L x=N x$ has a solution on $\bar{\Omega} \cap D(L)$.
The following lemmas will be useful to prove our main results in Section 3.

Lemma 2.2. If $x \in C^{2}(\mathbb{R}, \mathbb{R})$ and $x(t+2 \pi)=x(t)$, then

$$
\begin{equation*}
\left|x^{\prime}(t)\right|_{2}^{2} \leq\left|x^{\prime \prime}(t)\right|_{2}^{2} \tag{2.3}
\end{equation*}
$$

Lemma 2.2 is known as the Wirtinger inequality; for the proof, see [10, 19, 20].

Lemma 2.3. Let $\left(H_{1}\right)$ or $\left(H_{2}\right)$ hold. If $x(t)$ is a $2 \pi$-periodic solution of $(2.1)_{\lambda}$, then

$$
\begin{equation*}
|x|_{\infty} \leq d+\sqrt{2 \pi}\left|x^{\prime}\right|_{2} \tag{2.4}
\end{equation*}
$$

where $d=d_{1}$ or $d_{2}$ according to the case.
Proof. Let $x(t)$ be a $2 \pi$-periodic solution of $(2.1)_{\lambda}$. Integrating $(2.1)_{\lambda}$ from 0 to $2 \pi$, we see that

$$
\begin{equation*}
\int_{0}^{2 \pi}[g(t, x(t-\tau(t)))-p(t)] d t=0 \tag{2.5}
\end{equation*}
$$

Thus, there exists a $\xi \in[0,2 \pi]$ such that

$$
g(\xi, x(\xi-\tau(\xi)))-p(\xi)=0
$$

In view of $\left(H_{1}\right)$ or $\left(H_{2}\right)$, we obtain

$$
|x(\xi-\tau(\xi))| \leq d
$$

Let $\xi=2 m \pi+\bar{\xi}$, where $\bar{\xi} \in[0,2 \pi]$ and $m$ is an integer. Then, using the Schwarz inequality and the relation

$$
\begin{equation*}
|x(t)|=\left|x(\bar{\xi})+\int_{\bar{\xi}}^{t} x^{\prime}(s) d s\right| \leq d+\int_{0}^{2 \pi}\left|x^{\prime}(s)\right| d s, \quad t \in[0,2 \pi] \tag{2.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
|x|_{\infty}=\max _{t \in[0,2 \pi]}|x(t)| \leq d+\sqrt{2 \pi}\left|x^{\prime}\right|_{2} \tag{2.7}
\end{equation*}
$$

which implies that (2.4) is satisfied.
Lemma 2.4. Assume that $k$ is even, and one of the following conditions is satisfied:
$\left(H_{3}\right) g(t, x)$ is strictly monotone in $x$ and there exists a constant $b$ such that

$$
0 \leq b<\frac{A_{1}}{2 \pi}, \quad\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leq b\left|x_{1}-x_{2}\right| \text { for all } t, x_{1}, x_{2} \in \mathbb{R}
$$

$\left(H_{4}\right) g(t, x)$ is strictly monotone in $x$ and there exists a constant $b$ such that

$$
0 \leq b<\frac{A_{2}}{2 \pi}, \quad\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leq b\left|x_{1}-x_{2}\right| \text { for all } t, x_{1}, x_{2} \in \mathbb{R}
$$

Then (1.4) has at most one $2 \pi$-periodic solution.
Proof. Suppose that $x_{1}(t)$ and $x_{2}(t)$ are two $2 \pi$-periodic solutions of (1.4). Then

$$
\begin{align*}
\left(x_{1}(t)-x_{2}(t)\right)^{(2 k)}+ & \sum_{j=1}^{2 k-1} a_{j}\left(x_{1}(t)-x_{2}(t)\right)^{(j)}  \tag{2.8}\\
& +\left[g\left(t, x_{1}(t-\tau(t))\right)-g\left(t, x_{2}(t-\tau(t))\right)\right]=0
\end{align*}
$$

Set $Z(t)=x_{1}(t)-x_{2}(t)$. Then (2.8) reads

$$
\begin{equation*}
Z^{(2 k)}(t)+\sum_{j=1}^{2 k-1} a_{j} Z^{(j)}(t)+\left[g\left(t, x_{1}(t-\tau(t))\right)-g\left(t, x_{2}(t-\tau(t))\right)\right]=0 \tag{2.9}
\end{equation*}
$$

Integrating (2.9) from 0 to $2 \pi$, we have

$$
\int_{0}^{2 \pi}\left[g\left(t, x_{1}(t-\tau(t))\right)-g\left(t, x_{2}(t-\tau(t))\right)\right] d t=0
$$

Thus, in view of the integral mean value theorem, there exists a constant $\gamma \in[0,2 \pi]$ such that

$$
\begin{equation*}
g\left(\gamma, x_{1}(\gamma-\tau(\gamma))\right)-g\left(\gamma, x_{2}(\gamma-\tau(\gamma))\right)=0 \tag{2.10}
\end{equation*}
$$

Let $\gamma-\tau(\gamma)=m_{1} 2 \pi+\widetilde{\gamma}$, where $\widetilde{\gamma} \in[0,2 \pi]$ and $m_{1}$ is an integer. Then (2.10), together with $\left(H_{3}\right)$ (or $\left(H_{4}\right)$ ), implies that

$$
\begin{equation*}
Z(\widetilde{\gamma})=x_{1}(\widetilde{\gamma})-x_{2}(\widetilde{\gamma})=x_{1}(\gamma-\tau(\gamma))-x_{2}(\gamma-\tau(\gamma))=0 \tag{2.11}
\end{equation*}
$$

Hence,

$$
|Z(t)|=\left|Z(\widetilde{\gamma})+\int_{\widetilde{\gamma}}^{t} Z^{\prime}(s) d s\right| \leq \int_{0}^{2 \pi}\left|Z^{\prime}(s)\right| d s, \quad t \in[0,2 \pi]
$$

and

$$
\begin{equation*}
|Z|_{\infty} \leq \sqrt{2 \pi}\left|Z^{\prime}\right|_{2} \tag{2.12}
\end{equation*}
$$

Now we consider two cases.
CASE (i): $\left(H_{3}\right)$ holds. Multiplying (2.9) by $Z^{(2 k)}(t)$ and then integrating from 0 to $2 \pi$, in view of (2.3), (2.9) and the Schwarz inequality, we have

$$
\begin{align*}
& A_{1}\left|Z^{(2 k)}\right|_{2}^{2}=A_{1} \int_{0}^{2 \pi}\left|Z^{(2 k)}(t)\right|^{2} d t  \tag{2.13}\\
= & \left(1-a_{2(k-1)}^{+}-\left|a_{2(k-2)}\right|-\cdots-\left|a_{4}\right|-a_{2}^{+}\right) \int_{0}^{2 \pi}\left|Z^{(2 k)}(t)\right|^{2} d t \\
\leq & \int_{0}^{2 \pi}\left|Z^{(2 k)}(t)\right|^{2} d t+\int_{0}^{2 \pi}\left[-a_{2(k-1)}^{+}\left|Z^{(2 k-1)}(t)\right|^{2}-\left|a_{2(k-2)}\right|\left|Z^{(2 k-2)}(t)\right|^{2}\right. \\
& \left.-\cdots-\left|a_{4}\right|\left|Z^{(k+2)}(t)\right|^{2}-a_{2}^{+}\left|Z^{(k+1)}(t)\right|^{2}\right] d t \\
\leq & \int_{0}^{2 \pi}\left|Z^{(2 k)}(t)\right|^{2} d t+\int_{0}^{2 \pi} \sum_{j=1}^{2 k-1} a_{j} Z^{(j)}(t) Z^{(2 k)}(t) d t \\
= & -\int_{0}^{2 \pi}\left[g\left(t, x_{1}(t-\tau(t))\right)-g\left(t, x_{2}(t-\tau(t))\right)\right] Z^{(2 k)}(t) d t \\
\leq & b \int_{0}^{2 \pi}\left|x_{1}(t-\tau(t))-x_{2}(t-\tau(t))\right|\left|Z^{(2 k)}(t)\right| d t .
\end{align*}
$$

From (2.3), (2.12) and the Schwarz inequality, (2.13) implies that

$$
\begin{align*}
A_{1}\left|Z^{(2 k)}\right|_{2}^{2} & \leq b|Z|_{\infty} \sqrt{2 \pi}\left|Z^{(2 k)}\right|_{2} \leq b \sqrt{2 \pi}\left|Z^{\prime}\right|_{2} \sqrt{2 \pi}\left|Z^{(2 k)}\right|_{2}  \tag{2.14}\\
& \leq 2 \pi b\left|Z^{(2 k)}\right|_{2}^{2}
\end{align*}
$$

Since $Z(t), Z^{\prime}(t), \ldots, Z^{(2 k)}(t)$ are $2 \pi$-periodic and continuous functions, in view of $\left(H_{3}\right),(2.11)$ and (2.14), we have

$$
Z(t) \equiv Z^{\prime}(t) \equiv \cdots \equiv Z^{(2 k)}(t) \equiv 0 \quad \text { for all } t \in \mathbb{R}
$$

Thus, $x_{1}(t) \equiv x_{2}(t)$ for all $t \in \mathbb{R}$.

CASE (ii): $\left(H_{4}\right)$ holds. Multiplying (2.9) by $Z^{(2 k-1)}(t)$ and then integrating from 0 to $2 \pi$, in view of (2.3), (2.9), (2.12) and the Schwarz inequality, we get

$$
\begin{align*}
& \text { 15) } A_{2}\left|Z^{(2 k-1)}\right|_{2}^{2}=A_{2} \int_{0}^{2 \pi}\left|Z^{(2 k-1)}(t)\right|^{2} d t  \tag{2.15}\\
& =\left(a_{2 k-1}-a_{2 k-3}^{+}-\left|a_{2 k-5}\right|-\cdots-\left|a_{3}\right|-a_{1}^{+}\right) \int_{0}^{2 \pi}\left|Z^{(2 k-1)}(t)\right|^{2} d t \\
& \leq a_{2 k-1} \int_{0}^{2 \pi}\left|Z^{(2 k-1)}(t)\right|^{2} d t+\int_{0}^{2 \pi}\left[-a_{2 k-3}^{+}\left|Z^{(2 k-2)}(t)\right|^{2}-\left|a_{2 k-5}\right|\left|Z^{(2 k-3)}(t)\right|^{2}\right. \\
& \left.\quad-\cdots-\left|a_{3}\right|\left|Z^{(k+1)}(t)\right|^{2}-a_{1}^{+}\left|Z^{(k)}(t)\right|^{2}\right] d t \\
& \leq a_{2 k-1}^{2 \pi} \int_{0}^{2 \pi}\left|Z^{(2 k-1)}(t)\right|^{2} d t+\int_{0}^{2 k-2} \sum_{j=1} a_{j} Z^{(j)}(t) Z^{(2 k-1)}(t) d t \\
& =-\int_{0}^{2 \pi}\left[g\left(t, x_{1}(t-\tau(t))\right)-g\left(t, x_{2}(t-\tau(t))\right)\right] Z^{(2 k-1)}(t) d t \\
& \leq b \int_{0}^{2 \pi}\left|x_{1}(t-\tau(t))-x_{2}(t-\tau(t))\right|\left|Z^{(2 k-1)}(t)\right| d t \leq 2 \pi b\left|Z^{(2 k-1)}\right|_{2}^{2}
\end{align*}
$$

From (2.11) and $\left(H_{4}\right),(2.15)$ implies that

$$
Z(t) \equiv Z^{\prime}(t) \equiv \cdots \equiv Z^{(2 k-1)}(t) \equiv 0 \quad \text { for all } t \in \mathbb{R}
$$

Hence, $x_{1}(t) \equiv x_{2}(t)$ for all $t \in \mathbb{R}$. The proof of Lemma 2.4 is now complete.
In a similar fashion we can show the following:
Lemma 2.5. Assume that $k$ is odd, and one of the following conditions is satisfied:
$\left(\widetilde{H}_{3}\right) g(t, x)$ is strictly monotone in $x$ and there exists a constant $b$ such that
$0 \leq b<\frac{\bar{A}_{1}}{2 \pi}, \quad\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leq b\left|x_{1}-x_{2}\right|$ for all $t, x_{1}, x_{2} \in \mathbb{R} ;$
$\left(\widetilde{H}_{4}\right) g(t, x)$ is strictly monotone in $x$ and there exists a constant $b$ such that
$0 \leq b<\frac{\bar{A}_{2}}{2 \pi}, \quad\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leq b\left|x_{1}-x_{2}\right|$ for all $t, x_{1}, x_{2} \in \mathbb{R}$.
Then (1.4) has at most one $2 \pi$-periodic solution.

## 3. Main results

Theorem 3.1. Let $\left(H_{1}\right)$ or $\left(H_{2}\right)$ hold. Assume that $k$ is even, and either $\left(H_{3}\right)$ or $\left(H_{4}\right)$ is satisfied. Then (1.4) has a unique $2 \pi$-periodic solution.

Proof. By Lemma 2.4, we only have to prove the existence. To do this, we shall apply Lemma 2.1. First, we claim that all $2 \pi$-periodic solutions of $(2.1)_{\lambda}$ are bounded. We consider two cases.

CASE (1): $\left(H_{3}\right)$ holds. Let $x(t)$ be a $2 \pi$-periodic solution of $(2.1)_{\lambda}$. Multiplying $(2.1)_{\lambda}$ by $x^{(2 k)}(t)$ and then integrating from 0 to $2 \pi$, in view of (2.3), $(2.4),\left(H_{3}\right)$ and the Schwarz inequality, we have

$$
\begin{align*}
& A_{1}\left|x^{(2 k)}\right|_{2}^{2}=\left(1-a_{2(k-1)}^{+}-\left|a_{2(k-2)}\right|-\cdots-\left|a_{4}\right|-a_{2}^{+}\right) \int_{0}^{2 \pi}\left|x^{(2 k)}(t)\right|^{2} d t  \tag{3.1}\\
\leq & \int_{0}^{2 \pi}\left|x^{(2 k)}(t)\right|^{2} d t+\int_{0}^{2 \pi} \lambda\left[-a_{2(k-1)}^{+}\left|x^{(2 k-1)}(t)\right|^{2}-\left|a_{2(k-2)}\right|\left|x^{(2 k-2)}(t)\right|^{2}\right. \\
& \left.-\cdots-\left|a_{4}\right|\left|x^{(k+2)}(t)\right|^{2}-a_{2}^{+}\left|x^{(k+1)}(t)\right|^{2}\right] d t \\
\leq & \int_{0}^{2 \pi}\left|x^{(2 k)}(t)\right|^{2} d t+\lambda \int_{0}^{2 \pi} \sum_{j=1}^{2 k-1} a_{j} x^{(j)}(t) x^{(2 k)}(t) d t \\
= & -\int_{0}^{2 \pi} g(t, x(t-\tau(t))) x^{(2 k)}(t) d t+\int_{0}^{2 \pi} p(t) x^{(2 k)}(t) d t \\
\leq & \int_{0}^{2 \pi}[|g(t, x(t-\tau(t)))-g(t, 0)|+|g(t, 0)|]\left|x^{(2 k)}(t)\right| d t \\
& \quad+\int_{0}^{2 \pi}|p(t)|\left|x^{(2 k)}(t)\right| d t \\
\leq & b \int_{0}^{2 \pi}|x(t-\tau(t))|\left|x^{(2 k)}(t)\right| d t+\int_{0}^{2 \pi}|g(t, 0)|\left|x^{(2 k)}(t)\right| d t \\
\leq & \quad+\int_{0}^{2 \pi}|p(t)|\left|x^{(2 k)}(t)\right| d t \\
\leq & 2 \pi b\left|x^{(2 k)}\right|_{2}^{2}+\left[b d+x_{0 \leq t \leq 2 \pi}|g(t, 0)|+|p|_{\infty}\right] \sqrt{2 \pi}\left|x^{(2 k)}\right|_{2} .
\end{align*}
$$

Since $b<A_{1} / 2 \pi,(2.3),(2.4)$ and (3.1) imply that there exists a constant
$D_{1}>0$ such that

$$
\begin{align*}
& \left|x^{(j)}\right|_{2} \leq\left|x^{(2 k)}\right|_{2} \leq D_{1}, \quad j=1, \ldots, 2 k-1 \\
& |x|_{\infty} \leq d+\sqrt{2 \pi}\left|x^{\prime}\right|_{2} \leq D_{1} \tag{3.2}
\end{align*}
$$

For $j=1, \ldots, 2 k-1$, noting that $x^{(j)}(t)$ are $2 \pi$-periodic, there exists a $T_{j} \in(0,2 \pi)$ such that $x^{(j+1)}\left(T_{j}\right)=0$. Therefore,

$$
\begin{align*}
\left|x^{(j)}(t)\right| & =\left|\int_{T_{j}}^{t} x^{(j+1)}(s) d s\right| \leq \sqrt{2 \pi}\left(\int_{0}^{2 \pi}\left|x^{(j+1)}(s)\right|^{2} d s\right)^{1 / 2}  \tag{3.3}\\
& \leq \sqrt{2 \pi}\left|x^{(j+1)}\right|_{2} \leq \sqrt{2 \pi} D_{1}
\end{align*}
$$

Therefore, for all possible $2 \pi$-periodic solutions $x(t)$ of $(2.1)_{\lambda}$, there exists a constant $M_{1}$ such that

$$
\begin{equation*}
\|x\|=\sum_{j=0}^{2 k-1}\left|x^{(j)}\right|_{\infty}<M_{1} \tag{3.4}
\end{equation*}
$$

with $M_{1}>0$ independent of $\lambda$.
CASE (2): $\left(H_{4}\right)$ holds. Let $x(t)$ be a $2 \pi$-periodic solution of $(2.1)_{\lambda}$. Multiplying $(2.1)_{\lambda}$ by $x^{(2 k-1)}(t)$ and then integrating from 0 to $2 \pi$, by $\left(H_{4}\right)$, (2.3), (2.4) and the Schwarz inequality, we have

$$
\begin{equation*}
A_{2}\left|x^{(2 k-1)}\right|_{2}^{2} \tag{3.5}
\end{equation*}
$$

$$
\begin{aligned}
& =\left(a_{2 k-1}-a_{2 k-3}^{+}-\left|a_{2 k-5}\right|-\cdots-\left|a_{3}\right|-a_{1}^{+}\right) \int_{0}^{2 \pi}\left|x^{(2 k-1)}(t)\right|^{2} d t \\
& \leq a_{2 k-1} \int_{0}^{2 \pi}\left|x^{(2 k-1)}(t)\right|^{2} d t+\int_{0}^{2 \pi}\left[-a_{2 k-3}^{+}\left|x^{(2(k-1)}(t)\right|^{2}-\left|a_{2 k-5}\right|\left|x^{(2 k-3)}(t)\right|^{2}\right. \\
& \left.\quad-\cdots-\left|a_{3}\right|\left|x^{(k+1)}(t)\right|^{2}-a_{1}^{+}\left|x^{(k)}(t)\right|^{2}\right] d t \\
& \leq a_{2 k-1} \int_{0}^{2 \pi}\left|x^{(2 k-1)}(t)\right|^{2} d t+\int_{0}^{2 \pi} \sum_{j=1}^{2 k-1} a_{j} x^{(j)}(t) x^{(2 k-1)}(t) d t
\end{aligned}
$$

$$
=-\int_{0}^{2 \pi} g(t, x(t-\tau(t))) x^{(2 k-1)}(t) d t+\int_{0}^{2 \pi} p(t) x^{(2 k-1)}(t) d t
$$

$$
\leq b \int_{0}^{2 \pi}|x(t-\tau(t))|\left|x^{(2 k-1)}(t)\right| d t+\int_{0}^{2 \pi}|g(t, 0)|\left|x^{(2 k-1)}(t)\right| d t
$$

$$
+\int_{0}^{2 \pi}|p(t)|\left|x^{(2 k-1)}(t)\right| d t
$$

$$
\leq 2 \pi b\left|x^{\prime}\right|_{2}\left|x^{(2 k-1)}\right|_{2}+\left[b d+\max _{0 \leq t \leq 2 \pi}|g(t, 0)|+|p|_{\infty}\right] \sqrt{2 \pi}\left|x^{(2 k-1)}\right|_{2}
$$

$$
\leq 2 \pi b\left|x^{(2 k-1)}\right|_{2}^{2}+\left[b d+\max _{0 \leq t \leq 2 \pi}|g(t, 0)|+|p|_{\infty}\right] \sqrt{2 \pi}\left|x^{(2 k-1)}\right|_{2}
$$

Since $b<A_{2} / 2 \pi,(2.3),(2.4)$ and (3.5) imply that there exists a constant $D_{2}>0$ such that

$$
\begin{align*}
& \left|x^{(j)}\right|_{2} \leq\left|x^{(2 k-1)}\right|_{2} \leq D_{2}, \quad j=1,2, \ldots, 2 k-2  \tag{3.6}\\
& |x|_{\infty} \leq d+\sqrt{2 \pi}\left|x^{\prime}\right|_{2} \leq D_{2}
\end{align*}
$$

From $(2.1)_{\lambda},(3.3)$ and (3.6), we obtain

$$
\begin{align*}
\left|x^{(2 k-1)}(t)\right| & =\left|\int_{T_{2 k-1}}^{t} x^{(2 k)}(s) d s\right|  \tag{3.7}\\
& \leq \int_{0}^{2 \pi}\left|-\left[\sum_{j=1}^{2 k-1} a_{j} x^{(j)}+g(t, x(t-\tau(t)))\right]+p(t)\right| d s \\
& \leq \sum_{j=1}^{n-1}\left|a_{j}\right| \sqrt{2 \pi} D_{2}+2 \pi\left[\max _{t \in R,|x| \leq D_{2}}|g(t, x)|+|p|_{\infty}\right] \\
& =: \bar{D}_{1}
\end{align*}
$$

which, together with (3.6), implies that (3.4) also holds.
If $x \in \Omega_{1}=\{x \in \operatorname{Ker} L \cap X \mid N x \in \operatorname{Im} L\}$, then there exists a constant $M_{2}$ such that

$$
\begin{equation*}
x(t) \equiv M_{2}, \quad \int_{0}^{2 \pi}\left[g\left(t, M_{2}\right)-p(t)\right] d t=0 \tag{3.8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
|x(t)| \equiv\left|M_{2}\right|<d \quad \text { for all } x \in \Omega_{1} \tag{3.9}
\end{equation*}
$$

Let $M=M_{1}+d$. Set

$$
\Omega=\left\{\left.x \in X\left|\|x\|=\sum_{j=0}^{2 k-1}\right| x^{(j)}\right|_{\infty}<M\right\}
$$

Since $N$ is $L$-compact on $\bar{\Omega}$, it is easy to see from (3.4), (3.8) and (3.9) that the conditions (1) and (2) in Lemma 2.1 hold.

Furthermore, define continuous functions $\Psi_{1}(x, \mu)$ and $\Psi_{2}(x, \mu)$ by setting, for $x \in \mathbb{R}$ and $\mu \in[0,1]$,

$$
\begin{aligned}
& \Psi_{1}(x, \mu)=-(1-\mu) x-\mu \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi}[g(t, x)-p(t)] d t \\
& \Psi_{2}(x, \mu)=(1-\mu) x-\mu \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi}[g(t, x)-p(t)] d t
\end{aligned}
$$

If $\left(H_{1}\right)$ holds, then

$$
x \Psi_{1}(x, \mu) \neq 0 \quad \text { for all } x \in \partial \Omega \cap \operatorname{Ker} L
$$

Hence, using the homotopy invariance theorem, we have

$$
\begin{aligned}
\operatorname{deg}\{Q N, \Omega \cap \operatorname{Ker} L, 0\} & =\operatorname{deg}\left\{-\frac{1}{2 \pi} \int_{0}^{2 \pi}[g(t, x)-p(t)] d t, \Omega \cap \operatorname{Ker} L, 0\right\} \\
& =\operatorname{deg}\{-x, \Omega \cap \operatorname{Ker} L, 0\} \neq 0
\end{aligned}
$$

If $\left(\mathrm{H}_{2}\right)$ holds, then

$$
x \Psi_{2}(x, \mu) \neq 0 \quad \text { for all } x \in \partial \Omega \cap \operatorname{Ker} L
$$

Hence, using the homotopy invariance theorem, we obtain

$$
\begin{aligned}
\operatorname{deg}\{Q N, \Omega \cap \operatorname{Ker} L, 0\} & =\operatorname{deg}\left\{-\frac{1}{2 \pi} \int_{0}^{2 \pi}[g(t, x)-p(t)] d t, \Omega \cap \operatorname{Ker} L, 0\right\} \\
& =\operatorname{deg}\{x, \Omega \cap \operatorname{Ker} L, 0\} \neq 0
\end{aligned}
$$

In view of the above discussion, we conclude from Lemma 2.1 that Theorem 3.1 is proved.

In view of Lemma 2.5, a similar argument leads to
Theorem 3.2. Let $\left(H_{1}\right)$ or $\left(H_{2}\right)$ hold. Assume that $k$ is odd, and either $\left(\widetilde{H}_{3}\right)$ or $\left(\widetilde{H}_{4}\right)$ is satisfied. Then (1.4) has a unique $2 \pi$-periodic solution.

We are now in a position to establish the existence and uniqueness of $2 \pi$-periodic solutions of equation (1.5). Similarly to the proof of Theorems 3.1 and 3.2 , one can prove the following results.

Theorem 3.3. Let $\left(H_{1}\right)$ or $\left(H_{2}\right)$ hold. Assume that $k$ is even, and one of the following conditions is satisfied:
$\left(H_{5}\right) g(t, x)$ is strictly monotone in $x$ and there exists a constant $b$ such that

$$
0 \leq b<\frac{A_{3}}{2 \pi}, \quad\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leq b\left|x_{1}-x_{2}\right| \text { for all } t, x_{1}, x_{2} \in \mathbb{R}
$$

$\left(H_{6}\right) g(t, x)$ is strictly monotone in $x$ and there exists a constant $b$ such that

$$
0 \leq b<\frac{A_{4}}{2 \pi}, \quad\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leq b\left|x_{1}-x_{2}\right| \text { for all } t, x_{1}, x_{2} \in \mathbb{R}
$$

Then (1.5) has a unique $2 \pi$-periodic solution.
Theorem 3.4. Let $\left(H_{1}\right)$ or $\left(H_{2}\right)$ hold. Assume that $k$ is odd, and one of the following conditions is satisfied:
$\left(\widetilde{H}_{5}\right) g(t, x)$ is strictly monotone in $x$ and there exists a constant $b$ such that
$0 \leq b<\frac{\bar{A}_{3}}{2 \pi}, \quad\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leq b\left|x_{1}-x_{2}\right|$ for all $t, x_{1}, x_{2} \in \mathbb{R} ;$
$\left(\widetilde{H}_{6}\right) g(t, x)$ is strictly monotone in $x$ and there exists a constant $b$ such that

$$
0 \leq b<\frac{\bar{A}_{4}}{2 \pi}, \quad\left|g\left(t, x_{1}\right)-g\left(t, x_{2}\right)\right| \leq b\left|x_{1}-x_{2}\right| \text { for all } t, x_{1}, x_{2} \in \mathbb{R}
$$

Then (1.5) has a unique $2 \pi$-periodic solution.

## 4. Example and remark

EXAMPLE 4.1. Let $g(t, x(t-\tau(t)))=-\frac{1}{3} x\left(t-30 e^{\sin t}\right) e^{\sin t}$ and $p(t)=$ $2 \cos t$. Then the equation

$$
\begin{equation*}
x^{(6)}+100 x^{(5)}+x^{(4)}-10 x^{(3)}+20 x^{\prime \prime}-6 x^{\prime}+g(t, x(t-\tau(t)))=e(t) \tag{4.1}
\end{equation*}
$$ has a unique $2 \pi$-periodic solution.

Proof. It is straightforward to check that the assumptions $\left(H_{2}\right)$ and $\left(\widetilde{H}_{4}\right)$ are satisfied. Therefore, by Theorem 3.2 , equation (4.1) has a unique $2 \pi$ periodic solution.

REmARK 4.1. As in $[1,2,5,6,12-14]$, the papers $[16,17]$ only study the existence of periodic solutions. Therefore, the results in $[1-6,7,9,11-$ 21] and the references therein cannot be applied to show the uniqueness of $2 \pi$-periodic solutions of equation (4.1). This implies that the results of this paper are essentially new.

## References

[1] K. J. Brown and S. S. Lin, Periodically perturbed conservative systems and a global inverse function theorem, Nonlinear Anal. 4 (1979), 193-201.
[2] T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations, Academic Press, Orlando, FL, 1985.
[3] A. Cañada and P. Martínez-Amores, Solvability of some operator equations and periodic solutions of nonlinear functional-differential equations, J. Differential Equations 49 (1983), 415-429.
[4] J. D. Cao and G. M. He, Periodic solutions for higher-order neutral differential equations with several delays, Comput. Math. Appl. 48 (2004), 1491-1503.
[5] F. Z. Cong, Periodic solutions for $2 k$ th order ordinary differential equations with nonresonance, Nonlinear Anal. 32 (1997), 787-793.
[6] F. Z. Cong, Q. D. Huang and S. Y. Shi, Existence and uniqueness of periodic solutions for $(2 n+1)$ th order differential equations, J. Math. Anal. Appl. 241 (2000), 1-9.
[7] S. Fučik and J. Mawhin, Periodic solutions of some nonlinear differential equations of higher order, Časopis Pěst. Mat. 100 (1975), 276-283.
[8] R. E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math. 568, Springer, 1977.
[9] R. Grafton, Periodic solutions of certain Liénard equations with delay, J. Differential Equations 11 (1972), 519-527.
[10] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, London, 1964.
[11] R. Iannacci and M. N. Nkashama, On periodic solutions of forced second order differential equations with deviating arguments, in: Lecture Notes in Math. 1151, Springer, 1984, 224-232.
[12] A. C. Lazer, Application of a lemma on bilinear forms to a problem in nonlinear oscillations, Proc. Amer. Math. Soc. 33 (1972), 89-94.
[13] W. G. Li, Periodic solutions for 2kth order ordinary differential equations with resonance, J. Math. Anal. Appl. 259 (2001), 157-167.
[14] Y. Li and H. Z. Wang, Periodic solutions of higher-order Duffing equations, Appl. Math. J. Chinese Univ. 6 (1991), 407-412 (in Chinese).
[15] B. W. Liu and L. H. Huang, Periodic solutions for nonlinear nth order differential equations with delays, J. Math. Anal. Appl. 313 (2006), 700-716.
[16] W. B. Liu and Y. Li, Existence of periodic solutions for higher-order Duffing equations, Acta Math. Sinica 46 (2003), 49-56 (in Chinese).
[17] Z. L. Liu, Periodic solutions for nonlinear nth order ordinary differential equations, J. Math. Anal. Appl. 204 (1996), 46-64.
[18] S. P. Lu and W. G. Ge, Periodic solutions for a kind of Liénard equations with a deviating argument, ibid. 249 (2004), 231-243.
[19] J. Mawhin, Degré topologique et solutions périodiques des systèmes différentiels non linéaires, Bull. Soc. Roy. Sci. Liège 38 (1969), 308-398.
[20] -, An extension of a theorem of A. C. Lazer on forced nonlinear oscillations, J. Math. Anal. Appl. 40 (1972), 20-29.
[21] -, L2-estimates and periodic solutions of some nonlinear differential equations, Boll. Un. Mat. Ital. (4) 10 (1974), 341-354.

National Science Library Department of Mathematics
Chinese Academy of Sciences
Beijing 100190, P.R. China
E-mail: sweiwen@amss.ac.cn
Shaoyang University

Editorial Department
Journal of Hunan University
Changsha, Hunan, 410082, P.R. China
E-mail: yalihd1969@yahoo.cn

Received 11.3.2007
and in final form 19.3.2008


[^0]:    2000 Mathematics Subject Classification: 34K15, 34C25.
    Key words and phrases: $n$th order differential equation, periodic solution, existence, uniqueness, coincidence degree, delay.

    This work was supported by the Scientific Research Fund of Hunan Provincial Natural Science Foundation of China (07JJ46001).

