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Existence and uniqueness of periodic solutions for a kind of
nonlinear nth order differential equations with delays

by Weiwen Shao (Beijing), Fuxing Zhang (Shaoyang)
and Ya Li (Changsha)

Abstract. By applying the continuation theorem of coincidence degree theory, we
establish new results on the existence and uniqueness of 2π-periodic solutions for a class
of nonlinear nth order differential equations with delays.

1. Introduction. In this paper, we study the existence and uniqueness
of 2π-periodic solutions of the nonlinear nth order delay differential equation

(1.1) x(n) +
n−1∑
j=1

ajx
(j) + g(t, x(t− τ(t))) = p(t),

where τ, p : R → R and g : R × R → R are continuous functions, τ(t) and
p(t) are 2π-periodic with respect to t, g is 2π-periodic in the first variable,
n ≥ 2 is an integer, and aj (j = 1, . . . , n− 1) are constants.

During the past thirty years, there has been a great amount of work on
the existence of periodic solutions for the higher-order Duffing equation

(1.2) x(2k) +
k−1∑
j=1

ajx
(2j) + (−1)k+1g(t, x) = 0,

or

(1.3) x(2k+1) +
k−1∑
j=1

ajx
(2j+1) + g(t, x) = 0.

Many of these results can be found in [1, 5, 6, 12–14, 16] and the references
cited therein. However, to the best of our knowledge, there exist few results
on the existence and uniqueness of 2π-periodic solutions of (1.1).
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The main purpose of this paper is to establish sufficient conditions for the
existence and uniqueness of 2π-periodic solutions of (1.1). Our results are
new and they complement previously known results. An illustrative example
is given in Section 4.

If n is even, let n = 2k; then equation (1.1) becomes

(1.4) x(2k) +
2k−1∑
j=1

ajx
(j) + g(t, x(t− τ(t))) = p(t).

If n is odd, let n = 2k + 1; then (1.1) becomes

(1.5) x(2k+1) +
2k∑
j=1

ajx
(j) + g(t, x(t− τ(t))) = p(t).

For ease of exposition, throughout this paper we will adopt the following
notations:

|x|p =
( 2π�

0

|x(t)|p dt
)1/p

, |x|∞ = max
t∈[0,2π]

|x(t)|, a+ = max{0, a},

‖x‖ =
n−1∑
j=0

|x(j)|∞, x(0) = x,

A1 = 1− a+
2(k−1) − |a2(k−2)| − · · · − |a4| − a+

2 ,

A2 = a2k−1 − a+
2k−3 − |a2k−5| − · · · − |a3| − a+

1 ,

A1 = 1− a+
2(k−1) − |a2(k−2)| − · · · − a+

4 − |a2|,

A2 = a2k−1 − a+
2k−3 − |a2k−5| − · · · − a+

3 − |a1|,

A3 = 1− a+
2k−1 − |a2k−3| − · · · − a+

3 − |a1|,

A4 = a2k − a+
2k−2 − |a2k−4| − · · · − |a4| − a+

2 ,

A3 = 1− a+
2k−1 − |a2k−3| − · · · − |a3| − a+

1 ,

A4 = a2k − a+
2k−2 − |a2k−4| − · · · − · · · − a+

4 − |a2|.

It is convenient to introduce the following assumptions:

(H1) There exists a constant d1 > 0 such that

x[g(t, x)− p(t)] > 0 for all t ∈ R, |x| ≥ d1.

(H2) There exists a constant d2 > 0 such that

x[g(t, x)− p(t)] < 0 for all t ∈ R, |x| ≥ d2.
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2. Several lemmas. Let us introduce the auxiliary equation

(2.1)λ x(n) + λ
[ n−1∑
j=1

ajx
(j) + g(t, x(t− τ(t)))

]
= λp(t), λ ∈ (0, 1).

Let
X = {x ∈ Cn−1(R,R) | x(t+ 2π) = x(t) for all t ∈ R}

and
Y = {x ∈ C(R,R) | x(t+ 2π) = x(t) for all t ∈ R}

be Banach spaces with the norms

‖x‖X = ‖x‖ =
n−1∑
j=0

|x(j)|∞ and ‖x‖Y = |x|∞ = max
t∈[0,2π]

|x(t)|.

Define a linear operator L : D(L) ⊂ X → Y by setting

D(L) = {x ∈ X | x(n) ∈ C(R,R)}
and for x ∈ D(L),

(2.2) Lx = x(n).

We also define a nonlinear operator N : X → Y by setting

(2.2)′ Nx(t) = −
[ n−1∑
j=1

ajx
(j) + g(t, x(t− τ(t)))

]
+ p(t).

It is easy to see that

KerL = R and ImL =
{
x ∈ Y

∣∣∣ 2π�

0

x(s) ds = 0
}
.

Thus L is a Fredholm operator with index zero.
Define the continuous projectors P : X → KerL and Q : Y → Y/ImL

by setting

Px(t) =
1

2π

2π�

0

x(s) ds

and

Qx(t) =
1

2π

2π�

0

x(s) ds.

Hence, ImP = KerL and KerQ = ImL. Denoting by L−1
P : ImL→ D(L)∩

KerP the inverse of L|D(L)∩KerP , one can observe that L−1
P is a compact

operator. Therefore, N is L-compact on Ω, where Ω is an open bounded
subset of X.
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In view of (2.2) and (2.2)′, the operator equation

Lx = λNx, λ ∈ (0, 1),

is equivalent to the auxiliary equation (2.1)λ.
We now recall the continuation theorem of [8].

Lemma 2.1. Let X and Y be Banach spaces. Suppose that L : D(L) ⊂
X → Y is a Fredholm operator with index zero, and N : Ω → Y is L-compact
on Ω, where Ω is an open bounded subset of X. Moreover , assume that the
following conditions are satisfied.

(1) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(2) Nx 6∈ ImL, ∀x ∈ ∂Ω ∩KerL;
(3) The Brouwer degree

deg{QN,Ω ∩KerL, 0} 6= 0.

Then the equation Lx = Nx has a solution on Ω ∩D(L).

The following lemmas will be useful to prove our main results in Sec-
tion 3.

Lemma 2.2. If x ∈ C2(R,R) and x(t+ 2π) = x(t), then

(2.3) |x′(t)|22 ≤ |x′′(t)|22.

Lemma 2.2 is known as the Wirtinger inequality; for the proof, see [10,
19, 20].

Lemma 2.3. Let (H1) or (H2) hold. If x(t) is a 2π-periodic solution of
(2.1)λ, then

(2.4) |x|∞ ≤ d+
√

2π |x′|2,

where d = d1 or d2 according to the case.

Proof. Let x(t) be a 2π-periodic solution of (2.1)λ. Integrating (2.1)λ
from 0 to 2π, we see that

(2.5)
2π�

0

[g(t, x(t− τ(t)))− p(t)] dt = 0.

Thus, there exists a ξ ∈ [0, 2π] such that

g(ξ, x(ξ − τ(ξ)))− p(ξ) = 0.

In view of (H1) or (H2), we obtain

|x(ξ − τ(ξ))| ≤ d.
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Let ξ = 2mπ + ξ̄, where ξ̄ ∈ [0, 2π] and m is an integer. Then, using the
Schwarz inequality and the relation

(2.6) |x(t)| =
∣∣∣x(ξ̄) +

t�

ξ̄

x′(s) ds
∣∣∣ ≤ d+

2π�

0

|x′(s)| ds, t ∈ [0, 2π],

we have

(2.7) |x|∞ = max
t∈[0,2π]

|x(t)| ≤ d+
√

2π |x′|2,

which implies that (2.4) is satisfied.

Lemma 2.4. Assume that k is even, and one of the following conditions
is satisfied :

(H3) g(t, x) is strictly monotone in x and there exists a constant b such
that

0 ≤ b < A1

2π
, |g(t, x1)−g(t, x2)| ≤ b|x1−x2| for all t, x1, x2 ∈ R;

(H4) g(t, x) is strictly monotone in x and there exists a constant b such
that

0 ≤ b < A2

2π
, |g(t, x1)−g(t, x2)| ≤ b|x1−x2| for all t, x1, x2 ∈ R.

Then (1.4) has at most one 2π-periodic solution.

Proof. Suppose that x1(t) and x2(t) are two 2π-periodic solutions of (1.4).
Then

(2.8) (x1(t)− x2(t))(2k) +
2k−1∑
j=1

aj(x1(t)− x2(t))(j)

+ [g(t, x1(t− τ(t)))− g(t, x2(t− τ(t)))] = 0.

Set Z(t) = x1(t)− x2(t). Then (2.8) reads

(2.9) Z(2k)(t) +
2k−1∑
j=1

ajZ
(j)(t) + [g(t, x1(t− τ(t)))− g(t, x2(t− τ(t)))] = 0.

Integrating (2.9) from 0 to 2π, we have
2π�

0

[g(t, x1(t− τ(t)))− g(t, x2(t− τ(t)))] dt = 0.

Thus, in view of the integral mean value theorem, there exists a constant
γ ∈ [0, 2π] such that

(2.10) g(γ, x1(γ − τ(γ)))− g(γ, x2(γ − τ(γ))) = 0.
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Let γ − τ(γ) = m12π + γ̃, where γ̃ ∈ [0, 2π] and m1 is an integer. Then
(2.10), together with (H3) (or (H4)), implies that

(2.11) Z(γ̃) = x1(γ̃)− x2(γ̃) = x1(γ − τ(γ))− x2(γ − τ(γ)) = 0.

Hence,

|Z(t)| =
∣∣∣Z(γ̃) +

t�

eγ Z
′(s) ds

∣∣∣ ≤ 2π�

0

|Z ′(s)| ds, t ∈ [0, 2π],

and

(2.12) |Z|∞ ≤
√

2π |Z ′|2.
Now we consider two cases.

Case (i): (H3) holds. Multiplying (2.9) by Z(2k)(t) and then integrating
from 0 to 2π, in view of (2.3), (2.9) and the Schwarz inequality, we have

(2.13) A1|Z(2k)|22 = A1

2π�

0

|Z(2k)(t)|2dt

= (1− a+
2(k−1) − |a2(k−2)| − · · · − |a4| − a+

2 )
2π�

0

|Z(2k)(t)|2 dt

≤
2π�

0

|Z(2k)(t)|2 dt+
2π�

0

[−a+
2(k−1)|Z

(2k−1)(t)|2 − |a2(k−2)| |Z(2k−2)(t)|2

− · · · − |a4| |Z(k+2)(t)|2 − a+
2 |Z

(k+1)(t)|2] dt

≤
2π�

0

|Z(2k)(t)|2 dt+
2π�

0

2k−1∑
j=1

ajZ
(j)(t)Z(2k)(t) dt

= −
2π�

0

[g(t, x1(t− τ(t)))− g(t, x2(t− τ(t)))]Z(2k)(t) dt

≤ b
2π�

0

|x1(t− τ(t))− x2(t− τ(t))| |Z(2k)(t)| dt.

From (2.3), (2.12) and the Schwarz inequality, (2.13) implies that

A1|Z(2k)|22 ≤ b|Z|∞
√

2π |Z(2k)|2 ≤ b
√

2π |Z ′|2
√

2π |Z(2k)|2(2.14)

≤ 2πb|Z(2k)|22.
Since Z(t), Z ′(t), . . . , Z(2k)(t) are 2π-periodic and continuous functions, in
view of (H3), (2.11) and (2.14), we have

Z(t) ≡ Z ′(t) ≡ · · · ≡ Z(2k)(t) ≡ 0 for all t ∈ R.
Thus, x1(t) ≡ x2(t) for all t ∈ R.
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Case (ii): (H4) holds. Multiplying (2.9) by Z(2k−1)(t) and then integrat-
ing from 0 to 2π, in view of (2.3), (2.9), (2.12) and the Schwarz inequality,
we get

(2.15) A2|Z(2k−1)|22 = A2

2π�

0

|Z(2k−1)(t)|2 dt

= (a2k−1 − a+
2k−3 − |a2k−5| − · · · − |a3| − a+

1 )
2π�

0

|Z(2k−1)(t)|2 dt

≤ a2k−1

2π�

0

|Z(2k−1)(t)|2 dt+
2π�

0

[−a+
2k−3|Z

(2k−2)(t)|2 − |a2k−5| |Z(2k−3)(t)|2

− · · · − |a3| |Z(k+1)(t)|2 − a+
1 |Z

(k)(t)|2] dt

≤ a2k−1

2π�

0

|Z(2k−1)(t)|2 dt+
2π�

0

2k−2∑
j=1

ajZ
(j)(t)Z(2k−1)(t) dt

= −
2π�

0

[g(t, x1(t− τ(t)))− g(t, x2(t− τ(t)))]Z(2k−1)(t) dt

≤ b
2π�

0

|x1(t− τ(t))− x2(t− τ(t))| |Z(2k−1)(t)| dt ≤ 2πb|Z(2k−1)|22.

From (2.11) and (H4), (2.15) implies that

Z(t) ≡ Z ′(t) ≡ · · · ≡ Z(2k−1)(t) ≡ 0 for all t ∈ R.
Hence, x1(t) ≡ x2(t) for all t ∈ R. The proof of Lemma 2.4 is now complete.

In a similar fashion we can show the following:

Lemma 2.5. Assume that k is odd , and one of the following conditions
is satisfied :

(H̃3) g(t, x) is strictly monotone in x and there exists a constant b such
that

0 ≤ b < A1

2π
, |g(t, x1)−g(t, x2)| ≤ b|x1−x2| for all t, x1, x2 ∈ R;

(H̃4) g(t, x) is strictly monotone in x and there exists a constant b such
that

0 ≤ b < A2

2π
, |g(t, x1)−g(t, x2)| ≤ b|x1−x2| for all t, x1, x2 ∈ R.

Then (1.4) has at most one 2π-periodic solution.
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3. Main results

Theorem 3.1. Let (H1) or (H2) hold. Assume that k is even, and either
(H3) or (H4) is satisfied. Then (1.4) has a unique 2π-periodic solution.

Proof. By Lemma 2.4, we only have to prove the existence. To do this,
we shall apply Lemma 2.1. First, we claim that all 2π-periodic solutions of
(2.1)λ are bounded. We consider two cases.

Case (1): (H3) holds. Let x(t) be a 2π-periodic solution of (2.1)λ. Mul-
tiplying (2.1)λ by x(2k)(t) and then integrating from 0 to 2π, in view of (2.3),
(2.4), (H3) and the Schwarz inequality, we have

(3.1) A1|x(2k)|22 = (1− a+
2(k−1)− |a2(k−2)| − · · · − |a4| − a+

2 )
2π�

0

|x(2k)(t)|2 dt

≤
2π�

0

|x(2k)(t)|2 dt+
2π�

0

λ[−a+
2(k−1)|x

(2k−1)(t)|2 − |a2(k−2)| |x(2k−2)(t)|2

− · · · − |a4| |x(k+2)(t)|2 − a+
2 |x

(k+1)(t)|2] dt

≤
2π�

0

|x(2k)(t)|2 dt+ λ

2π�

0

2k−1∑
j=1

ajx
(j)(t)x(2k)(t) dt

= −
2π�

0

g(t, x(t− τ(t)))x(2k)(t) dt+
2π�

0

p(t)x(2k)(t) dt

≤
2π�

0

[|g(t, x(t− τ(t)))− g(t, 0)|+ |g(t, 0)|] |x(2k)(t)| dt

+
2π�

0

|p(t)| |x(2k)(t)| dt

≤ b
2π�

0

|x(t− τ(t))| |x(2k)(t)| dt+
2π�

0

|g(t, 0)| |x(2k)(t)| dt

+
2π�

0

|p(t)| |x(2k)(t)| dt

≤ b
√

2π |x′|2
√

2π |x(2k)|2 + [bd+ max
0≤t≤2π

|g(t, 0)|+ |p|∞]
√

2π |x(2k)|2

≤ 2πb|x(2k)|22 + [bd+ max
0≤t≤2π

|g(t, 0)|+ |p|∞]
√

2π |x(2k)|2.

Since b < A1/2π, (2.3), (2.4) and (3.1) imply that there exists a constant
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D1 > 0 such that

(3.2)
|x(j)|2 ≤ |x(2k)|2 ≤ D1, j = 1, . . . , 2k − 1,
|x|∞ ≤ d+

√
2π |x′|2 ≤ D1.

For j = 1, . . . , 2k − 1, noting that x(j)(t) are 2π-periodic, there exists a
Tj ∈ (0, 2π) such that x(j+1)(Tj) = 0. Therefore,

|x(j)(t)| =
∣∣∣ t�
Tj

x(j+1)(s) ds
∣∣∣ ≤ √2π

( 2π�

0

|x(j+1)(s)|2 ds
)1/2

(3.3)

≤
√

2π |x(j+1)|2 ≤
√

2πD1.

Therefore, for all possible 2π-periodic solutions x(t) of (2.1)λ, there exists a
constant M1 such that

(3.4) ‖x‖ =
2k−1∑
j=0

|x(j)|∞ < M1,

with M1 > 0 independent of λ.

Case (2): (H4) holds. Let x(t) be a 2π-periodic solution of (2.1)λ. Mul-
tiplying (2.1)λ by x(2k−1)(t) and then integrating from 0 to 2π, by (H4),
(2.3), (2.4) and the Schwarz inequality, we have
(3.5) A2|x(2k−1)|22

= (a2k−1 − a+
2k−3 − |a2k−5| − · · · − |a3| − a+

1 )
2π�

0

|x(2k−1)(t)|2 dt

≤ a2k−1

2π�

0

|x(2k−1)(t)|2 dt+
2π�

0

[−a+
2k−3|x

(2(k−1)(t)|2 − |a2k−5| |x(2k−3)(t)|2

− · · · − |a3| |x(k+1)(t)|2 − a+
1 |x

(k)(t)|2] dt

≤ a2k−1

2π�

0

|x(2k−1)(t)|2 dt+
2π�

0

2k−1∑
j=1

ajx
(j)(t)x(2k−1)(t) dt

= −
2π�

0

g(t, x(t− τ(t)))x(2k−1)(t) dt+
2π�

0

p(t)x(2k−1)(t) dt

≤ b
2π�

0

|x(t− τ(t))| |x(2k−1)(t)| dt+
2π�

0

|g(t, 0)| |x(2k−1)(t)| dt

+
2π�

0

|p(t)| |x(2k−1)(t)| dt

≤ 2πb|x′|2|x(2k−1)|2 + [bd+ max
0≤t≤2π

|g(t, 0)|+ |p|∞]
√

2π |x(2k−1)|2

≤ 2πb|x(2k−1)|22 + [bd+ max
0≤t≤2π

|g(t, 0)|+ |p|∞]
√

2π |x(2k−1)|2.



24 W. W. Shao et al.

Since b < A2/2π, (2.3), (2.4) and (3.5) imply that there exists a constant
D2 > 0 such that

(3.6)
|x(j)|2 ≤ |x(2k−1)|2 ≤ D2, j = 1, 2, . . . , 2k − 2,

|x|∞ ≤ d+
√

2π |x′|2 ≤ D2.

From (2.1)λ, (3.3) and (3.6), we obtain

|x(2k−1)(t)| =
∣∣∣ t�

T2k−1

x(2k)(s) ds
∣∣∣(3.7)

≤
2π�

0

∣∣∣−[ 2k−1∑
j=1

ajx
(j) + g(t, x(t− τ(t)))

]
+ p(t)

∣∣∣ ds
≤

n−1∑
j=1

|aj |
√

2πD2 + 2π[ max
t∈R, |x|≤D2

|g(t, x)|+ |p|∞]

=: D1,

which, together with (3.6), implies that (3.4) also holds.
If x ∈ Ω1 = {x ∈ KerL ∩X | Nx ∈ ImL}, then there exists a constant

M2 such that

(3.8) x(t) ≡M2,

2π�

0

[g(t,M2)− p(t)] dt = 0.

Thus,

(3.9) |x(t)| ≡ |M2| < d for all x ∈ Ω1.

Let M = M1 + d. Set

Ω =
{
x ∈ X

∣∣∣ ‖x‖ =
2k−1∑
j=0

|x(j)|∞ < M
}
.

Since N is L-compact on Ω, it is easy to see from (3.4), (3.8) and (3.9) that
the conditions (1) and (2) in Lemma 2.1 hold.

Furthermore, define continuous functions Ψ1(x, µ) and Ψ2(x, µ) by set-
ting, for x ∈ R and µ ∈ [0, 1],

Ψ1(x, µ) = −(1− µ)x− µ · 1
2π

2π�

0

[g(t, x)− p(t)] dt,

Ψ2(x, µ) = (1− µ)x− µ · 1
2π

2π�

0

[g(t, x)− p(t)] dt.
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If (H1) holds, then

xΨ1(x, µ) 6= 0 for all x ∈ ∂Ω ∩KerL.

Hence, using the homotopy invariance theorem, we have

deg{QN,Ω ∩KerL, 0} = deg
{
− 1

2π

2π�

0

[g(t, x)− p(t)] dt,Ω ∩KerL, 0
}

= deg{−x,Ω ∩KerL, 0} 6= 0.

If (H2) holds, then

xΨ2(x, µ) 6= 0 for all x ∈ ∂Ω ∩KerL.

Hence, using the homotopy invariance theorem, we obtain

deg{QN,Ω ∩KerL, 0} = deg
{
− 1

2π

2π�

0

[g(t, x)− p(t)] dt, Ω ∩KerL, 0
}

= deg{x,Ω ∩KerL, 0} 6= 0.

In view of the above discussion, we conclude from Lemma 2.1 that Theorem
3.1 is proved.

In view of Lemma 2.5, a similar argument leads to

Theorem 3.2. Let (H1) or (H2) hold. Assume that k is odd , and either
(H̃3) or (H̃4) is satisfied. Then (1.4) has a unique 2π-periodic solution.

We are now in a position to establish the existence and uniqueness of
2π-periodic solutions of equation (1.5). Similarly to the proof of Theorems
3.1 and 3.2, one can prove the following results.

Theorem 3.3. Let (H1) or (H2) hold. Assume that k is even, and one
of the following conditions is satisfied :

(H5) g(t, x) is strictly monotone in x and there exists a constant b such
that

0 ≤ b < A3

2π
, |g(t, x1)−g(t, x2)| ≤ b|x1−x2| for all t, x1, x2 ∈ R;

(H6) g(t, x) is strictly monotone in x and there exists a constant b such
that

0 ≤ b < A4

2π
, |g(t, x1)−g(t, x2)| ≤ b|x1−x2| for all t, x1, x2 ∈ R.

Then (1.5) has a unique 2π-periodic solution.

Theorem 3.4. Let (H1) or (H2) hold. Assume that k is odd , and one
of the following conditions is satisfied :
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(H̃5) g(t, x) is strictly monotone in x and there exists a constant b such
that

0 ≤ b < A3

2π
, |g(t, x1)−g(t, x2)| ≤ b|x1−x2| for all t, x1, x2 ∈ R;

(H̃6) g(t, x) is strictly monotone in x and there exists a constant b such
that

0 ≤ b < A4

2π
, |g(t, x1)−g(t, x2)| ≤ b|x1−x2| for all t, x1, x2 ∈ R.

Then (1.5) has a unique 2π-periodic solution.

4. Example and remark

Example 4.1. Let g(t, x(t − τ(t))) = −1
3x(t − 30esin t)esin t and p(t) =

2 cos t. Then the equation

(4.1) x(6) + 100x(5) + x(4) − 10x(3) + 20x′′ − 6x′ + g(t, x(t− τ(t))) = e(t)

has a unique 2π-periodic solution.

Proof. It is straightforward to check that the assumptions (H2) and (H̃4)
are satisfied. Therefore, by Theorem 3.2, equation (4.1) has a unique 2π-
periodic solution.

Remark 4.1. As in [1, 2, 5, 6, 12–14], the papers [16, 17] only study
the existence of periodic solutions. Therefore, the results in [1–6, 7, 9, 11–
21] and the references therein cannot be applied to show the uniqueness of
2π-periodic solutions of equation (4.1). This implies that the results of this
paper are essentially new.
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[19] J. Mawhin, Degré topologique et solutions périodiques des systèmes différentiels non
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