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Carathéodory solutions of hyperbolic
functional differential inequalities

with first order derivatives

by Adrian Karpowicz (Gdańsk)

Abstract. We consider the Darboux problem for a functional differential equation:

∂2u

∂x∂y
(x, y) = f

„
x, y, u(x,y), u(x, y),

∂u

∂x
(x, y),

∂u

∂y
(x, y)

«
a.e. in [0, a]× [0, b],

u(x, y) = ψ(x, y) on [−a0, a]× [−b0, b] \ (0, a]× (0, b],

where the function u(x,y) : [−a0, 0]×[−b0, 0]→Rk is defined by u(x,y)(s, t) = u(s+ x, t+ y)
for (s, t) ∈ [−a0, 0]× [−b0, 0]. We give a few theorems about weak and strong inequalities
for this problem. We also discuss the case where the right-hand side of the differential
equation is linear.

1. Introduction. Put I = [0, a] × [0, b], D = [−a0, 0] × [−b0, 0],
I∗ = [−a0, a] × [−b0, b], I0 = I∗ \ I. We always assume that a, b > 0 and
a0, b0 ∈ R+, where R+ = [0,+∞). We denote by C(D,Rk) and L1(D,Rk)
the spaces of continuous functions and of Lebesgue integrable functions from
D into Rk, respectively. The symbol | · | denotes the maximum norm in Rk.
Moreover, ‖w‖0 denotes the usual supremum norm of w ∈ C(D,Rk). The
inequality x < y in Rk means that xi < yi for each i ∈ {1, . . . , k}, and
similarly for “≥”, “>” and “≤”. A function f = (f1, . . . , fk) : I ×C(D,Rk)×
Rk × Rk × Rk → Rk of the variables (x, y, ω, η, µ, ν) is said to be quasi-
monotonically nondecreasing with respect to η if each fi is nondecreasing
with respect to every ηj for j 6= i. This function is said to be nondecreasing
with respect to the functional argument ω if the inequality ω1 ≤ ω2 im-
plies that f(x, y, ω1, η, µ, ν) ≤ f(x, y, ω2, η, µ, ν). Here ω1 ≤ ω2 means that
ω1(s, t) ≤ ω2(s, t) for all (s, t) ∈ D.
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We consider the linear problem

(1)

∂2u

∂x∂y
(x, y) = C(x, y)u(x, y) +M(x, y)

∂u

∂x
(x, y)

+N(x, y)
∂u

∂y
(x, y) + P (x, y)u(x,y) a.e. in I,

u(x, y) = ψ(x, y) on I0,

where P (x, y) : C(D,Rk)→ Rk is a linear operator for every (x, y) ∈ I and
C, M , N are square k × k matrices.

We also consider the nonlinear problem

∂2u

∂x∂y
(x, y) = f

(
x, y, u(x,y), u(x, y),

∂u

∂x
(x, y),

∂u

∂y
(x, y)

)
a.e. in I,

u(x, y) = ψ(x, y) on I0,

where f : I × C(D,Rk)× Rk × Rk × Rk → Rk.
In both problems, u(x,y) : D → Rk is defined by the formula u(x,y)(s, t) =

u(s+ x, t+ y) for (s, t) ∈ D and ψ : I0 → Rk is a given continuous function.
By a solution of the problem we mean an absolutely continuous function on I
and continuous on I∗ which has the derivatives ∂u/∂x, ∂u/∂y, ∂2u/∂x∂y
almost everywhere on I, which satisfies the differential equation almost ev-
erywhere on I and the initial condition everywhere on I0. Now we give two
examples of the operator P (x, y).

Example 1. Let P̃ (x, y) = (p̃ij(x, y))ki,j=1 be a square k × k matrix,
where p̃ij ∈ L1(I,R), γ1 : I → [−a0, a], γ2 : I → [−b0, b] and (γ1(x, y) −
x, γ2(x, y) − y) ∈ D for all (x, y) ∈ I. If for every (x, y) ∈ I, we define the
operator P (x, y) : C(D,Rk)→ Rk by the formula

P (x, y)w = P̃ (x, y)w(γ1(x, y)− x, γ2(x, y)− y),

then
P (x, y)u(x,y) = P̃ (x, y)u(γ1(x, y), γ2(x, y)).

Consequently, as a special case of (1) we get the following equation with a
deviated argument:

∂2u

∂x∂y
(x, y) = C(x, y)u(x, y) +M(x, y)

∂u

∂x
(x, y)

+N(x, y)
∂u

∂y
(x, y) + P̃ (x, y)u(γ1(x, y), γ2(x, y)) a.e. in I.

If we want to get an integro-differential equation then for every (x, y) ∈ I,
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we define

P (x, y)w = P̃ (x, y)
0�

−a0

0�

−b0

w(s, t) ds dt,

and consequently we have

P (x, y)u(x,y) = P̃ (x, y)
x�

x−a0

y�

y−b0

u(s, t) ds dt.

This paper is devoted to the study of hyperbolic functional differential
inequalities for the Darboux problem. In each section we consider both the
linear and nonlinear problems. For the nonlinear problem we always assume
that f satisfies the Lipschitz condition. In most of the presented theorems we
consider the case of weak inequalities. In the last section we study strongly
monotone flows. In [4] we considered a simpler Darboux problem, where f
was independent of ∂u/∂x and ∂u/∂y. Theorems about ordinary differential
inequalities can be found in [3], [5]–[9], and for hyperbolic inequalities in [1],
[2], [4], [5], [9].

2. Weak inequalities. In this section we will be concerned with weak
inequalities for the linear and nonlinear problems.

Theorem 1 (nonnegativity). Suppose that :

(I) For every (x, y) ∈ I we have a linear map P (x, y) from C(D,Rk)
into Rk which is positive in the sense that w≥0 implies P (x, y)w≥0
for (x, y) ∈ I.

(II) C(x, y) = (cij(x, y))ki,j=1, M(x, y) = (mij(x, y))ki,j=1, N(x, y) =
(nij(x, y))ki,j=1 are k × k matrices, where cij ,mij , nij ∈ L1(I,R)
and mij(x, y), nij(x, y) ≥ 0 a.e. in I for i 6= j. There is a function
l ∈ L1(I,R) such that

l(x, y) ≥ 3
x�

0

l(z, y) dz
y�

0

l(x, z) dz a.e. in I,

|P (x, y)w| ≤ l(x, y)‖w‖0 and |cij(x, y)| ≤ l(x, y) a.e. in I,

cij(x, y) ≥ 2
x�

0

l(z, y) dz
y�

0

l(x, z) dz a.e. in I for i 6= j,

cii(x, y) ≥ −l(x, y) + 3
x�

0

l(z, y) dz
y�

0

l(x, z) dz a.e. in I,

|mij(x, y)| ≤
x�

0

l(z, y) dz, |nij(x, y)| ≤
y�

0

l(x, z) dz a.e. in I,

where i, j = 1, . . . , k.
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(III) u is a function absolutely continuous on I and continuous on I∗;
∂u/∂x, ∂u/∂y, ∂2u/∂x∂y exist a.e. on I; ∂u/∂x is continuous with
respect to the second variable on I; and ∂u/∂y is continuous with
respect to the first variable on I. Furthermore,

∂2u

∂x∂y
(x, y) ≥ C(x, y)u(x, y) +M(x, y)

∂u

∂x
(x, y)

+N(x, y)
∂u

∂y
(x, y) + P (x, y)u(x,y) a.e. in I,(2)

u(x, y) ≥ 0 on I0,
∂u

∂x
(x, 0) ≥ 0 on [0, a],

∂u

∂y
(0, y) ≥ 0 on [0, b].

Then u(x, y) ≥ 0 on I.

Proof. Let v(x, y) = eH(x,y)u(x, y), where

H(x, y) =
x�

0

y�

0

h(z1, z2) dz2 dz1 for (x, y) ∈ I∗,

h(x, y) =

{
l(x, y) for (x, y) ∈ I
0 for (x, y) ∈ I∗ \ I.

From (2) and

∂u

∂x
(x, y) = e−H(x,y)

{
∂v

∂x
(x, y)−

y�

0

l(x, z) dz v(x, y)
}
,

∂u

∂y
(x, y) = e−H(x,y)

{
∂v

∂y
(x, y)−

x�

0

l(z, y) dz v(x, y)
}
,

we get
∂2v

∂x∂y
(x, y) ≥ C̃(x, y)v(x, y) + M̃(x, y)

∂v

∂x
(x, y)

+ Ñ(x, y)
∂v

∂y
(x, y) +Q(x, y)(e−Hv)(x,y),

where

C̃(x, y) = C(x, y) +
[
l(x, y)−

x�

0

l(z, y) dz
y�

0

l(x, z) dz
]
E

−
y�

0

l(x, z) dzM(x, y)−
x�

0

l(z, y) dz N(x, y),

M̃(x, y) = M(x, y) +
x�

0

l(z, y) dz E,
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Ñ(x, y) = N(x, y) +
y�

0

l(x, z) dz E,

Q(x, y)w = eH(x,y)P (x, y)w,

and E denotes the unit matrix.
Note that C̃(x, y), M̃(x, y), Ñ(x, y) ≥ 0, and that Q(x, y) is a linear and

positive operator from C(D,Rk) into Rk for every (x, y) ∈ I.
Define % : I∗ → R by %(x, y) = e2(k+2)H(x,y)+x+y, and r : I∗ → Rk by

r(x, y) = (%(x, y), . . . , %(x, y)). Then

∂2r

∂x∂y
(x, y) = 2(k + 2)l(x, y)r(x, y) + 4(k + 2)2

x�

0

l(z, y) dz
y�

0

l(x, z) dz r(x, y)

+ 2(k + 2)
x�

0

l(z, y) dz r(x, y) + 2(k + 2)
y�

0

l(x, z) dz r(x, y) + r(x, y),

Q(x, y)(e−Hr)(x,y) = eH(x,y)P (x, y)(e−Hr)(x,y).

Using suitable estimates for C̃(x, y), M̃(x, y), Ñ(x, y) and P (x, y), we get

0 ≤ C̃(x, y)r(x, y) ≤
{

(k + 1)l(x, y) + (2k − 1)
x�

0

l(z, y) dz
y�

0

l(x, z) dz
}
r(x, y),

0 ≤ M̃(x, y)
∂r

∂x
(x, y) ≤

{
2(k + 2)(k + 1)

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ (k + 1)
x�

0

l(z, y) dz
}
r(x, y),

0 ≤ Ñ(x, y)
∂r

∂y
(x, y) ≤

{
2(k + 2)(k + 1)

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ (k + 1)
y�

0

l(x, z) dz
}
r(x, y),

|Q(x, y)(e−Hr)(x,y)| ≤ eH(x,y)l(x, y)‖e(2k+3)H(x,y)+x+y‖0 ≤ l(x, y)r(x, y).
Thus

C̃(x, y)r(x, y) + M̃(x, y)
∂r

∂x
(x, y) + Ñ(x, y)

∂r

∂y
(x, y) +Q(x, y)(e−Hr)(x,y)

≤ (k + 2)l(x, y)r(x, y) + (4k2 + 14k + 7)
x�

0

l(z, y) dz
y�

0

l(x, z) dz r(x, y)

+ (k + 1)
x�

0

l(z, y) dz r(x, y) + (k + 1)
y�

0

l(x, z) dz r(x, y) ≤ ∂2r

∂x∂y
(x, y).



58 A. Karpowicz

For each ε > 0, define vε(x, y) = v(x, y) + εr(x, y). From linearity of Q(x, y)
we obtain

∂2vε
∂x∂y

(x, y) ≥ C̃(x, y)vε(x, y) + M̃(x, y)
∂vε
∂x

(x, y)(3)

+ Ñ(x, y)
∂vε
∂y

(x, y) +Q(x, y)(e−Hvε)(x,y).

Since vε(x, y) = v(x, y) + εr(x, y), we have

∂vε
∂x

(x, y) = eH(x,y) ∂u

∂x
(x, y) +

y�

0

l(x, z) dz eH(x,y)u(x, y)

+ ε
[
2(k + 2)

y�

0

l(x, z) dz + 1
]
r(x, y),

∂vε
∂y

(x, y) = eH(x,y) ∂u

∂y
(x, y) +

x�

0

l(z, y) dz eH(x,y)u(x, y)

+ ε
[
2(k + 2)

x�

0

l(z, y) dz + 1
]
r(x, y).

Note that

vε(x, y) > 0 on I0,
∂vε
∂x

(x, 0) > 0 on [0, a],
∂vε
∂y

(0, y) > 0 on [0, b].

Since vε is continuous and ∂vε/∂x is continuous with respect to the second
variable and ∂vε/∂y is continuous with respect to the first variable on I, we
see that there exists c > 0 such that

vε(x, y) > 0 on Ic = I∗ \ (c, a]× (c, b],
∂vε
∂x

(x, y) > 0 on [0, a]× [0, c],

∂vε
∂y

(x, y) > 0 on [0, c]× [0, b].

Thus all terms on the right hand side of (3) are nonnegative on [0, c]× [0, c].
Therefore ∂2vε/∂x∂y ≥ 0 on I \(c, a]×(c, b]. Integrating this inequality with
respect to y we see that ∂vε/∂x is nondecreasing with respect to the second
variable. Similarly, ∂vε/∂y is nondecreasing with respect to the first variable
on [0, c] × [0, c]. Next we find that vε, ∂vε/∂x, ∂vε/∂y are nonnegative and
nondecreasing with respect to appropriate variables on Ic \ (I∗ \ I). We
continue in this fashion to deduce that vε, ∂vε/∂x, ∂vε/∂y are nonnegative
and nondecreasing with respect to appropriate variables on I. Letting ε→ 0
we conclude that v ≥ 0, which implies that u ≥ 0 on I.
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Remark 1. Since vε, ∂vε/∂x, ∂vε/∂y > 0 on I, we have v ≥ 0 on I and
∂v/∂x, ∂v/∂y ≥ 0 a.e. on I. Furthermore, v is absolutely continuous, which
implies that it is nondecreasing with respect to the first and second variables.
Since u(x, y) = e−H(x,y)v(x, y) it follows that there are disjoint index sets
α and β such that α ∪ β = {1, . . . , k} and ui(x, y) > 0 on I∗ \ I0 for i ∈ α
and uj(x, y) = 0 on Aj , uj(x, y) > 0 on Bj for j ∈ β. Here Aj and Bj are
disjoint sets such that Aj ∪ Bj = I and [R2

+ + (x0, y0)] ∩ I ⊂ Bj for each
(x0, y0) ∈ Aj ∩Bj .

Remark 2. From the proof of Theorem 1 it follows that

∂u

∂x
(x, y) +

y�

0

l(x, z) dz u(x, y) ≥ 0 a.e. in I,

∂u

∂y
(x, y) +

x�

0

l(z, y) dz u(x, y) ≥ 0 a.e. in I.

Theorem 2 (weak inequalities). Suppose that :

(I) The function f : I × C(D,Rk) × Rk × Rk × Rk → Rk of the vari-
ables (x, y, ω, η, µ, ν) is nondecreasing with respect to ω, µ, ν and
quasimonotone nondecreasing with respect to η.

(II) For each A > 0 there exists a function l ∈ L1(I,R) such that

l(x, y) ≥ 3
x�

0

l(z, y) dz
y�

0

l(x, z) dz a.e. on I,

(4) |fi(x, y, ω, η, µ, ν)− fi(x, y, ω, η, µ, ν)| ≤ l(x, y)(‖ω − ω‖0 + |η − η|)

+
x�

0

l(z, y) dz |µ− µ|+
y�

0

l(x, z) dz |ν − ν|,

(5) fi(x, y, ω, η, µ, ν)− fi(x, y, ω, η, µ, ν)

≥
[
−l(x, y) + 3

x�

0

l(z, y) dz
y�

0

l(x, z) dz
]
(ηi − ηi)

+ 2
x�

0

l(z, y) dz
y�

0

l(x, z) dz |η − η|i,

for ‖ω‖0, ‖ω‖0, |η|, |η| ≤ A and η ≤ η, where |u|i = max{|uj | : j 6= i}.

(III) w, v are functions absolutely continuous on I and continuous on I∗;
∂w/∂x, ∂v/∂x, ∂w/∂y, ∂v/∂y, ∂2w/∂x∂y, ∂2v/∂x∂y exist a.e.
on I; ∂w/∂x, ∂v/∂x are continuous with respect to the second vari-
able on I; and ∂w/∂y, ∂v/∂y are continuous with respect to the first
variable on I. Furthermore,
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∂2v

∂x∂y
(x, y) ≤ f

(
x, y, v(x,y), v(x, y),

∂v

∂x
(x, y),

∂v

∂y
(x, y)

)
and

∂2w

∂x∂y
(x, y) ≥ f

(
x, y, w(x,y), w(x, y),

∂w

∂x
(x, y),

∂w

∂y
(x, y)

)
a.e. in I,

v(x, y) ≤ w(x, y) on I0,
∂v

∂x
(x, 0) ≤ ∂w

∂x
(x, 0) on [0, a],

∂v

∂y
(0, y) ≤ ∂w

∂y
(0, y) on [0, b].

Then v(x, y) ≤ w(x, y) on I.

Proof. Suppose |v(x, y)|, |w(x, y)| ≤ A − 1 for all (x, y) ∈ I and l be
the function in (II) corresponding to A. Define V (x, y) = eH(x,y)v(x, y) and
W (x, y) = eH(x,y)w(x, y), where H(x, y) is as in the proof of Theorem 1.
Then
∂2V

∂x∂y
(x, y) ≤ eH(x,y)f

(
x, y, v(x,y), v(x, y),

∂v

∂x
(x, y),

∂v

∂y
(x, y)

)
+ eH(x,y)

[
l(x, y) +

x�

0

l(z, y) dz
y�

0

l(x, z) dz
]
v(x, y)

+ eH(x,y)
x�

0

l(z, y) dz
∂v

∂x
(x, y) + eH(x,y)

y�

0

l(x, z) dz
∂v

∂y
(x, y).

From

∂v

∂x
(x, y) = e−H(x,y)

(
∂V

∂x
(x, y)−

y�

0

l(x, z) dz V (x, y)
)
,

∂v

∂y
(x, y) = e−H(x,y)

(
∂V

∂y
(x, y)−

x�

0

l(z, y) dz V (x, y)
)
,

we have
∂2V

∂x∂y
(x, y) ≤ eH(x,y)(Gv)(x, y),

where

(Gv)(x, y) = f

(
x, y, v(x,y), v(x, y),

∂v

∂x
(x, y),

∂v

∂y
(x, y)

)
+ l1(x, y)v(x, y)

+ e−H(x,y)l2(x, y)
∂V

∂x
(x, y) + e−H(x,y)l3(x, y)

∂V

∂y
(x, y),

with

l1(x, y) = l(x, y)−
x�

0

l(z, y) dz
y�

0

l(x, z) dz,

l2(x, y) =
x�

0

l(z, y) dz, l3(x, y) =
y�

0

l(x, z) dz.
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Similarly, we get
∂2W

∂x∂y
(x, y) ≥ eH(x,y)(Gw)(x, y),

where (Gw)(x, y) is defined by a formula similar to that for (Gv)(x, y).
Fix an arbitrary point (x0, y0) ∈ I. We will show that if

v(x, y) ≤ w(x, y) for (x, y) ∈ [x0 − a0, x0]× [y0 − b0, y0]

and

(6)
∂V

∂x
(x0, y0) ≤

∂W

∂x
(x0, y0) and

∂V

∂y
(x0, y0) ≤

∂W

∂y
(x0, y0),

then

(7) (Gv)(x0, y0) ≤ (Gw)(x0, y0).

Let T denote the index set such that
∂vj
∂x

(x0, y0) ≤
∂wj
∂x

(x0, y0) for j ∈ T ,

and R denote the index set such that
∂vj
∂y

(x0, y0) ≤
∂wj
∂y

(x0, y0) for j ∈ R.

Furthermore, set T ′ = {1, . . . , k} \ T and R′ = {1, . . . , k} \R. Some of these
sets may be empty. Let (wT (x0, y0), vT

′
(x0, y0)) ∈ Rk denote the vector

whose jth coordinate is wj(x0, y0) if j ∈ T , and vj(x0, y0) if j ∈ T ′. Moreover,
|u|S = max{|uj | : j ∈ S}, where S is some index set.

From (6) it follows that

∂v

∂x
(x0, y0)−

∂w

∂x
(x0, y0) ≤

y0�

0

l(x0, z) dz (w(x0, y0)− v(x0, y0)),

∂v

∂y
(x0, y0)−

∂w

∂y
(x0, y0) ≤

x0�

0

l(z, y0) dz (w(x0, y0)− v(x0, y0)).

Therefore for j ∈ T ′ and k ∈ R′ we have∣∣∣∣∂vj∂x (x0, y0)−
∂wj
∂x

(x0, y0)
∣∣∣∣ ≤ y0�

0

l(x0, z) dz (wj(x0, y0)− vj(x0, y0)),(8)

∣∣∣∣∂vk∂y (x0, y0)−
∂wk
∂y

(x0, y0)
∣∣∣∣ ≤ x0�

0

l(z, y0) dz (wk(x0, y0)− vk(x0, y0)).(9)

In order to prove (6)⇒(7) we will use the monotonicity of f with respect to
ω, µ, ν, quasimonotonicity of f with respect to η, assumptions (4), (5), and
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inequalities (8), (9). Then

(Gv)i(x0, y0)

≤ fi
(
x0, y0, w(x0,y0), v(x0, y0),

∂(wT , vT
′
)

∂x
(x0, y0),

∂(wR, vR
′
)

∂y
(x0, y0)

)
+
(
l(x0, y0)−

x0�

0

l(z, y0) dz
y0�

0

l(x0, z) dz
)
vi(x0, y0)

+ e−H(x0,y0)l2(x0, y0)
∂Wi

∂x
(x0, y0) + e−H(x0,y0)l3(x0, y0)

∂Wi

∂y
(x0, y0)

≤ fi
(
x0, y0, w(x0,y0), w(x0, y0),

∂w

∂x
(x0, y0),

∂w

∂y
(x0, y0)

)
+
(
l(x0, y0)− 3

x0�

0

l(z, y0) dz
y0�

0

l(x0, z) dz
)
wi(x0, y0)

+ 2
x0�

0

l(z, y0) dz
y0�

0

l(x0, z) dz vi(x0, y0)

− 2
x0�

0

l(z, y0) dz
y0�

0

l(x0, z) dz |w(x0, y0)− v(x0, y0)|i

+
x0�

0

l(z, y0) dz
∣∣∣∣∂v∂x(x0, y0)−

∂w

∂x
(x0, y0)

∣∣∣∣
T ′

+
y0�

0

l(x0, z) dz
∣∣∣∣∂v∂y (x0, y0)−

∂w

∂y
(x0, y0)

∣∣∣∣
R′

+ e−H(x0,y0)l2(x0, y0)
∂Wi

∂x
(x0, y0) + e−H(x0,y0)l3(x0, y0)

∂Wi

∂y
(x0, y0)

≤ fi
(
x0, y0, w(x0,y0), w(x0, y0),

∂w

∂x
(x0, y0),

∂w

∂y
(x0, y0)

)
+l1(x, y0)wi(x0, y0)

− 2
x0�

0

l(z, y0) dz
y0�

0

l(x0, z) dz |w(x0, y0)− v(x0, y0)|

+
x0�

0

l(z, y0) dz
y0�

0

l(x0, z) dz |w(x0, y0)− v(x0, y0)|T ′

+
y0�

0

l(x0, z) dz
x0�

0

l(z, y0) dz |w(x0, y0)− v(x0, y0)|R′

+ e−H(x0,y0)l2(x0, y0)
∂Wi

∂x
(x0, y0) + e−H(x,y)l3(x0, y0)

∂Wi

∂y
(x0, y0)

≤ (Gw)i(x0, y0).
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Define % : I∗ → R by %(x, y) = e3H(x,y)+x+y and r,R : I∗ → Rk by
r(x, y) = (%(x, y), . . . , %(x, y)), R(x, y) = eH(x,y)r(x, y). Defining wε(x, y)
= w(x, y) + εr(x, y) and Wε(x, y) = eH(x,y)wε(x, y) = W (x, y) + εR(x, y)
we have

∂2Wε

∂x∂y
(x, y) ≥ eH(x,y)(Gw)(x, y) + εeH(x,y)

{
4l(x, y)r(x, y)

+ 16
x�

0

l(z, y) dz
y�

0

l(x, z) dz r(x, y) + 4
x�

0

l(z, y) dz r(x, y)

+ 4
y�

0

l(x, z) dz r(x, y) + r(x, y)
}
.

We can choose ε > 0 sufficiently small in order that |(wε)i(x, y)| ≤ A for
each i ∈ {1, . . . , k}. Thus

|(Gwε)i(x, y)− (Gw)i(x, y)|

=
∣∣∣∣fi(x, y, (wε)(x,y), wε(x, y), ∂wε∂x

(x, y),
∂wε
∂y

(x, y)
)

− fi
(
x, y, w(x,y), w(x, y),

∂w

∂x
(x, y),

∂w

∂y
(x, y)

)
+ εl1(x, y)ri(x, y)

+ εe−H(x,y)l2(x, y)
∂Ri
∂x

(x, y)+εe−H(x,y)l3(x, y)
∂Ri
∂y

(x, y)
∣∣∣∣

≤ l(x, y)(‖εr‖0 + |εr|) +
x�

0

l(z, y) dz
∣∣∣∣ε ∂r∂x(x, y)

∣∣∣∣
+

y�

0

l(x, z) dz
∣∣∣∣ε ∂r∂y (x, y)

∣∣∣∣+εl1(x, y)%(x, y)+e−H(x,y)εl2(x, y)
∣∣∣∣∂Ri∂x

(x, y)
∣∣∣∣

+ e−H(x,y)εl3(x, y)
∣∣∣∣∂Ri∂y

(x, y)
∣∣∣∣ ≤ 2εl(x, y)%(x, y)

+ εl2(x, y)[3l3(x, y)+1]%(x, y)+εl3(x, y)[3h2(x, y)+1]%(x, y)+εl1%(x, y)

+ εl2(x, y)[4l3(x, y) + 1]%(x, y) + εl3(x, y)[4l2(x, y) + 1]%(x, y)

= 3εl(x, y)%(x, y) + 13ε
x�

0

l(z, y) dz
y�

0

l(x, z) dz %(x, y)

+ ε

x�

0

l(z, y) dz %(x, y) + ε

y�

0

l(x, z) dz %(x, y).
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From the above inequality we get

eH(x,y)(Gwε)(x, y) ≤ eH(x,y)(Gw)(x, y)(10)

+ εeH(x,y)
{

3l(x, y)r(x, y)

+ 13
x�

0

l(z, y) dz
y�

0

l(x, z) dz r(x, y)

+
x�

0

l(z, y) dz r(x, y) +
y�

0

l(x, z) dz r(x, y)
}

≤ ∂2Wε

∂x∂y
(x, y).

We note that

wε(x, y) > w(x, y) ≥ v(x, y) on I0,
∂wε
∂x

(x, 0) >
∂w

∂x
(x, 0) ≥ ∂v

∂x
(x, 0) on [0, a],

∂wε
∂y

(0, y) >
∂w

∂y
(0, y) ≥ ∂v

∂y
(0, y) on [0, b].

Therefore there exists c > 0 such that

wε(x, y) > v(x, y) on Ic = I∗ \ (c, a]× (c, b],(11)
∂wε
∂x

(x, y) >
∂v

∂x
(x, y) on [0, a]× [0, c],(12)

∂wε
∂y

(x, y) >
∂v

∂y
(x, y) on [0, c]× [0, b].(13)

From (11) and (12) we have

∂Wε

∂x
(x, y) >

∂V

∂x
(x, y) on [0, a]× [0, c].

From (11) and (13) we get

∂Wε

∂y
(x, y) >

∂V

∂y
(x, y) on [0, c]× [0, b].

Thus

wε(x, y) > v(x, y) on Ic ∪ I0,
∂Wε

∂x
(x, y) >

∂V

∂x
(x, y) and

∂Wε

∂y
(x, y) >

∂V

∂y
(x, y) on [0, c]× [0, c].

Taking an arbitrary point (x0, y0) ∈ [0, c] × [0, c] we deduce from (7), (10)
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the inequality

∂2Wε

∂x∂y
(x0, y0) ≥ eH(x0,y0)(Gwε)(x0, y0) ≥ eH(x0,y0)(Gv)(x0, y0)

≥ ∂2V

∂x∂y
(x0, y0).

Thus

(14)
∂2

∂x∂y
(Wε − V )(x, y) ≥ 0 on [0, c]× [0, c].

Similarly to the proof of Theorem 1, from the continuity of ∂w/∂x, ∂v/∂x,
∂r/∂x with respect to the second variable, and ∂w/∂y, ∂v/∂y, ∂r/∂y with
respect to the first variable, and from (14), we see that ∂

∂x(Wε−V ) is nonde-
creasing with respect to the second variable, and ∂

∂y (Wε−V ) is nondecreasing
with respect to the first variable on [0, c]× [0, c]. Therefore ∂

∂x(Wε− V ) and
∂
∂y (Wε − V ) remain positive on Ic. Repeating this reasoning for the set Ic
we find that Wε − V , ∂

∂x(Wε − V ), ∂
∂y (Wε − V ) are positive on I. Thus

Wε > V on I. Letting ε → 0 we get W ≥ V on I, which implies w ≥ v
on I.

Remark 3. Analysis similar to that in Remark 1 shows that there are
two disjoint index sets α and β such that α ∪ β = {1, . . . , k}, wi(x, y) >
vi(x, y) on I∗\I0 for i ∈ α, wj(x, y) = vj(x, y) on Aj , and wj(x, y) > vj(x, y)
on Bj for j ∈ β, where Aj and Bj are as in Remark 1.

Remark 4. From the proof of Theorem 2 we obtain

∂v

∂x
(x, y) +

y�

0

l(x, z) dz v(x, y) ≤ ∂w

∂x
(x, y) +

y�

0

l(x, z) dz w(x, y) a.e. on I,

∂v

∂y
(x, y) +

x�

0

l(z, y) dz v(x, y) ≤ ∂w

∂y
(x, y) +

x�

0

l(z, y) dz w(x, y) a.e. on I.

In [4] we discussed Theorems 1 and 2 for hyperbolic equations, in the case
where f was independent of ∂u/∂x, ∂u/∂y. Note that the assumptions in
[4] are similar to those given above. Of course, in the present paper we have
additional conditions in Theorems 1 and 2 on the first partial derivatives
of u, v and w. Moreover, in [4] we assume only that cij ≥ 0 a.e. on I
for i 6= j, while in the present paper we need a stronger assumption that
cij(x, y) ≥ 2

	x
0 l(z, y) dz

	y
0 l(x, z) dz a.e. on I for i 6= j. Now, we give an

example which demonstrates that in Theorem 1 the assumption cij ≥ 0 a.e.
on I for i 6= j is not sufficient.
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Example 2. We consider the system of inequalities

(15)


∂2u1

∂x∂y
(x, y)≥ 2

√
xy

u1(x, y)−
√
x

y

∂u1

∂x
(x, y)+x

∂u2

∂x
(x, y) a.e. in I,

∂2u2

∂x∂y
(x, y)≥(xy − 1)u2(x, y) a.e. in I,

where I = [0, a]× [0, a]. We can verify that u1(x, y) = −x2y2 and u2(x, y) =
e1−xy satisfy (15). We have

u1(x, 0) = u1(0, y) =
∂u1

∂x
(x, 0) =

∂u1

∂y
(0, y) =

∂u2

∂x
(x, 0) =

∂u2

∂y
(0, y) = 0,

u2(x, 0) = u2(0, y) = e.

Moreover,

c11(x, y) =
2
√
xy
, c12(x, y) = c21(x, y) = 0, c22(x, y) = xy − 1,

m11(x, y) = −
√
x

y
, m12(x, y) = 4x, m21(x, y) = m22(x, y) = 0,

n11(x, y) = n12(x, y) = n21(x, y) = n22(x, y) = 0.

We can verify that for a sufficiently small all assumptions of Theorem 1 are
satisfied for l(x, y) = 2/ 3

√
x2y2 except cij(x, y) ≥ 2

	x
0 l(z, y) dz

	y
0 l(x, z) dz

for i 6= j. Since u1 < 0 on I \ I0, the assertion of Theorem 1 does not
hold.

We can also note that the second inequality in (15) shows that it is pos-
sible that ∂u2

∂x (0, y) < 0, ∂u2
∂y (x, 0) < 0 for x ∈ (0, a], y ∈ (0, b] and u2 > 0 on

I \ I0.

3. Weak inequalities for first order partial derivatives. We can
find in [4] an example which shows that the assumptions in Theorem 1 are
not sufficient to prove that ∂u/∂x, ∂u/∂y ≥ 0 on I. Now we show that this
can be proved under some additional assumptions.

Theorem 3. Suppose that :

(I) For every (x, y) ∈ I we have a linear map P (x, y) from C(D,Rk)
into Rk which is positive in the sense that w≥0 implies P (x, y)w≥0
for (x, y) ∈ I.

(II) C(x, y) = (cij(x, y))ki,j=1, M(x, y) = (mij(x, y))ki,j=1, N(x, y) =
(nij(x, y))ki,j=1 are k × k matrices, where cij ,mij , nij ∈ L1(I,R)
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and cij(x, y) ≥ 0, mij(x, y) ≥ 0, nij(x, y) ≥ 0 a.e. in I. There is
a function l ∈ L1(I,R) such that

|P (x, y)w| ≤ l(x, y)‖w‖0, cij(x, y) ≤ l(x, y) a.e. in I,

mij(x, y) ≤
x�

0

l(z, y) dz, nij(x, y) ≤
y�

0

l(x, z) dz a.e. in I.

(III) u is a function absolutely continuous on I and continuous on I∗;
∂u/∂x, ∂u/∂y, ∂2u/∂x∂y exist a.e. on I; ∂u/∂x is continuous with
respect to the second variable on I; and ∂u/∂y is continuous with
respect to the first variable on I. Furthermore,

∂2u

∂x∂y
(x, y) ≥ C(x, y)u(x, y) +M(x, y)

∂u

∂x
(x, y)

+N(x, y)
∂u

∂y
(x, y) + P (x, y)u(x,y) a.e. in I,

u(x, y)≥0 on I0,
∂u

∂x
(x, 0)≥0 on [0, a],

∂u

∂y
(0, y)≥0 on [0, b].

Then

u(x, y) ≥ 0,
∂u

∂x
(x, y) ≥ 0,

∂u

∂y
(x, y) ≥ 0 on I.

Proof. Let

v1(x, y) = eH(x,y) ∂u

∂x
(x, y) and v2(x, y) = eH(x,y) ∂u

∂y
(x, y).

Then

∂v1

∂y
(x, y) ≥

x�

0

l(z, y) dz v1(x, y)+eH(x,y){C(x, y)u(x, y)+P (x, y)u(x,y)}(16)

+M(x, y)v1(x, y) +N(x, y)v2(x, y),

∂v2

∂y
(x, y) ≥

y�

0

l(x, z) dz v2(x, y)+eH(x,y){C(x, y)u(x, y)+P (x, y)u(x,y)}(17)

+M(x, y)v1(x, y) +N(x, y)v2(x, y).

Define % : I∗ → R, r : I∗ → Rk by the formulas %(x, y) = e2kH(x,y)+x+y,
r(x, y) = (%(x, y), . . . , %(x, y)) and let p1(x, y) = eH(x,y) ∂r

∂x(x, y), p2(x, y) =
eH(x,y) ∂r

∂y (x, y). Then
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p1(x, y) =
{

2k
y�

0

l(x, z) dz + 1
}
eH(x,y)r(x, y),

p2(x, y) =
{

2k
x�

0

l(z, y) dz + 1
}
eH(x,y)r(x, y),

∂p1

∂y
(x, y) =

{
2kl(x, y) + 2k(2k + 1)

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ (2k + 1)
x�

0

l(z, y) dz + 2k
y�

0

l(x, z) dz + 1
}
eH(x,y)r(x, y),

∂p2

∂x
(x, y) =

{
2kl(x, y) + 2k(2k + 1)

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ 2k
x�

0

l(z, y) dz + (2k + 1)
y�

0

l(x, z) dz + 1
}
eH(x,y)r(x, y).

Note that

0 ≤ C(x, y)r(x, y) ≤ kl(x, y)r(x, y), |P (x, y)r(x,y)| ≤ l(x, y)r(x, y),

0 ≤M(x, y)p1(x, y) ≤
{

2k2
x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ k

x�

0

l(z, y) dz
}
eH(x,y)r(x, y),

0 ≤ N(x, y)p2(x, y) ≤
{

2k2
x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ k

y�

0

l(x, z) dz
}
eH(x,y)r(x, y).

Thus

(18) 0 ≤
x�

0

l(z, y) dz p1(x, y) + eH(x,y){C(x, y)r(x, y) + P (x, y)r(x,y)}

+M(x, y)p1(x, y) +N(x, y)p2(x, y)

≤
{

(n+ 1)l(x, y) + 2k(2k + 1)
x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ k

x�

0

l(z, y) dz + (k + 1)
y�

0

l(x, z) dz
}
eH(x,y)r(x, y)

≤ ∂p1

∂y
(x, y),
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(19) 0 ≤
y�

0

l(x, z) dz p2(x, y) + eH(x,y){C(x, y)r(x, y) + P (x, y)r(x,y)}

+M(x, y)p1(x, y) +N(x, y)p2(x, y)

≤
{

(k + 1)l(x, y) + 2k(2k + 1)
x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ (k + 1)
x�

0

l(z, y) dz + k

y�

0

l(x, z) dz
}
eH(x,y)r(x, y)

≤ ∂p2

∂y
(x, y).

Define
qε(x, y) = u(x, y) + εr(x, y),

v1
ε(x, y) = eH(x,y) ∂qε

∂x
(x, y) = v1(x, y) + εp1(x, y),

v2
ε(x, y) = eH(x,y) ∂qε

∂y
(x, y) = v2(x, y) + εp2(x, y).

From (16)–(19) and from the linearity of P (x, y) we have

∂v1
ε

∂y
(x, y) ≥

x�

0

l(z, y) dz v1
ε(x, y)(20)

+ eH(x,y){C(x, y)qε(x, y) + P (x, y)(qε)(x,y)}
+M(x, y)p1(x, y) +N(x, y)p2(x, y),

∂v2
ε

∂x
(x, y) ≥

y�

0

l(x, z) dz v2
ε(x, y)(21)

+ eH(x,y){C(x, y)qε(x, y) + P (x, y)(qε)(x,y)}
+M(x, y)p1(x, y) +N(x, y)p2(x, y).

We see that there exists c > 0 such that

qε(x, y) > 0, p1(x, y) > 0 and p2(x, y) > 0 on Ic = I∗ \ (c, a]× (c, b],
v1
ε(x, y) > 0 and v2

ε(x, y) > 0 on [0, c]× [0, c].

Thus all terms on the right sides of (20) and (21) are nonnegative. Therefore
∂v1

ε/∂y ≥ 0 and ∂v2
ε/∂x ≥ 0 on [0, c]× [0, c]. Thus v1

ε is nondecreasing with
respect to the second variable and v2

ε is nondecreasing with respect to the
first variable on [0, c] × [0, c]. Therefore qε is nondecreasing with respect to
the first and second variables. This implies that ∂v1

ε/∂y ≥ 0 and ∂v2
ε/∂x ≥ 0

on Ic \ (I∗ \ I). Continuing we find that ∂v1
ε/∂y ≥ 0 and ∂v2

ε/∂x ≥ 0 on I.
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Therefore v1
ε > 0 and v2

ε > 0 on I. From the definitions of v1
ε and v2

ε we
know that ∂qε/∂x > 0 and ∂qε/∂y > 0. Letting ε → 0+ we get ∂u/∂x ≥ 0
and ∂u/∂y ≥ 0 on I. Of course this implies u ≥ 0 on I.

Theorem 4. Suppose that :

(I) The function f : I × C(D,Rk) × Rk × Rk → Rk of the variables
(x, y, ω, µ, ν) is nondecreasing with respect to ω, µ and ν.

(II) For each A > 0 there exists a function l ∈ L1(I,R) such that

|f(x, y, ω, µ, ν)− f(x, y, ω, µ, ν)|

≤ l(x, y)‖ω − ω‖0 +
x�

0

l(z, y) dz |µ− µ|+
y�

0

l(x, z) dz |ν − ν|

for ‖ω‖0, ‖ω‖0 ≤ A.
(III) w, v are functions absolutely continuous on I and continuous on I∗;

∂w/∂x, ∂v/∂x, ∂w/∂y, ∂v/∂y, ∂2w/∂x∂y, ∂2v/∂x∂y exist a.e.
on I; ∂w/∂x, ∂v/∂x are continuous with respect to the second vari-
able on I; and ∂w/∂y, ∂v/∂y are continuous with respect to the first
variable on I. Furthermore,

∂2v

∂x∂y
(x, y) ≤ f

(
x, y, v(x,y),

∂v

∂x
(x, y),

∂v

∂y
(x, y)

)
and

∂2w

∂x∂y
(x, y) ≥ f

(
x, y, u(x,y),

∂w

∂x
(x, y),

∂w

∂y
(x, y)

)
a.e. in I,

v(x, y) ≤ w(x, y) on I0,
∂v

∂x
(x, 0) ≤ ∂w

∂x
(x, 0) on [0, a],

∂v

∂y
(0, y) ≤ ∂w

∂y
(0, y) on [0, b].

Then

v(x, y) ≤ w(x, y),
∂v

∂x
(x, y) ≤ ∂w

∂x
(x, y),

∂v

∂y
(x, y) ≤ ∂w

∂y
(x, y) on I.

Proof. Let |v(x, y)|, |w(x, y)| ≤ A − 1 for all (x, y) ∈ I and l be the
function in condition (II) corresponding to A, and define

V 1(x, y) = eH(x,y) ∂v

∂x
(x, y), W 1(x, y) = eH(x,y) ∂w

∂x
(x, y),

V 2(x, y) = eH(x,y) ∂v

∂y
(x, y), W 2(x, y) = eH(x,y) ∂w

∂y
(x, y).

Then
∂V 1

∂y
(x, y) ≤ eH(x,y)(G1v)(x, y),

∂W 1

∂y
(x, y) ≥ eH(x,y)(G1w)(x, y),

∂V 2

∂x
(x, y) ≤ eH(x,y)(G2v)(x, y),

∂W 2

∂y
(x, y) ≥ eH(x,y)(G2w)(x, y),
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where

(Giv)(x, y) = gi
(
x, y, v(x,y),

∂v

∂x
(x, y),

∂v

∂y
(x, y), V i(x, y)

)
for i ∈ {1, 2},

g1(x, y, ω, µ, ν, σ) = f(x, y, ω, µ, ν) + e−H(x,y)
x�

0

l(z, y) dz σ,

g2(x, y, ω, µ, ν, σ) = f(x, y, ω, µ, ν) + e−H(x,y)
y�

0

l(x, z) dz σ,

and (Gw)(x, y) is defined by a similar formula to (Gv)(x, y). It is easily seen
that gi are nondecreasing with respect to ω, µ, ν and σ.

Define % : I∗ → R by %(x, y) = e2H(x,y)+x+y and r,R1, R2 : I∗ → Rk

by r(x, y) = (%(x, y), . . . , %(x, y)), R1(x, y) = eH(x,y) ∂r
∂x(x, y) and R2(x, y) =

eH(x,y) ∂r
∂y (x, y). Defining wε(x, y) = w(x, y)+εr(x, y),W i

ε(x, y) = W i(x, y)+
εRi(x, y), where i ∈ {1, 2}, we have

∂W 1
ε

∂y
(x, y) ≥ eH(x,y)(G1w)(x, y)

+ εeH(x,y)
{
l(x, y) + 6

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ 3
x�

0

l(z, y) dz + 2
y�

0

l(x, z) dz + 1
}
r(x, y),

∂W 2
ε

∂x
(x, y) ≥ eH(x,y)(G2w)(x, y)

+ εeH(x,y)

{
l(x, y) + 6

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ 2
x�

0

l(z, y) dz + 3
y�

0

l(x, z) dz + 1
}
r(x, y).

Moreover, we can choose ε > 0 so small that |wε(x, y)| ≤ A. From the
Lipschitz condition for f we have

|G1wε(x, y)−G1w(x, y)| ≤ ε
{
l(x, y) + 6

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ 2
x�

0

l(z, y) dz +
y�

0

l(x, z) dz
}
%(x, y),
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|G2wε(x, y)−G2w(x, y)| ≤ ε
{
l(x, y) + 6

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+
x�

0

l(z, y) dz + 2
y�

0

l(x, z) dz
}
%(x, y).

From the above inequality we get

eH(x,y)(G1wε)(x, y) ≤ eH(x,y)(G1w)(x, y)

+ εeH(x,y)
{
l(x, y) + 6

x�

0

l(z, y) dz
y�

0

l(x, z) dz

+ 2
x�

0

l(z, y) dz +
y�

0

l(x, z) dz
}
r(x, y)

≤ ∂W 1
ε

∂y
(x, y).

Similarly, we obtain

eH(x,y)(G2wε)(x, y) ≤
∂W 2

ε

∂x
(x, y).

Note that

wε(x, y) > w(x, y) ≥ v(x, y) on I0,
∂wε
∂x

(x, 0) >
∂w

∂x
(x, 0) ≥ ∂v

∂x
(x, 0) on [0, a],

∂wε
∂y

(0, y) >
∂w

∂y
(0, y) ≥ ∂v

∂y
(0, y) on [0, b].

Therefore there exists c > 0 such that

wε(x, y) > v(x, y) on Ic = I∗ \ (c, a]× (c, b],
∂wε
∂x

(x, y) >
∂v

∂x
(x, y) on [0, a]× [0, c],

∂wε
∂y

(x, y) >
∂v

∂y
(x, y) on [0, c]× [0, b].

From monotonicity of G1 and G2 on (0, c]× (0, c] we have

∂W 1
ε

∂y
(x, y) ≥ eH(x,y)(G1wε)(x, y) ≥ eH(x,y)(G1v)(x, y) ≥ ∂V 1

∂y
(x, y),

∂W 2
ε

∂x
(x, y) ≥ eH(x,y)(G2wε)(x, y) ≥ eH(x,y)(G2v)(x, y) ≥ ∂V 2

∂x
(x, y),

for (x, y) ∈ (0, c]×(0, c]. ThereforeW 1
ε −V 1 is nondecreasing with respect to

the second variable, and W 2
ε − V 2 is nondecreasing with respect to the first

variable on (0, c] × (0, c]. Thus similarly to the proof of Theorem 2 we get
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∂wε/∂x− ∂v/∂x > 0 and ∂wε/∂y − ∂v/∂y > 0 on I. Letting ε→ 0 we get
∂w

∂x
(x, y) ≥ ∂v

∂x
(x, y) on I,

∂w

∂y
(x, y) ≥ ∂v

∂y
(x, y) on I.

From the above it is clear that w ≥ v on I.

4. Strong inequalities. In this section we will be concerned with strong
inequalities. First, we present some definitions and assumptions. A measur-
able set B ⊂ I is called dense at (0+, 0+) if B ∩ (0, ε) × (0, ε) has positive
measure for every ε > 0. Let g and h be functions from I into Rk. We write
g(x, y) < h(x, y) at (0+, 0+) if {(x, y) ∈ I : g(x, y) < h(x, y)} is dense at
(0+, 0+). In the one-dimensional case a measurable set A ⊂ [0, a] is called
dense at 0+ if A ∩ (0, ε) has positive measure for every ε > 0. We write
g(x, 0) < h(x, 0) at 0+ if {x ∈ [0, a] : g(x, 0) < h(x, 0)} is dense at 0+.
Similarly, we define g(0, y) < h(0, y) at 0+.

Assumption 1. C = (cij)ki,j=1 is such that for every pair (α, β) of dis-
joint nonempty sets with α ∪ β = {1, . . . , k} there are i ∈ α and j ∈ β such
that cij(x, y) > 2

	x
0 l(z, y) dz

	y
0 l(x, z) dz at (0+, 0+).

Assumption 2. M = (mij)ki,j=1 is such that for every pair (α, β) of
disjoint nonempty sets with α ∪ β = {1, . . . , k} there are i ∈ α and j ∈ β
such that mij(x, y) <

	x
0 l(z, y) dz at (0+, 0+).

Assumption 3. N = (nij)ki,j=1 is such that for every pair (α, β) of dis-
joint nonempty sets with α ∪ β = {1, . . . , k} there are i ∈ α and j ∈ β such
that nij(x, y) <

	y
0 l(x, z) dz at (0+, 0+).

We write P (x, y) in the matrix form Pij(x, y), where Pij(x, y) is a positive
linear operator which acts on functions w ∈ C(D,R1).

Definition 1. P (x, y) is called irreducible at (0+, 0+) if for every pair
(α, β) of disjoint nonempty index sets with α∪β = {1, . . . , k} there are i ∈ α
and j ∈ β such that Pij(x, y)w > 0 at (0+, 0+) for all w ∈ C(D,R1) such
that w(s, t) > 0 on D.

Theorem 5 (positivity). Under the assumptions of Theorem 1 we have
u > 0 on Ĩ under each of the following conditions:

(I) u(x, 0) > 0 or u(0, y) > 0 at 0+;

(II)
∂2u

∂x∂y
(x, y) > C(x, y)u(x, y) +M(x, y)

∂u

∂x
(x, y)

+N(x, y)
∂u

∂y
(x, y) + P (x, y)u(x,y) at (0+, 0+);
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(III) u(x, 0) 6= 0 or u(0, y) 6= 0 at 0+ and C satisfies Assumption 1;
(IV) u(x, 0) 6= 0 or u(0, y) 6= 0 at 0+ and M satisfies Assumption 2;
(V) u(x, 0) 6= 0 or u(0, y) 6= 0 at 0+ and N satisfies Assumption 3;
(VI) u(x, 0) 6= 0 or u(0, y) 6= 0 at 0+ and P is irreducible.

Proof. It is easy to see that the assertion of Theorem 5 follows from con-
ditions (I) and (II). In order to prove that this is also the case for conditions
(III), (IV) and (V) we first assume that β (as in Remark 1) is nonempty and
we note that α is nonempty too. This is due to the fact that if u(x, 0) 6= 0
or u(0, y) 6= 0 at 0+ then there is d such that ud(x, y) > 0 on Ĩ. Let j ∈ β
(that is, uj(x, y) = 0 at (0+, 0+)). Moreover, from Theorem 1 we have u ≥ 0
on I. Therefore at (0+, 0+) we have

∂2uj
∂x∂y

(x, y) ≥
k∑
i=1

cji(x, y)ui(x, y)

+
k∑
i=1

mji(x, y)
∂ui
∂x

(x, y) +
k∑
i=1

nji(x, y)
∂ui
∂y

(x, y)

≥
k∑
i=1

cji(x, y)ui(x, y)−
y�

0

l(x, z) dz
k∑
i=1

mji(x, y)ui(x, y)

−
x�

0

l(z, y) dz
k∑
i=1

nji(x, y)ui(x, y)

=
∑

1≤i≤k
i 6=j

cji(x, y)ui(x, y)

−
y�

0

l(x, z) dz
∑

1≤i≤k
i 6=j

mji(x, y)ui(x, y)

−
x�

0

l(z, y) dz
∑

1≤i≤k
i 6=j

nji(x, y)ui(x, y).

Suppose that condition (III) holds. Then from the estimates formij(x, y),
nij(x, y), cij(x, y) and from Assumption 1 we get

∂2uj
∂x∂y

(x, y) ≥
∑

1≤i≤k
i 6=j

[
cji(x, y)− 2

x�

0

l(z, y) dz
y�

0

l(x, z) dz
]
ui(x, y)

≥
[
cjd(x, y)− 2

x�

0

l(z, y) dz
y�

0

l(x, z) dz
]
ud(x, y) > 0.
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Thus uj(x, y) is increasing with respect to x and y at (0+, 0+) and this
contradicts the fact that j ∈ β.

Analogously, if we assume condition (IV) we get

∂2uj
∂x∂y

(x, y) ≥
∑

1≤i≤k
i 6=j

[
2
x�

0

l(z, y) dz
y�

0

l(x, z) dz −
y�

0

l(x, z) dz mji(x, y)

−
x�

0

l(z, y) dz
y�

0

l(x, z) dz
]
ui(x, y)

≥
[ x�

0

l(z, y) dz
y�

0

l(x, z) dz −
y�

0

l(x, z) dz mjd(x, y)
]
ud(x, y) > 0.

Thus uj(x, y) is increasing with respect to x and y at (0+, 0+), contrary to
j ∈ β.

The proof is similar if we assume condition (V) instead of (IV).
It is easily seen that if we assume (VI) and if there exist j ∈ β and d ∈ α

then ∂2uj

∂x∂y (x, y) ≥ Pjk(x, y)ud(x, y) > 0 at (0+, 0+), contrary to j ∈ β.

Assumption 4. The function f is such that for each pair (α, β) of
nonempty disjoint index sets such that α ∪ β = {1, . . . , k} there exist i ∈ α
and j ∈ β such that for some c > 0 and for all (x, y) ∈ (0, c]× (0, c] we have

fj(x, y, ω, η, µ, ν) < fj(x, y, ω + θ(x,y)ei, η + θ(x, y)ei, µ, ν)

− 2
x�

0

l(z, y) dz
y�

0

l(x, z) dz |θ(x, y)|,

where θ(x, y) ∈ C(I∗,R) is zero on I0 and positive on Ĩ.

Theorem 6 (strong inequalities). Under the assumptions of Theorem 2
we have v < w on Ĩ under each of the following conditions:

(I) v(x, 0) < w(x, 0) or v(0, y) < w(0, y) at 0+;

(II) f
(
x, y, v(x,y), v(x, y),

∂v

∂x
(x, y),

∂v

∂y
(x, y)

)
< f

(
x, y, w(x,y), w(x, y),

∂w

∂x
(x, y),

∂w

∂y
(x, y)

)
at (0+, 0+);

(III) v(x, 0) 6= w(x, 0) or v(0, y) 6= w(0, y) at 0+ and f satisfies Assump-
tion 4.

Proof. It is easy to see that the assertion follows from conditions (I) and
(II). Suppose that (III) holds. Let α and β be as in Remark 3. Thus vi(x, y) <
wi(x, y) for i ∈ α, and vj(x, y) = wj(x, y) onAj and vj(x, y) < wj(x, y) onBj
for j ∈ β. Note that there exists c > 0 such that [0, c)× [0, c) ⊂ Aj . Indeed,
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if v(x, y) < w(x, y) on [0, c) × [0, c) for some c > 0 then v(x, y) < w(x, y)
on Ĩ. Therefore there exist c̃ > 0 and Aec = [0, c̃)× [0, c̃) such that Aec ⊂ Aj
for each j ∈ β. We note that α is nonempty, because from v(x, 0) 6= w(x, 0)
or v(0, y) 6= w(0, y) at 0+ it follows that there exists i such that vi(x, y) <
wi(x, y) on Ĩ. Assume that β is nonempty. Choose (x0, y0) ∈ Aec. Choose
d ∈ α such that

|wd(x0, y0)− vd(x0, y0)| = max{|wi(x0, y0)− vi(x0, y0)| : i ∈ α}
= max{|wi(x0, y0)− vi(x0, y0)| : i ∈ α ∪ β}.

Then

(22) fβ
(
x0, y0, w(x0,y0), w(x0, y0),

∂w

∂x
(x0, y0),

∂w

∂y
(x0, y0)

)
≤ ∂

2wβ

∂x∂y
(x0, y0)

=
∂2vβ

∂x∂y
(x0, y0) ≤ fβ

(
x0, y0, v(x0,y0), v(x0, y0),

∂v

∂x
(x0, y0),

∂v

∂y
(x0, y0)

)
.

If θ(x, y) = wd(x, y)− vd(x, y) then from the assumption we have

fβ
(
x0, y0, v(x0,y0), v(x0, y0),

∂v

∂x
(x0, y0),

∂v

∂y
(x0, y0)

)
<fβ

(
x0, y0, (v{d}

′
, w{d})(x0,y0), (v

{d}′ , w{d})(x0, y0),
∂v

∂x
(x0, y0),

∂v

∂y
(x0, y0)

)

− 2
x0�

0

l(z, y0) dz
y0�

0

l(x0, z) dz |wd(x0, y0)− vd(x0, y0)|.

Let T , T ′, R, R′ be as in the proof of Theorem 2. Then from monotonicity
of f , quasimonotonicity of f and the fact that wβ(x0, y0) = vβ(x0, y0) and
w(x0, y0) ≥ v(x0, y0) we have

fβ
(
x0, y0, (v{d}

′
, w{d})(x0,y0), (v

{d}′ , w{d})(x0, y0),
∂v

∂x
(x0, y0),

∂v

∂y
(x0, y0)

)
≤ fβ

(
x0, y0, w(x0,y0), w(x0, y0),

∂(wT , vT
′
)

∂x
(x0, y0),

∂(wR, vR
′
)

∂y
(x0, y0)

)
.

From the Lipschitz condition of f and the estimates∣∣∣∣∂vi∂x
(x0, y0)−

∂wi
∂x

(x0, y0)
∣∣∣∣ ≤ y0�

0

l(x0, z) dz (wi(x0, y0)− vi(x0, y0)),∣∣∣∣∂vj∂y (x0, y0)−
∂wj
∂y

(x0, y0)
∣∣∣∣ ≤ x0�

0

l(z, y0) dz (wj(x0, y0)− vj(x0, y0)),
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for i ∈ T ′, j ∈ R′, we have

fβ
(
x0, y0, w(x0,y0), w(x0, y0),

∂(wT , vT
′
)

∂x
(x0, y0),

∂(wR, vR
′
)

∂y
(x0, y0)

)
≤ fβ

(
x0, y0, w(x0,y0), w(x0, y0),

∂w

∂x
(x0, y0),

∂w

∂y
(x0, y0)

)

+
x0�

0

l(z, y0) dz
y0�

0

l(x0, z) dz [|w(x0, y0)−v(x0, y0)|T ′ +|w(x0, y0)−v(x0, y0)|R′ ].

From the above inequalities and the definition of d we get

(23) fβ
(
x0, y0, v(x0,y0), v(x0, y0),

∂v

∂x
(x0, y0),

∂v

∂y
(x0, y0)

)
< fβ

(
x0, y0, w(x0,y0), w(x0, y0),

∂w

∂x
(x0, y0),

∂w

∂y
(x0, y0)

)
.

Thus (22) and (23) give a contradiction. Therefore β is an empty set.

Remark 5. We note that for classical solutions of differential inequal-
ities, first a theorem about strong inequalities is proved. Next using this
theorem and an extra condition (for example the Lipschitz condition on f)
we prove a theorem about weak inequalities. In this paper we see that in
the case of Carathéodory solutions, first a theorem about weak inequalities
is proved. Next using this theorem and an extra condition (for example see
Assumption 4) we prove a theorem about strong inequalities.
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