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Estimates for the Bergman kernel and
metric of convex domains in Cn

by Nikolai Nikolov (Sofia) and Peter Pflug (Oldenburg)

Abstract. Sharp geometrical lower and upper estimates are obtained for the Berg-
man kernel on the diagonal of a convex domain D ⊂ Cn which does not contain complex
lines. It is also proved that the ratio of the Bergman and Carathéodory metrics of D does
not exceed a constant depending only on n.

1. Introduction. For a domain D ⊂ Cn we denote by L2
h(D) the

Hilbert space of all holomorphic functions f on D that are square-integrable
and by ‖f‖D the L2-norm of f . Let KD be the restriction to the diagonal
of the Bergman kernel function of D. It is well known (cf. [5]) that

KD(a) = sup{|f(a)|2 : f ∈ L2
h(D), ‖f‖D ≤ 1}.

If KD(z) > 0 for some point z ∈ D, then the Bergman metric BD(z;X),
X ∈ Cn, is well defined and can be given by the equality

BD(z;X) =
MD(z;X)√
KD(z)

,

where MD(z;X) = sup{|f ′(z)X| : f ∈ L2
h(D), ‖f‖D = 1, f(z) = 0}.

Let D ⊂ Cn be a convex domain. If D contains a complex line, then it
is linearly equivalent to the Cartesian product of C and a convex domain
in Cn−1, which implies that KD ≡ 0. Assume now that D does not contain
any complex line. Then it is biholomorphically equivalent to a bounded
domain (cf. [5]), and hence KD is a positive function on D.

For any a ∈ D fix a point a1 ∈ ∂D such that d1(a) := dist(a, ∂D) =
‖a1 − a‖. Observe that a1 is not necessarily uniquely defined. Let H1 be
the complex hyperplane through a which is orthogonal to the vector a1− a.
Put D1 := H1 ∩ D and treat D1 as an (n − 1)-dimensional convex subdo-
main of H1. Now, choose an a2 ∈ ∂D1 satisfying d2(a) := dist(a, ∂H1D1) =
‖a2−a‖. Repeating this procedure, we define a sequence of boundary points
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a1, a2, . . . , an with ak ∈ ∂Hk−1Dk−1 (in general, this sequence is not uniquely
determined), a sequence of (n− k)-dimensional planes Hk, k = 1, . . . , n− 1,
through the point a, and a sequence of numbers d1(a), . . . , dn(a) such that
‖ak − a‖ = dist(a, ∂Hk−1Dk−1) = dk(a), where D0 := D and H0 := Cn.
Define

A(a) := d1(a) . . . dn(a).

In [3] (cf. also [6], [7]) a similar geometrically defined number Ã(a) was
introduced and it was proved that if D is a smooth bounded pseudoconvex
domain Cn which is convex near a finite-type boundary point a0, then there
exist positive constants c and C such that c ≤ KDÃ

2(a) ≤ C for any a ∈ D
close to a0. Also estimates for the Bergman metric were obtained.

The main purpose of this note is to extend these results to any convex
domain which does not contain any complex line. Then the results mentioned
above follow by a localization argument [4].

Theorem 1. Let D ⊂ Cn be a convex domain which does not contain
any complex line. Then

1
(4π)n

≤ KD(a)A2(a) ≤ (2n)!
(2π)n

, a ∈ D.

Both of these inequalities are sharp. Moreover , the right inequality is always
strict iff n ≥ 2; whereas for all n ≥ 1, the left inequality can become an
equality.

Before stating the second theorem recall that the Carathéodory metric
does not exceed the Kobayashi and Bergman metrics, and, in general, there
is no relation between the last two metrics (cf. [5]). On the other hand,
the Lempert theorem says that the Carathéodory and Kobayashi metrics
coincide on any convex domain D ⊂ Cn. Moreover, if FD denotes any of
them, if D does not contain the complex line in the direction of X, and if

d(z,X) := sup{λ > 0 : z + αX ∈ D if |α| < λ},
then (see [1])

1/2 ≤ FD(z;X)d(z,X) ≤ 1;

otherwise, FD(z;X) = 0.
Similar estimates to those in Theorem 1 are also true for the Bergman

metric.

Theorem 2. Let D ⊂ Cn be a convex domain which does not contain
any complex line. Then for any X ∈ Cn \ {0} we have

1
2
≤ BD(z;X)d(z,X) ≤ n

√
2n−1(2(n+ 1))!

3
.
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In particular ,

1 ≤ BD(z;X)
FD(z;X)

≤ 2n

√
2n−1(2(n+ 1))!

3
.

Note that if cn and Cn are the best constants for which the last inequality
in Theorem 2 holds, then cn ≤

√
2 and Cn ≥

√
n+ 1 as the examples of the

unit polydisc and the unit ball show. On the other hand, except the whole
complex plane, every convex plane domain is biholomorphically equivalent
to the unit disc, which shows that c1 = C1 =

√
2.

Remark. Observe that Theorem 2 covers some of the results in [8].

2. Proofs. Using some ideas from [6], we shall give purely geometrical
proofs, based on the transformation rules for KD and MD, and the decreas-
ing property of these invariants under inclusion of domains.

Proof of Theorem 1. Let a ∈ D, A := A(a), and dk := dk(a), 1 ≤ k ≤ n.
After a translation and a unitary transformation we may assume that a= 0,
a1 = (d1, 0, . . . , 0), H1 = {z1 = 0}, a2 = (0, d2, 0, . . . , 0), H2 = {z1 = z2 = 0},
. . . , an = (0, . . . , 0, dn). Since D is convex, it contains the domain

G :=
{
z ∈ Cn :

n∑

j=1

|zj|/dj < 1
}
.

Let B(0, d1) denote the ball in Cn with center at 0 and radius d1. Then
G ∪ B(0, d1) ⊂ D and hence

KD(0) ≤ KG∪B(0,d1)(0) ≤ KG(0) = KE(0)/A2,

where

E :=
{
z ∈ Cn :

n∑

j=1

|zj| < 1
}
.

Observe that KE(0) = (2n)!/(2π)n.
Note that if n ≥ 2, then G does not contain B(0, d1); thus the second

inequality above is strict (recall that for a complete Reinhardt domain G̃ we
have KG̃(0) = vol(G̃)−1).

To prove the left inequality, let

Sk :=
{
z ∈ Cn : Re

n∑

j=1

αkjzj = Re(αkkdk)
}

be a supporting hyperplane for ∂D at ak. By our construction it follows that
αkj = 0 for j > k, and αkk is a non-zero real number; we may assume that
αkk = 1. Set
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ϕk(z) :=
k∑

j=1

αkjzj − dk, Pk := {z ∈ Cn : Reϕk(z) < 0}.

Since D is convex, it follows that D ⊂ P :=
⋂n
j=1 Pj. Note that Φ(z) :=

(ϕ1(z), . . . , ϕn(z)) is an affine mapping with jacobian 1 that transforms P
into the Cartesian product Πn of n copies of the left half-plane Π and the
origin into the point (−d1, . . . ,−dn). Hence

KD(0) ≥ KP (0) =
n∏

j=1

KΠ(−dj) =
1

(4π)nA2 .

To see that the left inequality is sharp, it suffices to take D = Πn.
If n = 1, taking D to be the unit disc we see that the right inequality

is sharp. Let n ≥ 2, m a positive integer, and bk = km for 1 ≤ k ≤ n. Let
Bk := B(0, bk) ∩Hk−1. Define D̂ to be the convex envelope of the union of⋃n
k=1Bk and {z ∈ Cn :

∑n
k=1 |zk|/bk < 1}. It is not difficult to see that D̂

is a convex domain and bk = dist(0, ∂(D̂ ∩Hk−1)).
If Ψ(z) := (z1/b1, . . . , zn/bn), then Ψ(D̂) is the convex envelope of the

union of S :=
⋃n
k=1 Ψ(Bk) and E. For any j > k we have bj/bk → ∞ as

m → ∞. Hence, for any λ > 1 we may find an m such that S ⊂ λE. Since
λE is convex, it contains Ψ(D̂). Hence

KD̂(0)(b1 . . . bn)2 = KΨ(D̂)(0) ≥ KλE(0) = KE(0)/λ2n,

which completes the proof of the theorem.

Proof of Theorem 2. We only have to prove the right inequality. We shall
use the notations from Theorem 1 and the geometric setting in the proof of
Theorem 1, in particular a = 0. Let X = (X1, . . . ,Xn) ∈ Cn \ {0} and fix
k ∈ J := {j : Xj 6= 0}. Then

Ψk(z) :=
(
z1−

X1

Xk
zk, . . . , zk−1−

Xk−1

Xk
zk, zk, zk+1−

Xk+1

Xk
zk, . . . , zn−

Xn

Xk
zk

)

is a linear mapping with jacobian equal to 1 and Y k := Ψk(X) = (0, . . . , 0,Xk,
0, . . . , 0). Let ∆′j := {0}× . . .×{0}×∆j ×{0}× . . .×{0} be the disc in the
jth coordinate plane with center at the origin and radius dj if j 6= k, and
d′k := |Xk|d(0,X) if j = k. It is easy to see that ∆′j ⊂ Gk := Ψk(D). Since
Gk is convex, it contains the domain

G′k =
{
z ∈ Cn :

|zk|
d′k

+
n∑

j=1, j 6=k

|zj|
dj

< 1
}
.

Hence

MD(0;X) = MGk(0;Y k) ≤MG′k
(0;Y k) = C

dk
A|Xk|d2(0,X)

,
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where C := ME(0; e1) and e1 = (1, 0, . . . , 0). Applying the left inequality of
Theorem 1 and using the equality dk = |Xk|d(0, Y k), we obtain

BD(0;X) =
MD(0;X)√
KD(0)

≤ C(2
√
π)n

d(0, Y k)
d2(0,X)

.

On the other hand, by the formula for KE in [9] (cf. also [2] and [5]), it
follows that (1)

KE((z1, 0′)) =
(2n− 1)!

(2π)n
1

2|z1|

(
1

(1− |z1|)2n −
1

(1 + |z1|)2n

)
.

Since

BE(0; e1) =

√
∂2

∂z1∂z1
logKE((z1, 0′))

∣∣∣∣
z1=0

,

we find that C =
√

(2(n+ 1))!/(6(2π)n).
Finally, observe that

1
d(0,X)

≤
∑

s∈J

1
d(0, Y s)

(since D is convex). It remains to compare the last two inequalities. Hence
the proof of Theorem 2 is finished.
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