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Dirichlet problems without convexity assumption

by ALEKSANDRA ORPEL (Lodz)

Abstract. We deal with the existence of solutions of the Dirichlet problem for sub-
linear and superlinear partial differential inclusions considered as generalizations of the
Euler-Lagrange equation for a certain integral functional without convexity assumption.
We develop a duality theory and variational principles for this problem. As a consequence
of the duality theory we give a numerical version of the variational principles which enables
approximation of the solution for our problem.

1. Introduction. Let us state our notations and hypotheses.

HypoTHESIS (H). Let {2 be a bounded domain in R™ having a locally
Lipschitz boundary. Assume that the functions G : 2 x R — R and H :
2 x R" — R satisfy the Carathéodory condition and H(y,-) is Gateaux
differentiable and convex for a.e. y € (2. Suppose additionally that there
exist constants b1, bo,b3,b4 > 0, r > 1, ¢ > 3, ¢ > n + 1 and functions
ki,ko € Ll(Q,R), ks, ky4 € qul(_Q,R) such that

b b
Sl k) < Gly,w) < L al + k()

b b
3 12+ ks(y) < H(y.2) < 5 |2 + ha(y)
for a.e. y € 2 and all x € R, z € R™.
Let H,(y,2) = [ﬁH(y,z),... L H(y,2)] for z = [21,...,2,) € R" and

Y dzn

let 9,G(y, x) denote the subdifferential of the function G(y,-) for y € 2. We
shall consider the Dirichlet problem for the partial differential inclusion

(1.1) —div H,(y,Va(y)) € 0,G(y,z(y)) for ae. y € (2,

which is a generalization of the membrane equation. We are looking for a
nonzero weak solution x € W01’2(Q, R) of this problem such that H,(-, V(-))
has a distributional divergence that is an element of L?(§2,R).
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194 A. Orpel

There have been numerous papers concerning similar problems. If we
assume the differentiability of G with respect to the second variable, in-
clusion (1.1) becomes an elliptic partial differential equation in divergence
form discussed e.g. in [5], where G € C(§2 x R), in [2], or in [4], where
the right-hand side is independent of  and (2 is a bounded n-dimensional
polyhedral domain. In [6] N. Grenon has proved the existence of a solution
x € WyP(2,R) N L>®(2,R), p > 1, for the PDE

(1.2) —div A(y,z, Dx) = H(y,x, Dz) in {2,

where (2 is an open set in R", n > 1. This follows from the existence of
a solution of an associated symmetrized semilinear problem. The basic as-
sumptions in [6] are the following:

(a) A: 2 xR xR" - R"and H: 2 x R x R” — R are Carathéodory
functions such that for a.e. y € 2, all x € R and & € R”,

(1.3) Ay, 2, )| < B(|z)IEP™ + bly),
(1.4) [H(y, z, )| < ~v([=[){[€[" + d(y)},
where (3,7 are positive and locally bounded, b is a positive element of
LY(2,R), p' = p/(p—1), and d € L' (2, R);
(b) for a.e. y € £2 and all z € R,

(A(y, z,8) — Ay, 2,¢),£ =€) >0 forall {,¢ € R" such that £ # ¢,
and there exists o > 0 such that for a.e. y € 2 and all z € R,
algl? < (A(y,z,§),§) forall { € R",

(c) there are nondecreasing k;,0; € C(R;,Ri), nonnegative f; €
L1(2,R;), max{n/p,1} < ¢ < o0, i = 1,2, with 6;(0) > 0 such that

alb @)+ 0(@)fi(y)}  foralla >0,
Hiy, z,¢) < { o{—ka(—2)[]P — Oa(—2) faly)} for all 2 < 0,

for y € {2 and £ € R™.

Let us note that for A(y,z,§) = H,(y,&) and H(y,z,§) = Gz(y,x),
(1.2) gives (1.1). In spite of this fact, we cannot use the results of [6]. In
the general case described by hypothesis (H), G satisfies the Carathéodory
condition only, so that G(y, -) is not necessarily continuous. We also do not
assume any additional estimate on G, (see (1.3), (1.4) and (c)).

There are a lot of results concerning the case when H has the special form
H(y,z) = 3|z|? for y € £2 and 2 € R" (see e.g., [7], [8], [14]). In [17] and [13]
the existence of a classical solution of (1.1) is discussed under the following
assumptions: Gz(-,-) € C(£2 x R,R), G, satisfies an additional estimate on
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2 x R and the following relation between G and G, holds: there exist p > 0
and r > 0 such that for |z| > r,

(1.5) 0 < pG(y,z) < 2Gx(y, ).

A condition similar to (1.5) is also used in [3]. Numerous papers concern
similar problems for G being a polynomial with respect to = (see [15], [19]).
In many papers the right-hand side of the equation is continuous ([3], [10],
[18]) or convex with respect to = (see [16]). Here we point out that weaker
assumptions made on G (R 3 x — G(y,z) is not necessarily convex and
continuous) are still sufficient to conclude the existence of a solution for (1.1).
To this end (1.1) is considered as the generalized Euler-Lagrange equation
for the functional J given by

(1.6) J(x) = \{H(y, Va(y)) - Gy, 2(y))} dy.
2

We see that under hypothesis (H), J is not, in general, bounded on
W,(£2,R), so that we must look for critical points of (1.6) of “minmax”
type or find subsets X and X% on which the action functional J or its
dual Jp is bounded. We shall apply another approach and choose special
sets over which we will calculate the minimum of J and Jp. The main dif-
ficulty in this approach is to show that X ## (). Of course, we have at our
disposal the Morse theory and its generalizations, saddle points theorems,
mountain pass theorems (see e.g. [10], [11], [13], [17], [15]), but none of these
methods exhausts all critical points of J. Moreover our assumptions are
not strong enough to use, for example, the Mountain Pass Theorem: G is
a Carathéodory function so it is not sufficiently smooth, we assume neither
convexity of G nor additional relations concerning G, and G (see (1.5)), in
consequence, J is not C'! on a sufficiently large subset of VVO1 (02, R) and it
does not satisfy, in general, the (PS)-condition. We shall develop a duality
theory that permits us to omit, in our proof of the existence of critical points,
the deformation lemmas, the Ekeland variational principle or PS type con-
ditions. Our approach also enables a numerical characterization of solutions

of our problem.
For A >0 and p; € LY 1(2,R") let

X = {x € Wy ' (2,R); div H.(-, Va(-)) € LY (2, R)
and || H.(-, Va(-)) = pillpa-1 (o) < A}
with ¢’ =¢/(¢ —1).

REMARK 1. By the assumption n < ¢ — 1 and the Sobolev embedding
theorem, we have Wol’qfl(Q,R) C Li(§2,R).
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Consider sets Xy C X with the following property: for each x € X,
there exists 7 € Xy such that

@7 @), - div(H.(y, VE(y)))) — G*(y, — div(H.(y, Vi(y))))} dy

(9}
= | Gy, z(y)) dy.
2

What is lacking is the fact that nonempty sets Xy exist. In Section 5
we shall consider (1.1) for H(y,z) = 1k(y)[z|*> for y € £2, z € R" and
k € C'(£2,R), and formulate a sequence of assumptions concerning G which
yield a nonempty set Xo. We will show that, in this case, it is sufficient to
assume the convexity of G’ and the boundedness of G, in the L¢~! norm on
a ball only. Since J is C' on the ball only and we have the local estimate
on G, the existence result for (1.1) cannot be derived from the Mountain
Pass Theorem. We also give an example of G satisfying all these assumptions.

Throughout the paper we shall assume hypothesis (H) and

HypoTHESIS (H1). There exists a nonempty set Xg satisfying (1.7).

For any such Xy, we define X to be the union of X( and the set of all
solutions of problem (1.1) which belong to X.

REMARK 2. For all z € X,
%Gy z(y) #0 and G(y,z2(y)) = G (y, 2(y))
a.e. on 2.

Proof. This follows from the definition of X, the properties of subdiffer-
ential and the Fenchel formula. =

Let
(1.8)  X?%:={pe LI71(2,R"); there exists z € X such that
p(y) = H,(y,Vz(y)) for a.e. y € 2}.
Since ¢ — 1 > 2 and 2 is bounded, X¢ C L?(£2,R").
REMARK 3. For every z € X, there exists p € X9 satisfying
—divp(y) € 0:G(y,x(y)) for a.e. y € (2.

Proof. Fix x € X. Then there exists Z € X such that (1.7) holds. Taking
p(y) = H,(y,VZ(y)) for a.e. y € 2 we see that p € X,

[ {(z(y), — div(p(y))) — G*(y, — divp(y) } dy = | G(y, 2(y)) dy,
(7 02

and, in consequence, the required relation is satisfied. m



Dirichlet problems without convezity assumption 197

REMARK 4. The definitions of X and X¢ imply that there exists M > 0
such that for all p € X¢,

1Pl La-1(2rn) < M.

2. Duality. The aim of this section is to develop a duality which de-
scribes the connections between the critical values of J and the infimum of
the dual functional Jp : X% — R defined as follows:

(2.1) Ip(p) = H=H"(y,p(y)) + G*(y, — divp(y))} dy,
2

where H*(y,-) and G*(y,-) (y € {2) denote the Fenchel conjugate of H(y,-)
and G(y, ), respectively.
To this end we need the perturbation J, : L1(£2,R) — R of J given by

Te(9) = {=H(y, Va(y)) + Gy, 9(y) + x(y))} dy.
2

It is clear that J,(0) = —J(x) for all z € X.
For every x € X define a conjugate Jf : X% R of J, by
(22)  JZ(p)
= sup | {{g(y),divp(y)) — Gy, 9(y) +2(v)) + H(y, Va(y))} dy

geLI(2,R) )
= {G* (v, divp(y)) + H(y, Va(y)) — (x(y), divp(y))} dy.
(0]
Now we show that for all p € X¢,
(2:3) sup(—J#(—p)) = —Jp(p).

zeX

Indeed, fix p € X?. From (1.8) we obtain the existence of Z € X satisfying
p(-) = H.(-,VZ(-)) a.e. on {2 and, in consequence,

24)  {(VZ(),p(v) — H(y, VE(y))} dy = | H* (y,p(y)) dy,
02

Q
so that

25 [{(VZ().py)) — H(y, VZ(y))} dy
(0]

< sup | {(Va(y), p(y)) — H(y, Va(y))} dy
:veXQ

< sup | {(0(w),p(v)) — Hy,v(y))} dy
vELZ(,R")

= | H*(y,p(v)) dy = \{(VZ(), p(y)) — H(y, VE(y))} dy.
2 2
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This implies

sup (—J# (—p)) = sup {{(Va(y),p(y)) — H(y, Va(y)) — G*(y, — divp(y)) } dy
reX reX )

= {H* (v, p(v)) = G*(y, — divp(y))} dy = =T (p),

Q
as claimed.
We also need another relation:
(2.6) sup (—J# (~p)) = —J(a)

peX?
for each z € X. To prove this, fix z € X and use Remark 3 to find p € X¢
such that for a.e. y € {2,

—divp(y) € 0:.G(y, z(y)),

and further

27 [{(z(y), —divh(y)) — G*(y, — div(y)} dy = | G(y, =(y)) dy.
Q 19

By arguments similar to those in the proof of (2.5), we obtain

(2.8)  sup \{(z(y), —divp(y)) — G*(y,— divp(y))} dy
peXd 0

=Gy, 2(y) dy = | Gy, x(y)) dy,
9] 2
where the last equality is due to Remark 2. By (2.8) and (2.2),

sup (—J7 (~p))

peXd
= sup H(z(y), = divp(y)) - G*(y. — divp(y)) - H(y, Va(y))}
peX? ()
= [{~H(y,Va(y) + Gly,x(y)} dy = — I (x).
(9}

Now we have the following duality principle:

THEOREM 2.1.
inf J(z) = inf J, .
xIEX ( ) pleXd D(p)

Proof. From (2.6) and (2.3)

3

sup(—J(z)) =sup sup (—J¥(—p)) = sup sup(—J¥(—p))= sup (~Jp(p)),
zEX z€X peXxd peXd zeX peX®

which yields the assertion. =
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3. Variational principles. Now we use the duality from the previ-
ous section to establish relations between the existence of minimizers of
Jp and J. We also give a variational principle for minimizing sequences
of both functionals. This result enables numerical characterization of mini-
mizing sequences of Jp and approximation of its infimum. To this end we
need a kind of perturbation of Jp. For each p € X% define the functional
Jp, : L*(2,R") — R as

Ip,(h) = \{H*(y.p(y) + h(y)) — G*(y, — divp(y))} dy.
2

THEOREM 3.1. Assume that p € X¢ is a minimizer of Jp, i.e., Jp(p) =
inf,c xa Jp(p). Then there exists T € X which is a minimizer of J,

(3.1) J(z) = inf J(2),
and such that VT € 0.Jp_(0). Moreover

(32) JE#(_ﬁ) + ']Dﬁ(o) = 07
(3.3) TE(=p) - J(@) = 0.

Proof. By (1.8) for some T € X,

[{(VZ(y),pv)) — H(y, VE(y))} dy = § H (4, B(y)) dy.
(9} 2

Adding {,{—G*(y, —divD(y))} dy to both sides we obtain (3.2).
After some calculation, we see that
T, (VT) = JZ (D)

(where Jp,, denotes the Fenchel conjugate of Jp,). Thus, by (3.2) and the

properties of the subdifferential, we have the inclusion VZ € 9.Jp_(0).

We now show that T is a minimizer of J : X — R. By Theorem 2.1, to
prove (3.1), it is sufficient to show that Jp(p) > J(Z), and this follows from
the equalities Jp_(0) = —Jp(p), (3.2) and (2.8):

(34) o) = JF(=p) = ik (I (=)

= — sup | {(Z(y), - divp(y)) — G*(y, — divp(y)) — H(y, VZ(y))} dy
pede

= - {Gw.3(y) — H(y, Vz(y))} dy = J (7).
2

Finally, (3.3) is a simple consequence of (3.2) and the fact that Jp_(0) =
—Jp(p) = -J(T). =
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COROLLARY 3.2. If p € X satisfies Jp(p) = inf,c xa Jp(p) then there
exists T € X which is a solution of the Dirichlet problem for (1.1):
(3.5) —div[H:(y, VZ(y))] € 0:G(y,Z(y))
for a.e. y € 2.

Proof. By Theorem 3.1 there exists T € X for which (3.2) and (3.3) hold.
Hence

V{H*(v.5() + H(y, VZ(y)) — (VZ(y),B(y))} dy = 0
(0]

and

G (v, — divd(y)) + Gy, T(y)) — (F(y), — divB(y)) } dy = 0.
9]

Using the properties of the Fenchel conjugate, we obtain, for a.e. y € {2,
H*(y,p(y)) + H(y, Vz(y)) — (VZ(y),B(y)) =0,
G*(y, —divp(y)) + G(y, z(y)) — (@(y), —divp(y)) = 0
so that
ply) = Hz(y,VZ(y)) and —divp(y) € 9.G(y,=(y))
for a.e. y € 2. This implies (3.5). m

Now we prove a numerical version of the above variational principle.
We give a result on minimizing sequences that is analogous to the previous
theorem.

THEOREM 3.3. Let {pp}nen C X? be a minimizing sequence for Jp :
X4 - R such that

(3.6) c:= inf Jp(pp) > —o0.
neN
Then for any n € N there exists x, € X satisfying
(3.7) Vz, € dJp,, (0), Tlllelg J(zp) = ;g)f( J(z).
Moreover for all n € N,
(3.8) TDp, (0) + JF, (=pn) =0,
and for each € > 0, there exists ng € N such that for all n > ny,
(3.9) T (=pn) — J(xn) < e,
(3.10) |Jp(pn) — J(zn)] < e.

Proof. As in the proof of Theorem 3.1, for any n € N there exists
x, € X satisfying (3.8) and Vz, € 0Jp,,(0). By Theorem 2.1, to prove
that {x,}nen C X is a minimizing sequence of J on X, it suffices to show
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that

11 inf J(z,) =
(3.11) inf J(zn) =c,

because from (3.11) and Theorem 2.1 it follows that

inf J(x,)=c= inf n) = inf = inf .
sef o) = o= e Jolon) = ol To(p) = 2l J(7)

It is clear that by Theorem 2.1 and (3.6), for all n € N,
(3.12) J(zn) > c.

Fix ¢ > 0. From (3.6) there exists ng € N such that ¢ > Jp(p,) — ¢ for all
n > ng. Therefore, the equalities Jpy, (0) = —Jp(pn), (3.8) and (2.6) imply
that for all n > ny,

ct+e> JD(pn) = J;t(_pn) > inf (in(—p)) = J(xn)
peXd

Thus, by (3.12), ¢ = inf,,en J(2y).
Conditions (3.9) and (3.10) are satisfied because of the last assertion and
the fact that J¥ (—p,) < c+¢ for all n > ng. =

As a consequence of the previous theorem we obtain
COROLLARY 3.4. Suppose that {p,}nen C X? is a minimizing sequence

for Jp on X% and inf,cn Jp(pn) = ¢ > —oco. Then there exists a minimizing
sequence {Tn}neny C X for J with

(3'13) Hz(ya Vxn(y)) = pn(y)
for a.e. y € £2 and every n € N. Moreover

(3.14)  lim {{G"(y, — divpa(y))+G(y, 2a(y)H(div pa(y), 2n(y))} dy =0.
n

4. The existence of solutions for the Dirichlet problem. This
section is devoted to the existence of a solution of (1.1) which is a minimizer
of J. First we call a relevant lemma from [12]:

LEMMA 4.1. Let 2 C R" and let F : {2 — R be a conver and lower
semicontinuous function such that for each u € {2 the following inequalities

hold: 1
—b< F(u) <a-lul?+e¢,
q
for some constants a > 0, b,c >0, ¢ > 1. Then for all v € OF (u),
o] < (@'a”/*(Ju| +b+c) + 1)1,
where ¢ = q/(q —1).
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THEOREM 4.2. There exists xo € X such that
—div(H,(y, Vzo(y)) € 0:G(y, z0(y))

for a.e. y € 2. Moreover xg is a minimizer of J on X:

= inf :
J(x0) nf J(x)
Proof. By hypothesis (H) for every p € X¢ we obtain

(4.1) Jp(p) = \[H"(y,p(y)) + G*(y, — div p(y))] dy
02

piod 1
L i DIy gy~ 3 Iy + § o) = Ral)) ly

N

v

!

ploa 1
> = ||d1vp||§q/(Q,R)—2—bgﬁM2+§<k3<y>—k2<y>>dy,
(0]

where 3 = [vol(§2)]'=2/(¢=1), This implies that Jp is bounded below on X¢.

Taking into account the growth conditions imposed on G and H we see
at once that for @ € R large enough the set P; = {p € X% a@ > Jp(p)}
is not empty. Now we can choose a minimizing sequence {pm,}men C Pj
for Jp. By (4.1) the sequence {div py, }men C X¢ is bounded in the norm
|- Lo (2 r)- Moreover, by the definition of X {pmYmen is bounded in
Li71(£2,R™). Thus, passing to a subsequence if necessary, we deduce that
Pm — po as m — oo, where pg € L4~1(2,R"), and div p,, — 2 as m — oo,
where z € LY (£2,R) (— denotes weak convergence). So

J(po(y), Vh(y)) dy = lim_{(pm(y), Vh(y)) dy
2 (9}

= — lim S(divpm(y), h(y))dy = — S(z(y), h(y)) dy
2

for any h € C§°(f2,R), hence

[ (o), VR()) + (z(y), h(y))) dy = 0
(]

for all h € C§°(£2,R), and finally, by the Euler-Lagrange lemma, div po(y) =
z(y) for a.e. y € (2.

Let B(p;;A) = {z € LI YQ2,R"); |lp1 — z|lpa-1(orny < A}. Since
{pm}men C B(p1; A) € LI~ (£2,R") and p,, — po, and B(p1, A) is weakly
sequentially closed as a convex, closed subset of L9~!(£2, R"), we have

(4.2) po € B(p1; A4).

Moreover, by (4.1), {pm}men satisfies the assumptions of Corollary 3.4.
Therefore there exists some sequence {Z;,}men C X minimizing J on X



Dirichlet problems without convezity assumption 203

and such that for all m € N,
(4.3) H.(y,Vrm(y)) = pm(y) for ae. ye .

Taking into account hypothesis (H), we can use the Fenchel formula and
rewrite (4.3) as follows:

(4.4a) Ven(y) € 0pH" (y,pm(y)) for ae. y € (2,

where 0, H*(y, p) is the subdifferential of the function R" > p — H*(y,p),
y € 2. By Lemma 4.1 and the boundedness of {p,, }men in LI71(£2, R?) we
see that {V2,, }men is bounded in LI~1(£2, R™) and {2, }men is bounded in
Wol’q_l((), R). Thus, we may choose a subsequence still denoted by {z, }men
weakly convergent to zg € VVO1 ’q_l(Q, R). Hence, by the Rellich—-Kondrashov
theorem,

lim ||lzm — @ollLe(or) = 0.
m—0o0

As {2, }men tends strongly to xg in L1(£2,R) and {div p,, } men tends weakly
to divpg in LY (2, R) we get

(4.5) Tim | (divpm (), @ () dy = [(divpo(y), zo(y)) dy
and ? ?
(4.6)  lim inf {[G(y, 2m(y)) + G*(y, — divpm(y))] dy

m—0o0

= lim | Gy, 2m(y) dy +lim_inf | G*(y, —divpn(y)) dy
(9}

> |Gy, wo(y)) + G*(y, — divpo(y))] dy,
2

which follows from the continuity of LY(£2,R) 3 z — {, G(y,z(y))dy and

weak lower semicontinuity of L (£2,R) 3 z — §o G*(y, 2(y)) dy. Combining
(4.5), (4.6) and (3.14) we see that

47 WG (y,—divpo(y) + Gy, wo(y)) + (div po(y), z0(y))} dy < 0.
(9]

Thus, by the properties of the Fenchel transform, we have equality in (4.7),
and, in consequence, for a.e. y € {2,

G*(y, —divpo(y)) + G(y, 2o(y)) + (divpo(y), zo(y)) = 0.
Finally, we obtain
(4.8) —divpo(y) € 0.G(y,z0(y)) for ae. y € (2.
Now using (4.3) we infer that

HH W 0m®) + HY, Vam(y) = pm(y), Vam(y))} dy = 0.
(0]
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Analysis similar to that in the proof of (4.8) now shows that

(4.9) po(y) = H=(y, Vzo(y)) for ae. y € 2.
(4.8) and (4.9) imply
—div H,(y,Vzo(y)) € 0:G(y,z0(y)) forae ye £2.
From (4.2) and (4.9) we have x9 € X and further, by the last equality,

xg € X.
To prove the last assertion, it is sufficient to note that

in)f( J(z) = liminf J(x,,) = liminf S {H(y,Vem(y)) — Gy, zm(y))} dy
ze m—00 m—00
0

= liminf | H(y, Van(y)) dy — lim | Gy, zm(y)) dy
N

m—00

> | H(y, Vao(y)) dy — | Gy, z0(y)) dy = J (o),
02 2

which is due to the continuity of LI(2,R) > = — {,G(y,z(y)) dy, weak
lower semicontinuity of L2(2,R") > z — §, H(y, 2(y)) dy and the facts that
Ty — o in LI(2,R) and Va,,, — Vg in L2(2,R") as m — co. m

REMARK 5. If 0 ¢ X% (that is, [P1lla-1(0rny > A) then the above
theorem gives the existence of a nonzero solution of (1.1).

5. Applications. We shall apply our theory to derive the existence of
solutions of the Dirichlet problem for a certain class of partial differential
equations.

Now we recall the relevant theorems from [5] and [1]:

THEOREM 5.1. Let {2 be a_C’l’l domain in R™. If f € LP(£2,R) with
1<p<oo, and k € CL(2,R), ko > k(y) > ko > 0 for all y € £2, then the
Darichlet problem

{div{k(y)w(y)) = f(y) forae ye
u e Wy (02,R),
has a unique solution u € WP ({2, R).

THEOREM 5.2. Let {2 be a CYl domain in R", 1 < p < oo and k €
CYH2,R) and ko > k(y) > ko > 0 for any y € 2. Then there ezists a
constant ¢ (independent of u) such that

(5.1) lullw2s(or) < clldiv(kVu)| Lo r)
for all w € Wy P(2,R) N W2P(2,R).

THEOREM 5.3 (Sobolev Imbedding Theorem). Let 2 be a bounded do-
main in R™ and let p,m > 1, k < m, with pk > n. The following inequality
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holds for v € W"P(£2,R) with a constant ¢ depending on m, k and p, but
not otherwise on {2 or on u:

ma sup | D%u < c||ul|yyrm .
0§\a|§}§—k yEB’ (y)| <l HWO P(2,R)

THEOREM 5.4. Assume that

1. ¢ € [3,00), 2 € OV is a bounded domain in R™, with n + 1 < g;

2. k€ CYH2,R), ko > k(y) > ko for all y € £

3. G: 2 xR — R is differentiable with respect to the second variable on
R for a.e. y € §2;

4. there exists z € Li71(£2,R) with the following properties. Let Z €
W24=1(0,R) denote the solution of the equation

—div(k(y)Vz(y)) = Gz(y,2(y)) for a.e. y € 2

(the existence of Z follows from Theorem 5.1) and let ¢ be the constant
introduced in Theorem 5.2 for Wol’q_l(Q,R) N W21 R). Then
there exist constants S1 > 0, by,ba > 0, 1 < r < q and functions
k1,ko € LY(£2,R) such that

(a) for all x € R and a.e. y € (2,
b b
(5.2) Sl 4 k() < Gly2) < 2 el + k()

(b) B(z;¢51) 2 x — §, G(y,z(y)) dy is convex, where

B(z;851) := {u € WP ' (2,R); |ju — 2l <251},

(£2,R)
(c) for any x € B(z;¢S1),
(5.3) 1G5 2()) = Gales 2D -2y < St
Then there exists a solution
o € {u € Wy ' (2,R); |kVu — kVZ|| a1 (pn) < kocS1}
of the Dirichlet problem for the PDE
(5.4) —div(k(y)Va(y)) = Ga(y, 2(y))  for ae. y € 2
such that div(k(-)Vzo(-)) € LY (2, R).
Proof. First we recall the definition of X:
X = {z € Wy " '(2,R); div(kVz) € L7 (£2,R)
and [|kVz — kVZ|| La-1(orn) < koS1}.
Let

Xo = {z € W3 (2, R); ||div(kVz) + Go (-, 2(-))l| -1 (2m) < S1}-
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We show the inclusion Xy C B(z;¢S1). Fix € Xy. Using Theorem 5.2, we
have
(55) 1z = Zlyaa o) < 2l div(kVe - kV5) oo
< 3div KV + Ga(, 2() | o1z < 31,
so that z € B(z;¢51).

Now we prove that X has the following property: for every x € Xy, there
exists T € X such that

(5.6)  |{{x(y), - div(k(y)VE(y))) — G*(y, — div(k(y) VZ(y))} dy

? = | Gy, 2(v)) dy.
)
To this end fix z € Xj. Since G4 (-, z(-)) € L471(£2,R), by Theorem 5.1 there
exists a unique solution zy € W, 97! (2, R) N W24~1(£2,R) of the Dirichlet
problem for the equation

(5.7) —div(k(y)Vao(y)) = Gz(y,x(y)) a.e. on (2.
Thus, by (5.3), (5.7) and the inclusion Xy C B(Z;¢S1), we obtain

3

1div(k(y)Vzo(y)) + Ga (s 2()) | La-1(2r)

= |Gz (- 2()) = Ga (- 2() [ La-1(2r) < S1-

This implies g € X( and, in consequence, xg € B(Z;¢S1). Thus, by (5.7)
and the convexity of the functional

o= { Yo Gy, uly))dy for u € B(z:251),
o for u € W' (2,R) \ B(%;¢51),

we obtain

— div(kVao) € 96(x)

and the properties of the subdifferential yield (5.6).
Moreover, from (5.5), for all x € X, we have

(5.8) ||k‘V$ — kjvz||Lq—1(Q7Rn) < E()H$ — ZHWOQ’Q_l(Q,R) < EOE&.
Summarizing, Xo # 0 (Z € Xo), Xo C X and X, has the required property.

Now we define X to be the union of X and the set of all solutions of
problem (5.4) which belongs to X. Let X? be given by

X .= {p e LI71(02,R"); there exists z € X such that
p(y) = k(y)Va(y) for ae. y € 2}.
Now Theorem 4.2 yields the existence of a solution g € Wol’qfl(Q,R),
with div(k(-)Vazo(-)) € LY (£2,R), of the PDE
div(k(y)Va(y)) + Galy, z(y)) = 0. =
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REMARK 6. It worth noting that if |kVZ| zs-1(ogn) > kocS1 then the
above theorem states the existence of a nonzero solution of (5.4).

Proof. 1f the solution described by Theorem 5.4 is the zero function, then
0 € X, which implies the estimate

1kVZ|| Lo(or) < koGS
But it contradicts our assumption. =

As a consequence of Theorem 5.4 we obtain

THEOREM b5.5. Suppose that

1. ¢ €[3,00) and 2 € CY' is a bounded domain in R™, with n + 1 < g¢;

2. k€ CY(§2,R), ko > k(y) > ko for all y € £2;

3. G: 2 xR — R is differentiable with respect to the second variable on
R for a.e. y € §2;

4. there exist constants by,bs > 0, 1 < r < q and functions ki, ko €
LY(2,R) such that for all x € R and a.a. y € {2,

b b
L el ki) < Gly,@) < 2 lal + ka(y)
5. I is a subset of N such that for each i € I there exists z; € LI~ 1(2,R)
with the following properties:
(a) there exists St > 0 such that
G (-, 2(-) = Galt 2i() |l a1 (2m) < S
for any x € B(z;; Si¢)
(b) B(z;; Si¢) > x — $o Gy, z(y)) dy is conver,
where Z; € Woz’q_l(Q,R) satisfies the equality
—div(k(y)VZzi(y)) = Ga(y, 2i(y))  for a.e. y € 12

(the existence of Z; follows from Theorem 5.1).

Then for all i € I there exists a solution T; of the Dirichlet problem for the
PDE

(5.9) —div(k(y)Vz(y)) = Go(y,z(y)) for a.e. y € 2
such that div(k(-)VZ;(-)) € LY (2,R) and T; € B;, where
B; = {u e Wy 1 (2,R); [kVu — kVZ| La-1(grny < koeS}}.

If we assume additionally that B;NBj =0 for all i,j € I, i # j, then T; # T;
for all i,5 € I, i # j and, in consequence, #S > #1I, where S denotes the
set of solutions for (5.9).

Now we shall give an explicit example of G satisfying the assumptions of
Theorem 5.4.
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EXAMPLE 5.6. Assume that

l.n=4,qg=6, 2 CRY,

2. k€ CY(2,R), ko > k(y) > ko for all y € £2;

3. z is any element of Co(£2,R) such that ||2°—62°+8z+ 1|15 r) < ;
4.5>0,a€ L®(2,R) and

3
b < |la||pe(om <mindl, —— 4
Jolli~@z < min{1, o

Then there exists a nonzero solution

T € {u € Wy’ (2,R); |kVu — kVZ| 15 gmm) < ko ﬁ}
of the Dirichlet problem for the PDE
. a(y)
(5.10)  —div(k(y)Vz(y)) = () ((z(9))° = 6(x(y))* +82(y) +1)

for a.e. y € 02, such that div(k(-)Vzo(-)) € LY5(2,R), with ¢ being the
Sobolev constant (Theorem 5.3 for W02’5(Q,R) and k = 2) and ¢ described
in Theorem 5.2 for p = 5.

Proof. Tt is clear that the right-hand side of (5.10) is the derivative of
G : 2 xR — R given by
a(y) 2 2.2
Gly,z) = ——F——= ((z* —4)"(z* — 1) + 6z
(1:7) = G s (@~ 926 = 1)+ 62)
with respect to the second variable. For a.e. y € {2 the function G(y,-) is

differentiable on R and convex in the interval (—7/10,7/10). Moreover for
all x € R and a.e. y € {2 we have

a(y) a(y) 6
Y (324 —200) < Gly,x) < —— ) (9645 + 36),
60T o) ° )< G2 < gaoiTe 260 30

so that ( satisfies the required growth conditions. Since G (-, z(+)) € L*(2, R)

Theorem 5.1 leads to the existence of Z € W01’5(Q, R) N W25 (2, R) which is
a solution of the PDE

~div (k) V) = 1oyt (0 = 0:(0)° + 8:0) + ).

From 5.2 we know that
(5.11)  |[Zlleoar) < cllZllwzsor) < celldiv(k(y)VZ(W))l s or)
< (1 +o)(1+o)div(k(y)VZ(Y)) |l sor)

a(y)
1+c)(1+2)

<

=(1+4+¢)(1+47¢) (2° —62° + 82+ 1)

L5(2,R)
1

< |lallzoe(oryll2° — 62° + 82 + 1| 5o Rr) < 0
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Put
3

5(1+c)e’

) 3
B(z;51) = {UGWO (2,R); [Ju — Z|W§’5(97R><—}'

ST =

5(14c¢)

Using (5.11) we have the inclusion B(z;¢S1) C {u € Co(£2,R); ||u|lc, < 7/10},
so that = — {, G(y,z(y)) dy is convex in B(Z;¢S1).
Now we shall show that for all x € B(z;¢S1),

1G(2()) = Galts 2Dl < ey
Indeed,
[Gales()) = Gale 2D o102
P8 ((0(0)) — 6a(0)) + 820 s
) = 60 + 82l 50}
||a||L°°(Q,R) 5 7\° 7\? 7 11
<“wrae () o) () w
||a”L°°QR 3
= T+o [\/—J“ } 51+ 0
as claimed.

We have just shown that all the assumptions of Theorem 5.4 are satisfied.
Since zero does not satisfy the equation below, there exists a nonzero solution
zo € Wy (12, R) of

(k) V() = oy () = 0(e) 4 82(0) + 1)
for a.e. y € 2 with div(k(-)Vzo(-)) € LY/?(2,R). =
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