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Coproducts and the additivity of the Szymczak index

by Kinga Stolot (Kraków)

Abstract. We prove that the index defined by Szymczak in [9] has an additivity
property. Moreover we give an abstract theorem for extending coproducts from an initial
category to the Szymczak category, which provides a setting for the proof of additivity.

1. Introduction. The Conley index is a topological invariant suitable
to detect and investigate the properties of isolated invariant sets. Initially
defined by Conley for continuous dynamical systems, it was developed by
numerous authors and extended to the discrete, and recently also to the
multi-valued discrete setting.

The discrete extension defined by Szymczak [9] is considered to be the
most general among single-valued ones. One would expect it to have the
same major properties as the classical Conley index for flows. Although
Conley writes in [1] that it is obvious that the index of the disjoint union
of two isolated invariant sets is the sum of their indices, so far this property
has not been proved for the Szymczak index.

The additivity property appears to be more complicated in the discrete
than in the continuous case. The first and obvious question is how to define
a sum of indices which are objects of an abstract Szymczak category.

The main results of this paper are Theorems 8 and 12. The first answers
the above question, the second is actually a statement of the additivity
property of the Szymczak index.

In the abstract and elegant language of category theory a “sum of ob-
jects” is called a coproduct. Theorem 8 provides a procedure of transferring
coproducts from an initial category to the category of endomorphisms and
then to the Szymczak category, bearing the actual index. Roughly speaking,
Theorem 12 is an application of Theorem 8 to the concrete category which
is used in the definition of the Szymczak index.
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As the index itself has a more complex structure in the discrete than in
the continuous case, one would expect that the proof of additivity is more
complicated. For simplicity, part of the proof devoted to carrying over the
coproducts is done in a more abstract setting.

Theorem 8 also provides some information on the possibility of proving
the additivity property of other indices, defined with the use of the Szymczak
functor (for example those defined in [6] and [7]). Because of Theorem 8 we
know that to solve this problem one needs to check if the initial category in
these constructions has finite coproducts.

Finally, one should mention that in [8] Szymczak considers a special kind
of index for decompositions of isolated invariant sets, mainly for the purpose
of detecting periodic orbits and chaos, but does not actually deal with the
additivity property.

Acknowledgements. The author would like to express her gratitude
to her PhD supervisor Prof. Marian Mrozek for his suggestion to undertake
this problem and assistance.

2. Preliminaries. By Z and N we denote respectively the set of all
integers and the natural numbers with zero.

Let X be a topological space. For a set A ⊂ X we denote by intA, bdA,
clA respectively the interior, boundary and closure of the set A. Throughout
the paper by a pair of subsets of a topological space X we understand a
pair (A,B) such that B ⊂ A ⊂ X.

2.1. Categories and coproducts. Let us recall after [2], [5] the notion of
coproduct in a category E .

By E(A,B) we denote the set of all morphisms from the object A to the
object B in the category E . Once the category is clear from the context,
instead of a ∈ E(A,B) we will write

a : A→ B.(1)

Let us stress that this notation does not imply that the morphism is neces-
sarily a function.

For the purpose of Conley index theory it is sufficient to consider finite
coproducts.

Definition 1. Let {Ai}i∈I be a finite family of objects of the category E .
The coproduct of {Ai}i∈I is a pair (

∨
i∈I Ai, {κi : Ai →

∨
i∈I Ai}i∈I) such

that
∨
i∈I Ai ∈ E , κi ∈ E(Ai,

∨
i∈I Ai) for i ∈ I and the following condi-

tion is satisfied: for all B ∈ E and all φi ∈ E(Ai, B) for i ∈ I there is a
unique ξ ∈ E(

∨
i∈I Ai, B) such that the following diagrams commute for all

i ∈ I:
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A1
∨
i∈I Ai

B

κi //

φi

HHHHHHHH
##

ξ

��

(2)

We call the morphisms κi appearing in this definition the inclusions
associated with the coproduct of the objects {Ai}i∈I in the category E .
If for any finite family of objects of the category E there exists a coprod-

uct we say that the category E has finite coproducts. The following remark
(see [5]) justifies the notation

∨
i∈I Ai.

Remark 2. If the category has finite coproducts then they are uniquely
determined up to an isomorphism.

The object
∨
i∈I Ai given by Definition 1 is called briefly a coproduct.

Moreover the morphism ξ uniquely determined by the family {φi}i∈I is
denoted by

∨i∈I φi := ξ.(3)

We denote by top• the category of pointed topological spaces with base
point preserving maps. Objects of top• are (X,x0), where X is a topolog-
ical space and x0 ∈ X is a base point. By [f ]h we denote the homotopy
class of the morphism f in the category top•. Let Htop• denote the homo-
topy category over top•. Composition of morphisms [f ]h ∈ Htop•(X,Y ) and
[g]h ∈ Htop•(Y, Z) is denoted by

[g]h • [f ]h = [g ◦ f ]h.(4)

2.2. Endomorphism and Szymczak categories. Recall after [3] and [9] the
notions of the category of endomorphisms and Szymczak category.
Let E be any category. Objects of the category of endomorphisms over

E (denoted by Endo(E)) are pairs (A, a), where A ∈ E and a ∈ E(A,A).
A morphism in Endo(E) from (A, a) to (B, b) is a morphism φ ∈ E(A,B)
for which the following diagram commutes:

A A

B B

a //

φ
��

φ
��

b //

(5)

The Szymczak category Sz(E) has the same objects as Endo(E). To define
the morphisms of Sz(E) let us first introduce a relation in Endo(E)×N. Let
φ, φ′ ∈ Endo(E)((A, a), (B, b)) and m,m′ ∈ N. Then

(φ,m) ≡ (φ′,m′) ⇔ ∃k ∈ N : φ ◦ am
′+k = φ′ ◦ am+k.(6)

Morphisms in Sz(E) are, by definition,

Sz(E)((A, a), (B, b)) := Endo(E)× N/≡.
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The composition of the morphisms [φ,m]≡ ∈ Sz(E)((A, a), (B, b)) and
[ψ, n]≡ ∈ Sz(E)((B, b), (C, c)) is defined by

[ψ, n]≡ ⋆ [φ,m]≡ = [ψ ◦ φ, n+m]≡.(7)

2.3. Definition of the Szymczak index. In this section we recall after [9]
the definition of the Szymczak index.

Assume that X is a locally compact metric space, and f : X → X a
continuous map. For any A ⊂ X and n ∈ N define the invariant part of A
under f as

Inv(A, f) := {x∈A : there exists a sequence {xn}n∈Z, xn∈A for all n ∈ Z,

such that x0 = x and xn+1 = f(xn) for all n ∈ Z}.

A compact set N ⊂ X satisfying

Inv(N, f) ⊂ intN(8)

is called an isolating neighborhood and S = Inv(N, f) is called an isolated
invariant set with respect to f .

Throughout this paper we will be using index pairs and index maps in
the sense of Szymczak (the definitions below come from [9]).

Definition 3. A pair P = (P1, P2) of compact sets such that P2 ⊂ P1 ⊂
X is called an index pair for an isolated invariant set S with respect to f if
the following conditions are satisfied:

(a) S = Inv(cl(P1 \ P2), f) ⊂ intP1 \ P2,

(b) if x ∈ P2 then f(x) 6∈ P1 \ P2,

(c) if x ∈ P1 and f(x) 6∈ P1 then x ∈ P2.

Fundamental for the definition of the Szymczak index is the following
proposition (see e.g. [4]).

Theorem 4. For any isolated invariant set there exists an index pair.

Given any two closed subsets P2 ⊂ P1 ⊂ X we denote by P1/P2 the
pointed topological space (P1 \ P2 ∪ {p2}, p2), where p2 is either any point
of P2 if P2 6= ∅, or an added distinguished point p2 6∈ P1 otherwise. The
elements of P1/P2 are denoted by [x] for x ∈ P1 \ P2 ∪ {p2}.

If P2 6= ∅ then the topology of P1/P2 is the quotient topology given by
the projection p : P1 → P1/P2 where

p(x) :=

{
[x] if x ∈ P1 \ P2,
[p2] if x ∈ P2.

In case P2 = ∅ the topology of P1 ∪ {p2} is that of P1 with added isolated
point p2. Note that this definition covers the case of both P1 = P2 = ∅.



Additivity of the Szymczak index 215

For an isolated invariant set S with respect to f and an associated index
pair P let us define the index map

fP : P1/P2 → P1/P2

as follows:

fP ([x]) :=

{
[f(x)] if x, f(x) ∈ P1 \ P2,
[p2] otherwise.

(9)

Due to [9, Lemma 4.3] the index map is continuous.

Definition 5. The Szymczak index of an isolated invariant set S for a
discrete dynamical system f is the class of objects isomorphic in the category
Sz(Htop•) to (P1/P2, [fP ]h), where P = (P1, P2) is any index pair for S.

The class of such isomorphic objects is denoted by C(S, f). By [9, Propo-
sition 2.2], it does not depend on the choice of the specific index pair.

3. Carrying over the coproducts. We now state the crucial result
of this paper, which provides an abstract setting for proving the additivity
property of indices of Conley type. Namely assuming that E is a category
with finite coproducts we prove that both

(i) Endo(E) has finite coproducts,
(ii) Sz(E) has finite coproducts.

For later purposes we state this theorem in a more detailed form, giving
the actual formulas for coproducts in the above categories. Before we state
the theorem we prove two lemmas.
Throughout this section {A}i∈I is a finite family of objects of E and

ai ∈ E(Ai, Ai) for i ∈ I. The following is obvious from the definition of the
Szymczak relation.

Lemma 6. If [µi, ni]≡ ∈ Sz(E)((Ai, ai), (C, c)) for i ∈ I and n :=
max{ni : i ∈ I}, then

∀i ∈ I : [µi, ni]≡ = [µi ◦ a
n−ni
i , n]≡.

Lemma 7. Assume E is a category with finite coproducts. Let

α := ∨i∈I(κi ◦ ai) ∈ E
(∨

i∈I

Ai,
∨

i∈I

Ai

)
,(10)

where the κi appear in the definition of the coproduct. Then

∀i ∈ I ∀k ∈ N \ {0} : κi ◦ a
k
i = α

k ◦ κi.

Proof. Take any i∈ I. The assertion follows easily by induction on k ∈N.
If k = 1 it is obvious from the definition of the coproduct. Assuming that
κi ◦ a

k
i = α

k ◦ κi we obtain

κi ◦ a
k+1
i = (κi ◦ a

k
i ) ◦ ai = (α

k ◦ κi) ◦ ai = α
k ◦ (α ◦ κi) = α

k+1 ◦ κi.
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Theorem 8. Assume that E is a category with finite coproducts.

(i) If {(Ai, ai)}i∈I is a finite family of objects of the category Endo(E),
then

(11)
((∨

i∈I

Ai, α
)
, {κi}i∈I

)

is their coproduct , where the morphism α is defined by formula (10)
and κi ∈ Endo(E)((Ai, ai), (

∨
i∈I Ai, α)) for i ∈ I.

(ii) The coproduct of the family {(Ai, ai)}i∈I in the category Sz(E) is

(12)

((∨

i∈I

Ai, α
)
, {[κi, 0]≡}i∈I

)
,

where α is as in (i) and [κi, 0]≡ ∈ Sz(E)((Ai, ai), (
∨
i∈I Ai, α)).

Proof. (i) Consider the morphisms

φi := κi ◦ ai ∈ E
(
Ai,
∨

i∈I

Ai

)
for i ∈ I.(13)

Because E by assumption has coproducts, there exists exactly one morphism,
denoted by α and defined by formula (10), which satisfies

α ◦ κi = φi.(14)

We wish to show that (11) is a coproduct of the family {(Ai, ai)}i∈I in
Endo(E). In order to prove that κi : (Ai, ai) → (

∨
i∈I Ai, α) is a morphism

in Endo(E) for any i ∈ I it is enough to note that due to (13) and (14) the
following diagram commutes:

Ai Ai

∨
i∈I Ai

∨
i∈I Ai

ai //

φi

LLLLLLLLL
%%

κi
��

κi
��

α //

(15)

Let us check if the pair (11) satisfies condition (2) from the definition of
the coproduct. Let (C, c) be any object in Endo(E) and let

µi ∈ Endo(E)((Ai, ai), (C, c)) for i ∈ I

be any family of morphisms. Then the following family of diagrams for i ∈ I
commutes:

Ai Ai

C C

ai //

µi

��

µi

��
c //

(16)

We will show that there exists exactly one morphism

ξ ∈ Endo(E)
((∨

i∈I

Ai, α
)
, (C, c)

)
(17)
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such that the following diagrams commute for i ∈ I:

(Ai, ai) (
∨
i∈I Ai, α)

(C, c)

κi //

µi

NNNNNNNNNN
&&

ξ

��

(18)

Because C ∈ E and µi ∈ E(Ai, C) for i ∈ I, from the definition of the
coproduct in E there exists exactly one morphism ∨i∈Iµi ∈ E(

∨
i∈I Ai, C)

such that the following diagrams commute for i ∈ I:

Ai
∨
i∈I Ai

C

κi //

µi

HHHHHHHH
##

∨i∈Iµi

��

(19)

Let us first check if ∨i∈Iµi is also a morphism in the category Endo(E)
from the object (

∨
i∈I Ai, α) to (C, c), i.e. if the following diagram commutes:

∨
i∈I Ai

∨
i∈I Ai

C C

α //

∨i∈Iµi

��

∨i∈Iµi

��
c //

(20)

Notice that joining diagrams (19) and (16) we find that the following
diagram commutes:

Ai
∨
i∈I Ai

Ai C

C

κi //

µi

QQQQQQQQQQQQQQQQ ((

ai

������
��

∨i∈Iµi

��

µi

HHHHHHHH
$$

c

��

(21)

Similarly joining diagrams (15) and (19) we find the following commuting
diagram:

Ai
∨
i∈I Ai

Ai
∨
i∈I Ai

C

κi //

ai

??????
��

α

��
κi //

µi

HHHHHHHH
##

∨i∈Iµi

��

(22)

The vertical compositions in (21) and (22) are equal, from the uniqueness
of the morphism in the definition of the coproduct in the category E for the
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family {µi ◦ ai}i∈I . The resulting equality

c ◦ ∨i∈Iµi = (∨i∈Iµi) ◦ α

gives the required commutativity of (20).

To complete the proof of (i) put

ξ := ∨i∈Iµi.(23)

Commutativity of (18) for i ∈ I is a consequence of the fact that (19)
commutes for i ∈ I.

It remains to show that (23) is the unique morphism that satisfies con-

dition (18). Suppose ξ̃ ∈ Endo(E)((
∨
i∈I Ai, α

)
, (C, c)) is another such mor-

phism. Then ξ̃ :
∨
i∈I Ai → C is a morphism in E for which the following

diagram commutes:

Ai
∨
i∈I Ai

C

µi

HHHHHHHH
##

κi //

ξ̃
��

(24)

Now ξ = ξ̃ from the definition of the coproducts in E .

(ii) As the objects of Endo(E) and Sz(E) are the same, we can proceed
to checking if the pair (12) satisfies condition (2) from the definition of the
coproduct in Sz(E). Let (C, c) be any object of Sz(E) and let

[µi, ni]≡ ∈ Sz(E)((Ai, ai), (C, c)) for i ∈ I

be any finite family of morphisms. Let n := max{ni : i ∈ I}. Denote by

ξ := ∨i∈I(µi ◦ a
n−ni
i )(25)

the morphism which exists from the definition of the coproduct in Endo(E).
We will show that

[ξ, n]≡ ∈ Sz(E)
((∨

i∈I

Ai, α
)
, (C, c)

)
(26)

satisfies the condition from Definition 1. We first prove that the following
diagrams for i ∈ I commute in the Szymczak category:

(Ai, ai) (
∨
i∈I Ai, α)

(C, c)

[µi,ni]≡

NNNNNNNNNN
&&

[κi,0]≡
//

[ξ,n]≡
��

(27)

From the definition of the coproduct in Endo(E) the following diagrams
commute for i ∈ I:
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(Ai, ai) (
∨
i∈I Ai, α)

(C, c)
µi◦a

n−ni
i

NNNNNNNNNN
&&

κi //

∨i∈I(µi◦a
n−ni
i

)
��

(28)

From Lemma 6 we obtain

[µi ◦ a
n−ni
i , n]≡ = [µi, ni]≡,

and from (25) and the commutativity of (28) it follows that

[ξ ◦ κi, n]≡ = [µi, ni]≡.(29)

This shows that diagram (27) commutes for i ∈ I.
It remains to show that (26) is the unique morphism which satisfies the

requirements of Definition 1. Suppose that

[ξ̃,m]≡ ∈ Sz(E)
((∨

i∈I

Ai, α
)
, (C, c)

)

is also a morphism satisfying (27). Then

[ξ̃ ◦ κi,m]≡ = [µi, ni]≡,(30)

therefore using (29) we obtain

[ξ ◦ κi, n]≡ = [ξ̃ ◦ κi,m]≡,

and from the definition of the Szymczak relation

∃s ∈ N : ξ ◦ κi ◦ a
m+s
i = ξ̃ ◦ κi ◦ a

n+s
i .(31)

Applying Lemma 7 twice we obtain, for any i ∈ I,

ξ ◦ κi ◦ a
m+s
i = ξ ◦ αm+s ◦ κi, ξ̃ ◦ κi ◦ a

n+s
i = ξ̃ ◦ αn+s ◦ κi.

By using the above equalities formula (31) reads

∃s ∈ N : ξ ◦ αm+s ◦ κi = ξ̃ ◦ α
n+s ◦ κi,(32)

for any i ∈ I. From the definition of ≡ this is equivalent to [ξ, n]≡ = [ξ̃,m]≡,
which completes the proof.

4. Coproducts in the category Htop•. We show that the category
Htop• has finite coproducts. Then we give a precise formula for the coprod-
uct both in Htop• and in Sz(Htop•).
To simplify the notation we only deal with coproducts of two objects.

The formula obviously extends to the coproduct of any finite number of
objects.

Theorem 9. Let (X,x0) and (Y, y0) be any objects of Htop•. Then the
coproduct of (X,x0) and (Y, y0) is the pair

((X,x0) ∨ (Y, y0), {[κX ]h, [κY ]h}),
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where

(X,x0) ∨ (Y, y0) := (X × {y0} ∪ {x0} × Y, (x0, y0))(33)

is the object of Htop• and the associated inclusions are defined as the pointed
homotopy classes of the maps

κX ∈ top•((X,x0), (X,x0) ∨ (Y, y0))(34)

with κX(x) := (x, y0) for any x ∈ X and

κY ∈ top•((Y, y0), (X,x0) ∨ (Y, y0))(35)

with κY (y) := (x0, y) for any y ∈ Y .

Proof. Consider any object (Z, z0) ∈ Htop• and any morphisms

[f ]h ∈ Htop•((X,x0), (Z, z0)), [g]h ∈ Htop•((Y, y0), (Z, z0)).

We need to find a unique

[ξ]h ∈ Htop•((X,x0) ∨ (Y, y0), (Z, z0))

such that the following diagrams commute in Htop•:

(X,x0) (X,x0) ∨ (Y, y0)

(Z, z0)

[κX ]h //

[f ]h

PPPPPPPPPPP''

[ξ]h
��

(36)

(Y, y0) (X,x0) ∨ (Y, y0)

(Z, z0)

[κY ]h //

[g]h

PPPPPPPPPP ''

[ξ]h
��

[ξ]h
��

(37)

Define ξ ∈ top•((X,x0) ∨ (Y, y0), (Z, z0)) as follows:

ξ((x, y)) :=

{
f(x) if y = y0,
g(y) if x = x0.

(38)

where f is any element of [f ]h and g is any element of [g]h.
To prove that (36) commutes it is enough to show that ξ ◦ κX and f are

in the same base point preserving homotopy class. The required homotopy
is defined as

h(x, ·) := f(x) for any x ∈ X;

then
h(x, 0) = f(x),

h(x, 1) = f(x) = ξ((x, y0)) = ξ ◦ κX(x),

h(x0, t) = f(x0) = z0 for any t ∈ I.

Similarly one can show that diagram (37) commutes. It is easy to show that
such a ξ is unique up to base point preserving homotopy.
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The following is an immediate consequence of Theorems 9 and 8.

Proposition 10. Let

((X,x0), [aX ]h), ((Y, y0), [aY ]h) ∈ Sz(Htop•),

where aX ∈ top•((X,x0), (X,x0)) and aY ∈ top•((Y, y0), (Y, y0)). Then the
coproduct of the objects ((X,x0), [aX ]h) and ((Y, y0), [aY ]h) is the pair

(((X,x0) ∨ (Y, y0), [α]h), {[[κX ]h, 0]≡, [[κY ]h, 0]≡}),(39)

where (X,x0) ∨ (Y, y0) is defined by (33), the morphism

[α]h := [(κX ◦ aX) ∨ (κY ◦ aY )]h(40)

is defined as the pointed homotopy class of

(κX ◦ aX) ∨ (κY ◦ aY )((x, y)) :=

{
κX ◦ aX(x) if y = y0,
κY ◦ aY (y) if x = x0,

(41)

and the associated inclusions are the Szymczak classes of the pointed homo-

topy classes of the maps κX and κY defined respectively by (34) and (35).

5. Additivity of the Szymczak index. Before we proceed to the
main theorem of this paper let us prove a lemma.

Lemma 11. Let S and S̃ be two isolated invariant sets for f such that

S ∩ S̃ = ∅.(42)

Then there exist isolating neighborhoods M , N of S and S̃ respectively sat-
isfying the conditions

M ∩N = ∅, f(M) ∩N = ∅, M ∩ f(N) = ∅.(43)

Proof. The condition M ∩N = ∅ is easy to satisfy as both S and S̃ are
compact and disjoint.
Consider isolating neighborhoods Mm ⊂ M of S (where m ∈ N) and N

of S̃ such that

Mm ∩N = ∅ and Mm+1 ⊂Mm for m ∈ N.(44)

Moreover assume that ⋂

m∈N

Mm = S(45)

and

f(Mm) ∩N 6= ∅ for any m ∈ N.(46)

By (46) we can find a sequence xm ∈Mm such that

f(xm) ∈ N for any m ∈ N.(47)

By (45) we can choose a subsequence of {xm} converging to a point
s ∈ S. Because S is invariant, also f(s) ∈ S. From the continuity of f ,
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compactness of N and (47) we find that f(s) ∈ N as well and therefore
S ∩N 6= ∅. This contradicts the assumption Mm ∩N = ∅.
Choosing from the isolating neighborhoods that satisfy the first two con-

ditions in (43), we similarly prove that M and N can be chosen such that
also the last formula of (43) is satisfied.

Now we are in a position to prove the main result of this paper, namely
the additivity of the Szymczak index.

Theorem 12. Let S and S̃ be two disjoint isolated invariant sets for f .
Then the following objects are isomorphic in Sz(Htop•):

C(S, f) ∨ C(S̃, f) ≃ C(S ∪ S̃, f).(48)

Proof. By Lemma 11 there exist isolating neighborhoodsM , N of S and
S̃ respectively satisfying

M ∩N = ∅(49)

and

f(M) ∩N = ∅ and M ∩ f(N) = ∅.(50)

Notice first that the right hand side of (48) makes sense, because S ∪ S̃
is an isolated invariant set, in an isolating neighborhood M ∪N .
Let P = (P1, P2) and Q = (Q1, Q2) be index pairs respectively for S

and S̃ such that P1 ⊂ M and Q1 ⊂ N . Let us first show that the pair
R := (R1, R2) defined as

R1 := P1 ∪Q1, R2 := P2 ∪Q2

is an index pair for S ∪ S̃.
Since P2 ⊂ P1, Q2 ⊂ Q1 and also P1 ∩ Q1 = ∅ by the choice of P1, Q1

and (49),

cl(R1 \R2) = cl(P1 \ P2) ∪ cl(Q1 \Q2) ⊂M ∪N(51)

and
Inv(cl(R1 \R2), f) ⊂ Inv(M ∪N, f) = S ∪ S̃.

The inverse inclusion is easy to see.
Obviously

S ∪ S̃ ⊂ int(P1 \ P2) ∪ int(Q1 \Q2) ⊂ int(R1 \R2),(52)

which completes the proof of property (a) from Definition 3.
To prove (b) we need the finer choice of isolating neighborhoods which

is guaranteed by (50).
Consider x ∈ P2 ∪Q2. We will prove that if x ∈ P2 then f(x) 6∈ R1 \R2.

Similarly we argue for x ∈ Q2.
Because x ∈ P2 by property (b) for P we have

f(x) 6∈ P1 \ P2.(53)
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Since P2 ⊂ M and Q1 \ Q2 ⊂ N, by the first property in (50) we obtain
f(P2) ∩ (Q1 \Q2) = ∅, and so

f(x) 6∈ Q1 \Q2.(54)

From (53) and (54) we infer that f(x) 6∈ R1 \R2.
Property (c) for R is a straightforward consequence of property (c) for

P and Q.

So we have shown that R is an index pair for S ∪ S̃.
To prove (48) it is enough to show that the following objects are isomor-

phic in Sz(Htop•):

(P1/P2, [fP ]h) ∨ (Q1/Q2, [fQ]h) ≃ (R1/R2, [fR]h).(55)

According to Proposition 10 the left hand side of (55) is equal to

(P1/P2 ∨Q1/Q2, [(κP ◦ fP ) ∨ (κQ ◦ fQ)]h),(56)

where κP : P1/P2 → P1/P2 ∨Q1/Q2 and κQ : Q1/Q2 → P1/P2 ∨Q1/Q2 are
defined as follows:

κP ([x]) := [(x, q2)] for x ∈ P1/P2,(57)

κQ([x]) := [(p2, x)] for x ∈ Q1/Q2.(58)

By the definition (33) of the coproduct in category Htop• the object
P1/P2 ∨Q1/Q2 is equal to

(((P1 \ P2)× {q2}) ∪ ({p2} × (Q1 \Q2)) ∪ {(p2, q2)}, (p2, q2)).(59)

Notice first that

κP ◦ fP ([x]) =

{
[(f(x), q2)] if x, f(x) ∈ P1 \ P2,
[(p2, q2)] otherwise,

(60)

κQ ◦ fQ([y]) =

{
[(p2, f(y))] if y, f(y) ∈ Q1 \Q2,
[(p2, q2)] otherwise.

(61)

To simplify notation put

ξ := (κP ◦ fP ) ∨ (κQ ◦ fQ).(62)

According to formulas (41) and (60), (61) we obtain

ξ([(x, y)]) =





[(f(x), q2)] if y = q2 and x, f(x) ∈ P1 \ P2,
[(p2, q2)] if y = q2 and (x 6∈ P1 \ P2

or f(x) 6∈ P1 \ P2),
[(p2, f(y))] if x = p2 and y, f(y) ∈ Q1 \Q2,
[(p2, q2)] if x = p2 and (y 6∈ Q1 \Q2

or f(y) 6∈ Q1 \Q2).

(63)

So to prove (55) we should find an isomorphism between the objects
(P1/P2 ∨Q1/Q2, [ξ]h) and (R1/R2, [fR]h) in the Szymczak category.



224 K. Stolot

Define first a map

χ ∈ top•(R1/R2, P1/P2 ∨Q1/Q2)

as follows:

χ([x]) :=





[(x, q2)] if x ∈ P1 \ P2,
[(p2, x)] if x ∈ Q1 \Q2,
[(p2, q2)] if x = r2.

(64)

Note that χ is a well defined continuous base point preserving map.
Moreover it has a continuous inverse

χ−1 ∈ top•(P1/P2 ∨Q1/Q2, R1/R2),

defined as follows:

χ−1([(x, y)]) =





[x] if x ∈ P1 \ P2 and y = q2,
[y] if x = p2 and y ∈ Q1 \Q2,
[r2] if (x, y) = (p2, q2).

(65)

It is straightforward to verify that χ−1 is in fact inverse to χ in the
category top•. We will show that

[[χ]h, 0]≡ ∈ Sz(Htop•)((R1/R2, [fR]h), (P1/P2 ∨Q1/Q2, [ξ]h))(66)

is the isomorphism required by (55).
First we need to prove that [χ]h is an appropriate morphism in

Endo(Htop•). To do this we have to prove that the diagram (67) below
commutes up to base point preserving homotopy; in fact we will prove that
it actually commutes in top•.

R1/R2 R1/R2

P1/P2 ∨Q1/Q2 P1/P2 ∨Q1/Q2

fR //

χ

��

χ

��
ξ

//

(67)

We have

χ ◦ fR([x]) =

{
χ([f(x)]) if x, f(x) ∈ R1 \R2,
χ([r2]) otherwise,

=





[(f(x), q2)] if x ∈ R1 \R2 and f(x) ∈ P1 \ P2,
[(p2, f(x))] if x ∈ R1 \R2 and f(x) ∈ Q1 \Q2,
[(p2, q2)] otherwise,

=

{
[(f(x), q2)] if x, f(x) ∈ P1 \ P2,
[(p2, f(x))] if x, f(x) ∈ Q1 \Q2,
[(p2, q2)] otherwise.

To justify the last equality note that neither of the conditions

x ∈ P1 \ P2 and f(x) ∈ Q1 \Q2, x ∈ Q1 \Q2 and f(x) ∈ P1 \ P2

can be satisfied by any x.
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Now write

ξ ◦ χ([x]) =





ξ([(x, q2)]) if x ∈ P1 \ P2,
ξ([(p2, x)]) if x ∈ Q1 \Q2,
ξ([(p2, q2)]) if x = r2,

=





[(f(x), q2)] if x, f(x) ∈ P1 \ P2,
[(p2, q2)] if x ∈ P1 \ P2 and f(x) 6∈ P1 \ P2,
[(p2, f(x))] if x, f(x) ∈ Q1 \Q2,
[(p2, q2)] if x ∈ Q1 \Q2 and f(x) 6∈ Q1 \Q2,
[(p2, q2)] if x ∈ P2 ∪Q2 or x 6∈ P1 ∪Q1,

=

{
[(f(x), q2)] if x, f(x) ∈ P1 \ P2,
[(p2, f(x))] if x, f(x) ∈ Q1 \Q2,
[(p2, q2)] otherwise.

To justify the last equality notice that the condition under which ξ◦χ([x]) =
[(p2, q2)] excludes all the other cases.

Comparing the formulas for χ ◦ fR and ξ ◦ χ proves that diagram (67)
commutes.

It can be easily noticed that by reversing the χ arrows in (67), we prove
that [[χ−1]h, 0]≡ is also a morphism in Sz(Htop•).
Finally,

[[χ]h, 0]≡ ⋆ [[χ
−1]h, 0]≡ = [[χ]h • [χ

−1]h, 0]≡ = [[χ ◦ χ
−1]h, 0]≡

= [[idP1/P2∨Q1/Q2 ]h, 0]≡,

and similarly

[[χ−1]h, 0]≡ ⋆ [[χ]h, 0]≡ = [[idR1/R2 ]h, 0]≡,

which completes the proof of (55).
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