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A characterization of bounded plurisubharmonic functions

by Pham Hoang Hiep (Hanoi)

Abstract. We give a characterization for boundedness of plurisubharmonic functions
in the Cegrell class F .

1. Introduction. Let Ω be a bounded hyperconvex domain in C
n. De-

note by PSH(Ω) the plurisubharmonic (psh) functions on Ω. The complex
Monge–Ampère operator (ddc)n is well defined over the class of locally
bounded psh functions, according to the fundamental work of Bedford–
Taylor in [BT1], [BT2]. Recently Cegrell has introduced in [Ce1], [Ce2]
new classes of psh functions on which the complex Monge–Ampère oper-
ator can be defined and enjoys important properties, e.g. is continuous un-
der monotone sequences. For precise definitions of Cegrell’s classes see the
next section. The main aim of this note is to give some characterizations
for boundedness of functions in the class F . These results are strongly mo-
tivated by Theorem 3 in [Xi2] where a characterization for boundedness of
psh functions bounded near the boundary is given. The main result of the
note is the following

1.1. Main Theorem. Let Ω be a bounded hyperconvex domain in C
n,

and u ∈ F(Ω). Then u is bounded on Ω if only if there exist constants A
and B such that for all k < B with Cn({u < k}) > 0 there exist k ≤ k1 <
· · · < ks = B with k1 < k + 1 and

s
∑

j=2

(

‖(ddcu)n‖{u<kj}

Cn({u < kj−1 + 0})

)1/n

< A

where Cn({u < k + 0}) = limt→k+0Cn({u < t}).
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The proof of the Main Theorem is presented in Section 4. In Section 2
we recall some elements of pluripotential theory pertaining to our work.
Applying the Main Theorem, as in [Xi2], we obtain

1.2. Corollary. Let Ω be a bounded hyperconvex domain in C
n, and

u ∈ F(Ω). If there exist constants δ > 1 and A > 0 such that the inequality

‖(ddcu)n‖{u<k} ≤ A(Cn({u < k}))δ

holds for every k < 0, then u is bounded on Ω.

Acknowledgments. The author is grateful to Professor Nguyen Van
Khue for suggesting the problem and for many helpful discussions during
the preparation of this work.

2. Preliminaries. In this section we recall some elements of pluripo-
tential theory that will be used throughout the paper. All this can be found
in [BT2], [Xi1], [Ce1], [Ce2], etc.

2.1. Unless otherwise specified, Ω will be a bounded hyperconvex do-
main in C

n, meaning that there exists a negative exhaustive psh function
for Ω.

2.2. Let Ω be a bounded domain in C
n. The Cn-capacity in the sense

of Bedford and Taylor on Ω is the set function given by

Cn(E) = Cn(E,Ω) = sup
{ \
E

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u ≤ 0
}

for every Borel set E in Ω. It is known [BT2] that

Cn(E) =
\
Ω

(ddch∗E,Ω)
n

where h∗E,Ω is the relative extremal psh function for E (relative to Ω) defined
as the smallest upper semicontinuous majorant of hE,Ω where

hE,Ω(z) = sup{u(z) : u ∈ PSH(Ω), −1 ≤ u ≤ 0, u ≤ −1 on E}.

2.3. The following classes of psh functions were introduced by Cegrell in
[Ce1] and [Ce2]:

E0 = E0(Ω) =
{

ϕ ∈ PSH ∩ L∞(Ω) : lim
z→∂Ω

ϕ(z) = 0,
\
Ω

(ddcϕ)n <∞
}

,

F = F(Ω) =
{

ϕ ∈ PSH(Ω) : ∃E0 ∋ ϕj ց ϕ, sup
j≥1

\
Ω

(ddcϕj)
n <∞

}

,

E = E(Ω) =
{

ϕ ∈ PSH(Ω) : ∀z0 ∈ Ω ∃ a neighbourhood ω ∋ z0

∃E0 ∋ ϕj ց ϕ on ω, sup
j≥1

\
Ω

(ddcϕj)
n <∞

}

.

The following interesting theorem was proved by Cegrell in [Ce2]:
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2.4. Theorem. The class E has the following properties:

(1) E is a convex cone.
(2) If u ∈ E and v ∈ PSH−(Ω) = {ϕ ∈ PSH(Ω) : ϕ ≤ 0}, then
max(u, v)∈E.

(3) If u ∈ E and PSH(Ω) ∩ L∞loc(Ω) ∋ uj ց u, then (ddcuj)
n is weakly

convergent.

3. The comparison principle in the class F . The key element in
the proof of our main theorem is the following comparison principle of Xing
type [Xi1], [Xi2].

3.1. Theorem. Let u ∈ F and v ∈ PSH− ∩ L∞(Ω). Then

1

(n!)2

\
{u<v}

(v − u)nddcw1 ∧ · · · ∧ dd
cwn +

\
{u<v}

(r − w1)(dd
cv)n

≤
\

{u<v}

(r − w1)(dd
cu)n

for all r ≥ 1 and wj ∈ PSH(Ω) with 0 ≤ wj ≤ 1 for all j ≥ 1.

Proof. Let E0 ∋ uj ց u be as in the definition of F . By the comparison
principle of Xing for bounded psh functions (Lemma 1 in [Xi1]) we have

1

(n!)2

\
{uj<v}

(v − uj)
nddcw1 ∧ · · · ∧ dd

cwn +
\

{uj<v}

(r − w1)(dd
cv)n

≤
\

{uj<v}

(r − w1)(dd
cuj)

n

for j ≥ 1. Since {uj < v} ր {u < v}, it follows that

1

(n!)2

\
{u<v}

(v − u)nddcw1 ∧ · · · ∧ dd
cwn +

\
{u<v}

(r − w1)(dd
cv)n

≤ lim
j→∞

\
{u<v}

(r − w1)(dd
cuj)

n.

Let ε > 0. Since
T
Ω
(ddcu)n <∞, we can find L ⊂⊂ Ω such that

T
Ω\L
(ddcu)n

< ε. Let L ⊂⊂ K ⊂⊂ Ω′ ⊂⊂ Ω and g ∈ C∞(Cn) be such that g = 1 on
C
n \K, g = 0 on L and 0 ≤ g ≤ 1. We have

lim
j→∞

\
{u<v}

(r − w1)(dd
cuj)

n

≤ lim
j→∞

\
{u<v}∩K

(r − w1)(dd
cuj)

n + lim
j→∞

\
Ω

g(r − w1)(dd
cuj)

n

≤ lim
j→∞

\
{u<v}∩K

(r−w1)(dd
cuj)

n+r
[

lim
j→∞

\
Ω

(g−1)(ddcuj)
n+ lim
j→∞

\
Ω

(ddcuj)
n
]



236 Pham Hoang Hiep

≤ lim
j→∞

\
{u<v}∩K

(r − w1)(dd
cuj)

n + r
[ \
Ω

(g − 1)(ddcu)n +
\
Ω

(ddcu)n
]

≤ lim
j→∞

\
{u<v}∩K

(r − w1)(dd
cuj)

n + r
\
Ω\L

(ddcu)n

≤ lim
j→∞

\
{u<v}∩K

(r − w1)(dd
cuj)

n + rε.

Thus there exists K ⊂⊂ Ω such that

lim
j→∞

\
{u<v}

(r − w1)(dd
cuj)

n ≤ lim
j→∞

\
{u<v}∩K

(r − w1)(dd
cuj)

n + rε.

By the quasicontinuity of u and v (Theorem 3.5 in [BT2]) we can find open
subsets Gj of Ω

′ such that

Cn(Gj) <
1

2j
, u, v are continuous on Ω′ \Gj

and

G1 ⊃ G2 ⊃ · · · .

Put hj = hGj ,Ω. Since Gj ց G =
⋂∞
j=1Gj and Cn(G) = 0, it follows that

hj ր 0 on Ω \ E for some subset E of Ω with Cn(E) = 0. Thus −hj ց ψ

with 0 ≤ ψ ≤ 1 and ψ = 0 on Ω \ E. Fix j0 ≥ 1. By the compactness of
{u ≤ v} ∩ (K \Gj0) we have

lim
j→∞

\
{u<v}∩K

(r − w1)(dd
cuj)

n

≤ lim
j→∞

\
{u≤v}∩(K\Gj0 )

(r − w1)(dd
cuj)

n + lim
j→∞

\
Gj0

(r − w1)(dd
cuj)

n

≤
\

{u≤v}∩(K\Gj0 )

(r − w1)(dd
cu)n+r lim

j→∞

\
Gj0

(ddcuj)
n− lim
j→∞

\
Gj0

w1(dd
cuj)

n

≤
\

{u≤v}∩(K\Gj0 )

(r − w1)(dd
cu)n

+ r lim
j→∞

\
Ω

(−hj0)(dd
cuj)

n −
\
Gj0

w1(dd
cu)n.

On the other hand, since K ∩ {u = −∞} ⊂ Gj0 and

lim
j→∞

\
Ω

(−hj0)(dd
cuj)

n =
\
Ω

(−hj0)(dd
cu)n (Proposition 5.1 in [Ce2])
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we have

(1) lim
j→∞

\
{u<v}∩K

(r − w1)(dd
cuj)

n

≤
\

({u≤v}\{u=−∞})∩K

(r − w1)(dd
cu)n + r

\
Ω

(−hj0)(dd
cu)n −

\
Gj0

w1(dd
cu)n.

Since E is pluripolar, by the decomposition theorem of Cegrell (Theorem
5.11 in [Ce2]) we have

(2)
\

E\{u=−∞}

(ddcu)n = 0.

Letting j0 →∞ in (1), in view of (2), we obtain

lim
j→∞

\
{u<v}

(r − w1)(dd
cuj)

n

≤
\

({u≤v}\{u=−∞})∩K

(r − w1)(dd
cu)n + r

\
E

(ddcu)n −
\
G

w1(dd
cu)n + rε

=
\

({u≤v}\{u=−∞})∩K

(r − w1)(dd
cu)n

+ r
\

{u=−∞}∩E

(ddcu)n −
\
G

w1(dd
cu)n + rε

≤
\

({u≤v}\{u=−∞})∩K

(r − w1)(dd
cu)n

+ r
\

{u=−∞}∩K

(ddcu)n −
\

{u=−∞}∩K

w1(dd
cu)n + 2rε

≤
\

{u≤v}∩K

(r − w1)(dd
cu)n + 2rε.

Thus
1

(n!)2

\
{u<v}

(v − u)nddcw1 ∧ · · · ∧ dd
cwn +

\
{u<v}

(r − w1)(dd
cv)n

≤
\

{u≤v}

(r − w1)(dd
cu)n.

Applying the above inequality to u ∈ F and v − ε with ε > 0 we have

1

(n!)2

\
{u<v−ε}

(v − ε− u)nddcw1 ∧ · · · ∧ dd
cwn +

\
{u<v−ε}

(r − w1)(dd
cv)n

≤
\

{u≤v−ε}

(r − w1)(dd
cu)n.
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Letting ε ց 0, and using the fact {u ≤ v − ε} ⊂ {u < v} for all ε > 0, we
get

1

(n!)2

\
{u<v}

(v − u)nddcw1 ∧ · · · ∧ dd
cwn +

\
{u<v}

(r − w1)(dd
cv)n

≤
\

{u<v}

(r − w1)(dd
cu)n.

4. Proof of Theorem 1.1. The necessity is obvious. To see the suffi-
ciency we assume that Cn({u < k}) 6= 0. Otherwise we have u ≥ k for some
constant k. By the comparison principle (Theorem 3.1), we have

(kj − k)
n

\
{u<k}

(ddcw)n ≤
\

{u<kj}

(kj − u)
n(ddcw)n ≤

\
{u<kj}

(1− w)(ddcu)n

for all w ∈ PSH(Ω), 0 < w < 1. Letting k ց kj−1 we have

(kj − kj−1)
nCn({u < kj−1 + 0}) ≤ ‖(dd

cu)n‖{u<kj}.

Therefore

B − 1− k < ks − k1 =
s
∑

j=2

(kj − kj−1) ≤
s
∑

j=2

[

‖(ddcu)n‖{u<kj}

Cn({u < kj−1 + 0})

]1/n

≤ A.

Thus B − 1 − A < k for all k < B satisfying Cn({u < k}) 6= 0. This is
impossible.
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