
ANNALES

POLONICI MATHEMATICI

85.3 (2005)

On the Neumann problem with combined nonlinearities

by Jan Chabrowski (Brisbane) and Jianfu Yang (Wuhan)

Abstract. We establish the existence of multiple solutions of an asymptotically linear
Neumann problem. These solutions are obtained via the mountain-pass principle and a
local minimization.

1. Introduction. The main purpose of this paper is to investigate the
nonlinear Neumann problem

(1.1)

{−∆u = h(x)uq + f(x, u) in Ω,

∂u/∂ν = 0 on ∂Ω, u > 0 on Ω,

where 0 < q < 1, Ω ⊂ R
N , N ≥ 3, is a smooth bounded domain and ν

denotes the unit outward normal to the boundary. We assume that h is a
smooth function on Ω, h(x) ≤ 0 on Ω with a strict inequality on a set
of positive measure, f(x, s) ≥ 0 for s ≥ 0 and is asymptotically linear at
infinity. Additional assumptions on f and h will be formulated later.

The corresponding Dirichlet problem has been studied by many authors
(see [6]–[9], [13], [14], and references given there). Some existence results
with f interfering with the eigenvalues of higher order but without a concave
term can be found in [2], [11] and [12]. In particular, in [2] a nonlinearity
is allowed to be asymptotically linear in −∞. However, it seems that not
much attention has been given to problem (1.1).

The main purpose of this paper is to establish the existence of at least
two solutions of problem (1.1) (see Theorems 2.2 and 2.3). The first solution
is obtained through the mountain-pass principle and second by a local min-
imization. In these theorems it is assumed that f is asymptotically linear at
−∞ and +∞ and that h changes sign. We also consider a nonlinearity which
is only asymptotically linear at +∞. In this case we prove the existence of a
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mountain-pass solution provided h < 0 on Ω. Theorem 3.2 provides the ex-
istence of a solution in the case where f is superlinear via the mountain-pass
principle. However, we do not impose the usual Ambrosetti–Rabinowitz con-
dition on f . To overcome this difficulty we use some ideas from the papers
[8], [13] and [14]. If h ≡ 0, then under our assumptions on f problem (1.1)
does not have a positive solution. The results of this paper show that a small
concave perturbation produces at least two distinct solutions.

We use standard notations. In a given Banach space X weak conver-
gence is denoted by “⇀” and strong convergence by “→”. The norms in the
Lebesgue spaces Lp(Ω) are denoted by ‖·‖p. By |A| we denote the Lebesgue
measure of a set A ⊂ R

N .
We recall that a C1 functional Φ : X → R on a Banach space X satisfies

the Palais–Smale condition at level c ((PS)c condition for short) if each
sequence {xn} ⊂ X such that Φ(xn) → c and Φ′(xn) → 0, as n → ∞, in X∗

is relatively compact in X.

2. Mountain-pass structure and local minimization. In this sec-
tion we assume that

(H1): h changes sign and
T
Ω h(x) dx < 0,

(F1): f ∈ C(Ω, R), f(x, 0) = 0 for x ∈ Ω, f(x, s) > 0 for s 6= 0, and

lim
s→0

f(x, s)

s
= 0, lim

s→∞

f(x, s)

s
= l1, lim

s→−∞

f(x, s)

s
= l2,

where l1 > 0 and l2 < 0 are constants.

Solutions will be obtained as critical points of the functional

J(u) =
1

2

\
Ω

|∇u|2 dx − 1

q + 1

\
Ω

h(x)|u|q+1 dx −
\
Ω

F (x, u) dx,

where F (x, t) =
Tt
0 f(x, s) ds. This functional is C1 on H1(Ω), where H1(Ω)

is the usual Sobolev space for the Neumann problem. The norm of H1(Ω)
is denoted by ‖ · ‖ and is given by

‖u‖ =
(\

Ω

(|∇u|2 + u2) dx
)1/2

.

We shall use the decomposition H1(Ω) = R ⊕ V , where

V =
{

v;
\
Ω

v dx = 0 and ∇v ∈ L2(Ω)
}

.

This decomposition follows from the fact that the first eigenvalue of −∆ with
the Neumann boundary conditions is 0 and the corresponding eigenfunctions
are constant functions. Using this decomposition we define the following
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norm on H1(Ω):

‖u‖V =
(

t2 +
\
Ω

|∇v|2 dx
)1/2

, u = t + v.

The norms ‖ · ‖ and ‖ · ‖V are equivalent. Indeed, if u ∈ H1(Ω) andT
Ω u(x) dx = 0, then

(2.1) ‖u‖2 ≤ K(Ω)‖∇u‖2,

where K = K(Ω) > 0 is a constant depending on Ω. Using (2.1) we establish
the following inequality:

(2.2) min(1, |Ω|)1/2‖u‖V ≤ ‖u‖ ≤ max(1 + K2, |Ω|)1/2‖u‖V .

First, we observe that

‖u‖2 =
\
Ω

(|∇v|2 + v2 + t2) dx ≥ min(1, |Ω|)‖u‖2
V .

To obtain the right-hand-side inequality of (2.2) we use (2.1):

‖u‖2 =
\
Ω

(|∇v|2 + t2 + v2) dx ≤ (1 + K2)
\
Ω

|∇v|2 dx + t2|Ω|

≤ max(1 + K2, |Ω|)‖u‖2
V .

We commence by checking the mountain-pass geometry of J . Since V
is continuously embedded into Lq+1(Ω) we have the following quantitative
statement: there exists a constant η > 0 such that

(2.3) ‖∇v‖2 ≤ η|t| implies
\
Ω

h(x)|t + v|q+1 dx ≤ −|t|q+1α

for every t ∈ R and v ∈ V , where α = −1
2

T
Ω h(x) dx > 0.

Proposition 2.1. There exist constants κ > 0, ̺ > 0 and γ > 0 such

that

(2.4) J(u) ≥ κ for ‖u‖ = ̺

and every function h satisfying (H1) and ‖h‖∞ ≤ γ.

Proof. Let u = t + v. We distinguish two cases: (i) ‖∇v‖2 ≤ η|t| and
(ii) ‖∇v‖2 > η|t|. If (i) holds, then by (2.3) we get

J(u) ≥ |t|q+1

q + 1
α − C1

\
Ω

u2 dx

for some constant C1 > 0. The existence of C1 follows easily from assumption
(F1). We now observe that if ‖u‖2

V = ‖∇v‖2
2+t2 = s2, then t2 ≥ s2/(1 + η2).

Thus by (2.2) we have

J(u) ≥ αsq+1

(q + 1)(1 + η2)(q+1)/2
− C1 max(1 + K2, |Ω|)s2.
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Taking

s◦ =

[

α

2C1(q + 1)(1 + η2)(q+1)/2 max
(

1 + K2, |Ω|)

]1/(1−q)

we derive the estimate

(2.5) J(u) ≥ αsq+1

2(q + 1)(1 + η2)(q+1)/2

for all 0 < s ≤ s◦ and ‖u‖V = s. In case (ii) we have\
Ω

h|u|q+1 dx ≤ ‖h‖∞|Ω|(1−q)/2‖u‖q+1
2

≤ ‖h‖∞|Ω|(1−q)/2 max
(

1 + K2, |Ω|)(q+1)/2‖u‖q+1
V

and

‖u‖V ≤ ‖∇v‖2(1 + 1/η2)1/2.

Hence

J(u) ≥ ‖u‖2
V

2(1 + 1/η2)
− ‖h‖∞|Ω|(1−q)/2 max(1 + K2, Ω|)(q+1)/2‖u‖q+1

V

−
\
Ω

F (x, u) dx.

Let 2 < p < 2∗ = 2N/(N − 2). By assumption (F1) there exists a constant
C2 > 0 such that

F (x, t) ≤ t2

4(1 + 1/η2) max(1 + K2, |Ω|) + C2t
p for t ≥ 0.

Hence by the Sobolev embedding theorem we have

J(u) ≥ ‖u‖2
V

4(1 + 1/η2)
− ‖h‖∞|Ω|(1−q)/2 max(1 + K2, |Ω|)(q+1)/2‖u‖q+1

V

− C3‖u‖p
V

for some constant C3 > 0. Let

a =
1

4(1 + 1/η2)
, b = |Ω|(1−q)/2 max(1 + K2, |Ω|)(q+1)/2

and

k(t) = ‖h‖∞btq−1 + C3t
p−2 for t ≥ 0.

Then

J(u) ≥ ‖u‖2
V (a − k(‖u‖V )).

Since

inf
t≥0

k(t) = ‖h‖
p−2

p−q−1

∞ C5 = k(t◦),
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where

t◦ =

[

(1 − q)‖h‖∞b

C3(p − 2)

]
1

p−q−1

, C5 = C
q−1

p−q−1

4 (b+C3C4) with C4 =
(1 − q)b

(p − 2)C3
,

we obtain, for ‖u‖V = t◦,

(2.6) J(u) ≥ at2◦/2

provided ‖h‖∞ ≤
(

a
2C5

)

p−q−1

p−2 . Since t◦ depends on ‖h‖∞ we may choose

γ ≤
(

a
2C5

)

p−q−1

p−2 so that t◦ ≤ s◦ for ‖h‖∞ ≤ γ. If ‖u‖V = ̺ = t◦ and

κ = min

(

at2◦
2

,
αsq+1

◦

2(q + 1)(1 + η2)(q+1)/2

)

the estimate (2.4) easily follows.

We now observe that there exists an e ∈ H1(Ω) such that ‖e‖V > ̺ and
J(e) < 0. Indeed, it is enough to choose τ > 0 sufficiently large so that

F (x, s) ≥ ls2/2 for s ≥ τ.

Then we set e(x) = t with t ≥ τ sufficiently large so that

J(t) =
tq+1

q + 1

\
Ω

h(x) dx − lt2

2
|Ω| < 0.

We now define
c = inf

g∈Γ
max
s∈[0,1]

J(g(s)),

where
Γ = {g ∈ C([0, 1], H1(Ω)); g(0) = 0, g(1) = e}.

Theorem 2.2. Problem (1.1) has a mountain-pass solution provided

(H1), (F1) and ‖h‖∞ ≤ γ hold.

Proof. The mountain-pass level generates a Palais–Smale sequence
{um} ⊂ H1(Ω), that is,

J(um) → c and J ′(um) → 0 in H−1(Ω).

First, we show that {um} is bounded in H1(Ω). In the contrary case we
may assume that ‖um‖ → ∞. Set wm = um/‖um‖. It is clear that we can
assume that wm → w in Lq+1(Ω), wm ⇀ w in H1(Ω) and wm(x) → w(x)
a.e. on Ω. We claim that w 6≡ 0 on Ω. If w ≡ 0 on Ω, then

‖∇wm‖2
2 =

1

‖um‖1−q

\
Ω

h(x)|wm|q+1 dx +
\
Ω

p(x, um)w2
m dx + o(1),

where

p(x, s) =

{

f(x, s)/s if s 6= 0,

0 if s = 0.
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Since p(x, s) is bounded, we see that ‖∇wm‖2 → 0 and hence ‖wm‖ → 0.
This leads to a contradiction as ‖wm‖ = 1 for each m. Therefore w 6≡ 0
on Ω. Let φ ∈ C1(Ω). It then follows from the (PS)c condition that

(2.7)
\
Ω

∇wm∇φdx − 1

‖um‖1−q

\
Ω

h(x)|wm|q−1wmφdx

−
\
Ω

p(x, um)wmφdx = o(1).

Since w 6≡ 0, it follows from assumption (F1) that p(x, um) → v, where v is
given by v = l1χw>0+l2χw<0 and wv is positive on a set of positive measure.
Letting m → ∞ in (2.7) we get\

Ω

∇w∇φdx =
\
Ω

vwφdx

for each φ ∈ C1(Ω) and consequently for each φ ∈ H1(Ω), so

(2.8) −∆w = v(x)w ≥ 0 on Ω

in a weak sense. Testing this equation with φ ≡ 1 yields
T
Ω vw dx = 0,

which is impossible. Thus {um} is bounded in H1(Ω). It is easy to show
that {um} is relatively compact in H1(Ω) (that is, um → u in H1(Ω) up to
a subsequence) and u is a solution of problem (1.1). By Theorem 10 in [3]
we may assume that u ≥ 0 on Ω. The fact that u > 0 on Ω follows from the
maximum principle. Since h changes sign on Ω and f(x, s) > 0 for s 6= 0,
the solution u is not constant.

We point out here that Theorem 2.2 as well as Proposition 2.1 remain
true if h ≤ 0 on Ω and h < 0 on a set of positive measure. The assumption
that h changes sign is needed to obtain a second solution (see Theorem 2.3
in Section 3).

If h changes sign on Ω there exists ϕ∈C1(Ω) with suppϕ⊂{x; h(x)>0}.
Then

J(tϕ) =
t2

2

\
Ω

|∇ϕ|2 dx − tq+1

q + 1

\
Ω

h(x)|ϕ|q+1 dx −
\
Ω

F (x, tϕ) dx.

According to assumption (F1), F has a quadratic growth. Hence for suf-
ficiently small t > 0 we get J(tϕ) < 0. Thus c∗ = inf‖u‖≤̺ J(u) < 0 and
J(u) > 0 for ‖u‖ = ̺. Using the Ekeland variational principle we are led to
the second existence theorem:

Theorem 2.3. Suppose that (H1) and (F1) hold and ‖h‖∞ ≤ γ. Then

problem (1.1) has a second solution satisfying J(u) < 0.

We now consider the situation where f is only asymptotically linear
at +∞. In this case we assume that h < 0 on Ω. We impose the following
assumption on f :
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(F+) f ∈ C(Ω, R), f(x, 0) = 0 on Ω, f(x, s) > 0 on Ω for s > 0 and

lim
s→∞

f(x, s)

s
= l > 0.

We use the truncated functional

J+(u) =
1

2

\
Ω

|∇u|2 dx − 1

q + 1

\
Ω

h(x)|u|q+1 dx −
\
Ω

F (x, u+) dx,

where s+ = max(0, s). This functional has a mountain-pass structure: there
exist constants κ > 0, ̺ > 0 and γ > 0 such that (2.4) holds.

Theorem 2.4. Let h < 0 on Ω. Suppose that (F+) holds and that

‖h‖∞ ≤ γ. Then problem (1.1) has a solution.

Proof. We use a version of the mountain-pass principle that guarantees
the existence of a Palais–Smale sequence {um} (in the sense of Cerami):
J+(um) → c and (1 + ‖um‖)J+′(um) → 0 in H−1(Ω) (see [4], [5] or [10]). It
is enough to show that {um} is bounded in H1(Ω). Arguing by contradiction,
assume that ‖um‖ → ∞. Put wm = um/‖um‖. We now repeat the argument
from the proof of Theorem 2.2 and show that a weak limit w in H1(Ω) of
{wm} is nonzero. If w < 0 on a set of positive measure then um → −∞ on
a set of positive measure. If we test J+′(um) with u−

m, Fatou’s lemma yields

−〈J+′(um), u−
m〉 =

\
Ω

|∇u−
m|2 dx +

\
Ω

(−h)|u−
m|q+1 dx → ∞,

which is impossible. We now modify the definition of p(x, s) by setting

p(x, s) =

{

f(x, s)/s if s > 0,

0 if s ≤ 0.

We may assume that p(x, um) ⇀ v in L2(Ω). Obviously wv > 0 on a set
of positive measure. Testing the corresponding equation (2.8) with φ ≡ 1,
we arrive at a contradiction. Therefore {um} is bounded in H1(Ω) and the
result follows.

3. Case l1 = ∞. We now turn our attention to the case l1 = ∞. In this
situation we shall assume that h < 0 on Ω. Additionally, we assume that

(F2) lim
s→0

f(x, s)

s
= 0, lim

s→∞

f(x, s)

s
= ∞,

f(x, s)/s is nondecreasing on (0,∞) and

lim
s→∞

f(x, s)

sp
= 0 for some 1 < p <

N + 2

N − 2
.

A solution in this case will be found as a critical point of the truncated
functional J+ introduced in Section 2. It is clear that inequality (2.4) con-
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tinues to hold. Therefore we can establish the mountain-pass geometry for
the functional J+: there exist constants κ1, ̺1, γ1 > 0 such that J+(u) ≥ κ1

for all ‖u‖ = ̺1 and ‖h‖∞ ≤ γ1.

Lemma 3.1. Suppose that h < 0 on Ω and that (F2) holds. Let {um} ⊂
H1(Ω) be a sequence satisfying

〈J+(um), um〉 → 0 as m → ∞.

Then for every t > 0, up to a subsequence,

J+(tum) ≤ t2 + 1

2m
+

[

t2

2
− tq+1

q + 1

] \
Ω

h(x)|um|q+1 dx + J+(um).

The proof is similar to that of Proposition 4.1 in [8] and is omitted. We
point out here that Proposition 4.1 in [8] has been proved for {um} ∈ H1

0 (Ω)
(for the Dirichlet problem) but this result can be extended easily to the
situation considered in this paper.

Theorem 3.2. Suppose that h < 0 on Ω and that (F2) holds. Then for

every h satisfying ‖h‖∞ ≤ γ1, problem (1.1) has a mountain-pass solution.

Proof. We follow the ideas of [8]. It follows from the comments in the
paragraph preceding Theorem 3.2 that the functional J+ has a mountain-
pass structure. Therefore there exists a sequence {um} ⊂ H1(Ω) such that
J+(um) → c, with c > 0, and (1 + ‖um‖)J+′(um) → 0 in H−1(Ω). It is
sufficient to show that {um} is bounded in H1(Ω). In the contrary case we
may assume that ‖um‖ → ∞. Put wm = 2

√
c um/‖um‖ and tm = 2

√
c/‖um‖.

We may assume that wm ⇀ w in H1(Ω), wm → w in Lr(Ω), 1 ≤ r < 2∗,
and wm → w a.e. on Ω. First we check that w 6≡ 0. Indeed, if w ≡ 0, then\

Ω

|wm|q+1 dx → 0 and
\
Ω

F (x, w+
m) dx → 0

and ‖wm‖2 = ‖∇wm‖2
2 + ‖wm‖2

2 = ‖∇wm‖2
2 + o(1), so

(3.1) J+(wm) =
1

2
‖wm‖2 + o(1) = 2c + o(1).

We now apply Lemma 3.1 to show that

J+(wm) = J(tmum) ≤ t2m + 1

2m
+

[

t2m
2

− tq+1
m

1 + q

] \
Ω

h(x)|um|q+1 dx + J+(um)

=
t2m + 1

2m
+

[

t1−q
m

2
− 1

q + 1

] \
Ω

h(x)|wm|q+1 dx + J+(um) → c,
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which contradicts (3.1). Let Ω+ = {x ∈ Ω; w(x) > 0}. It is clear that
um → ∞ on Ω+. Repeating the argument from Theorem 2.2 we have\

Ω

∇wm∇w dx − 1

‖um‖1−q

\
Ω

h(x)|wm|q−1wnw dx

−
\
Ω

p(x, u+
m)w+

mw dx = o(1),

where p(x, t) is the function defined in the proof of Theorem 2.4. We then
have\

Ω

|∇w|2 dx = lim
m→∞

\
Ω

f(x, u+
m)

u+
m

w+
mw+ dx ≥ lim

m→∞

\
Ω+

f(x, u+
m)

u+
m

w+
mw dx

≥
\

Ω+

lim
m→∞

[

f(x, u+
m)

u+
m

w+
m

]

w dx.

Since limm→∞
f(x,um+)

u+
m

w+
m = ∞ on Ω+ we deduce from this that |Ω+| = 0

and w(x) ≤ 0 a.e. on Ω with strict inequality on a set of positive measure.
Hence um → −∞ on a set of positive measure. Testing J+′(um) with u−

m

yields

−〈J+′(um), u−
m〉 =

\
Ω

|∇u−
m|2 +

\
Ω

(−h)|u−
m|q+1 dx → ∞,

which is impossible.

4. The linear case f(x, s) = λs. We conclude this paper with some
observations on the linear case f(x, s) = λs.

(I) If h ≥ 0 on Ω with strict inequality on a set of positive measure,
then problem (1.1) has no solution for λ ≥ 0. However it admits
at least one solution for λ < 0.

If u ≥ 0 is a solution of (1.1) with λ ≥ 0, then\
Ω

h(x)uq+1 dx + λ
\
Ω

u dx = 0

which yields u ≡ 0. If λ < 0, then a solution can be obtained as a minimizer
of the constrained minimization problem

inf
{ \

Ω

(|∇u|2 − λu2) dx; u ∈ H1(Ω),
\
Ω

h(x)|u|q+1 dx = 1
}

.

(II) If h(x) ≤ 0 on Ω with strict inequality on a set of positive measure,
then problem (1.1) admits at least one solution provided λ > 0 is
sufficiently small. This solution can be obtained by the mountain-
pass principle.
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Indeed, inspection of the proof of Proposition 2.1 shows that the func-
tional

I(u) =
1

2

\
Ω

|∇u|2 dx − 1

q + 1

\
Ω

h(x)|u|q+1 dx − λ

2

\
Ω

(u+)2 dx

has a mountain-pass structure. This follows from estimate (2.3) and from the
fact that I(t) < 0 for t > 0 large. To show the boundedness of the resulting
Palais–Smale sequence we repeat the proof of Theorem 2.2. Obviously, in
this case problem (1.1) has no solution for λ ≤ 0.

We point out here that in case (II) equation (1.1) with the mixed bound-
ary value conditions (or the Dirichlet boundary conditions) admits a solution
for λ greater than the first eigenvalue of the corresponding eigenvalue prob-
lem. For simplicity, let ∂Ω = Γ1 ∪ Γ2 where Γ1 is a closed and nonempty
subset of ∂Ω. We consider the problem

(4.1)

{−∆u = huq + λu in Ω,

∂ν/∂ν = 0 on Γ2, u = 0 on Γ1, u > 0 on Ω.

We denote by V 1
◦ (Ω) the subspace of functions u of H1(Ω) such that u = 0

on Γ1 equipped with the norm ‖∇u‖2. Let λ1 > 0 be the first eigenvalue of
the problem

(4.2)

{−∆u = λu in Ω,

u = 0 on Γ1, ∂u/∂ν = 0 on Γ2.

Proposition 4.1. If h is a negative constant , then problem (1.1) admits

at least one solution for every λ > λ1.

Proof. First we observe that the function k(t) = htq + λt, 0 ≤ t < ∞,

satisfies k(t) < 0 for 0 ≤ t < δ◦ = (−h/λ)1/(1−q) and k(t) > 0 for t > δ◦.
Using this we check that the functional

I(u) =
1

2

\
Ω

|∇u|2 dx − h

q + 1

\
Ω

(u+)q+1 dx − λ

2

\
Ω

(u+)2 dx

has a mountain-pass structure. Indeed, we have

I(u) =
1

2

\
RN

|∇u|2 dx −
\

0≤u≤δ◦

(

1

q + 1
huq+1 +

λ

2
u2

)

dx

−
\

u≥δ◦

(

1

q + 1
huq+1 +

λ

2
u2

)

dx

≥ 1

2

\
Ω

|∇u|2 dx −
\

u≥δ◦

(

1

q + 1
huq+1 +

λ

2
u2

)

dx.
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With the aid of the Sobolev inequality we estimate the last integral:\
u≥δ◦

u2

(

λ

2
+

uq−1h

q + 1

)

dx ≤
(

λ

2
+

δq−1
◦ h

q + 1

) \
u≥δ◦

u2 dx

=
1

δ2∗−2
◦

(

λ

2
+

δq−1
◦ h

q + 1

) \
Ω

|u|2∗

≤ C(Ω)
(\

Ω

|∇u|2 dx
)2∗/2

.

Combining the last two estimates we get

I(u) ≥ 1

2
‖∇u‖2

2 − C(Ω)‖∇u‖2∗

2 .

Hence there exist constants ̺ > 0 and κ > 0 such that

I(u) ≥ κ for ‖∇u‖2 = ̺.

Let φ1 > 0 be the principal eigenfunction of the problem (4.2). Then
I(tφ1) < 0 and ‖∇(tφ1)‖2 ≥ ̺ for t > 0 sufficiently large. The result now
follows from the mountain-pass principle.
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