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Sum of squares and the Y.ojasiewicz exponent at infinity
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Abstract. Let V C R™, n > 2, be an unbounded algebraic set defined by a system
of polynomial equations hi(z) = -+- = hy(z) = 0 and let f : R® — R be a polynomial.
It is known that if f is positive on V then f|v extends to a positive polynomial on the
ambient space R", provided V is a variety. We give a constructive proof of this fact for an
arbitrary algebraic set V. Precisely, if f is positive on V' then there exists a polynomial
h(z) = Y_7_, hi(z)oi(x), where o; are sums of squares of polynomials of degree at most p,
such that f(z)+h(z) > 0 for z € R™. We give an estimate for p in terms of: the degree of f,
the degrees of h; and the Lojasiewicz exponent at infinity of f|y. We prove a version of the
above result for polynomials positive on semialgebraic sets. We also obtain a nonnegative
extension of some odd power of f which is nonnegative on an irreducible algebraic set.

1. Introduction. Let f € R[z]|, x = (x1,...,x,), be a positive semidef-
inite polynomial, that is, f(x) > 0 for x € R™. Then

(AH) fh?=h?+...+h2  for some h,hy,..., hy € Rlz], h #0,

i.e., f is a sum of squares of rational functions. We shall denote by > R(z)?
the set of such sums and by > R[z]? the set of sums of squares of polyno-
mials. The above theorem is E. Artin’s [I] solution of Hilbert’s 17th prob-
lem. Motzkin [I6] gave an example of a positive semidefinite polynomial
f(z1,29) = 1+ 222%(2? + 23 — 3) which is not a sum of squares of polyno-
mials, so the degree of h in @ must be positive.

Positive semidefinite polynomials can also be considered on closed basic

semialgebraic sets, that is, sets X C R™ of the form

X={zeR":g1(x) >0,...,9-(x) >0}, whereg1,...,9r € R[z].

We define the preordering in R[z], generated by g1, ..., g, € Rlz], to be the
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set

T(gl,...,gr):{ Z Segit - gl :SGEZR[:L‘]Q foreG{O,l}T}.
e=(e1,...er)€{0,1}"

Let f € R[z]. The following Stellenséitze are natural generalizations of the

above Artin theorem (Krivine [11], Dubois [6], Risler [22]; see also [2]).

REAL NULLSTELLENSATZ. Let I C R[z] be an ideal. Then f = 0 on
V() :={x € R": g(x) = 0 for any g € I} if and only if f*N +u € I for
some integer N > 0 and u € Y R[z]?.

POSITIVSTELLENSATZ. f > 0 on X if and only if sf = 1+t for some
s,t € T(gla s 791”)‘

NICHTNEGATIVSTELLENSATZ. f > 0 on X if and only if sf = f2N + ¢
for some integer N > 0 and s,t € T(g1,...,9r)-

These issues were studied in [I5], [21], [26], [28]. A remarkable result of
Schmiidgen [29] asserts that for X compact every strictly positive polynomial
on X belongs to T'(g1,...,gr). A challenging problem is effective computa-
tion of the polynomials in the Stellensétze, in particular explicit bounds for
their degrees. For instance a relevant estimate for the degree of the denom-
inator in was obtained by Schmid (see Scheiderer [28]), who proved
that the degree of h can be bounded by an n tower of exponentials in the
degree of g. In a recently posted preprint, Lombardi, Perrucci and Roy [14]
obtained a bound as a tower of five exponentials in n and degg.

An important issue is extension of semidefinite polynomials on an alge-
braic set to semidefinite polynomials on the ambient space. The existence of
such an extension was proved by C. Scheiderer [25, Corollary 5.5] (see also
[27]). A partial result on nonnegative extension of polynomials was obtained
by D. Plaumann [20, Lemma 3.2]. In the present paper we give a construc-
tive proof of the existence of a positive semidefinite extension onto the space
R" (or R™*" for some r € N) of a semidefinite polynomial f on an algebraic
or semialgebraic set X C R™. We estimate the degree of such an extension
in terms of the degree of f and the Lojasiewicz exponent at infinity of a
suitable mapping.

By the fojasiewicz exponent at infinity of a mapping F : R™ — R™ on
an unbounded set S we mean the supremum of the set of exponents v in the
following fojasiewicz inequality:

|F(z)] > Clz|” for all z € S with |z| > R,
for some positive constants C, R, where | - | are norms (in R™ and R"™); we
denote it by L (F|S). For S = R™ the exponent L (F|S) will be called

the Lojasiewicz exponent at infinity of F' and denoted by Lo (F). The Lo-
jasiewicz exponent does not depend on the chosen norms in R™ and R™.
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In what follows, we will use the Euclidean norm. The exponent Lo (F) is
an important tool in the study of properness and injectivity of polynomial
mappings, in the effective Nullstellensatz and in optimization (for references
see for instance [19]).
For k,n,d € N and [ € R we put
O(k,n,d, 1) = k(6k —3)""1(d+2—1).
Let V' C R™ be an unbounded algebraic set and let hy, ..., h, € Rlxy, ..., 2]
be polynomials such that V = {x € R" : hy(x) = --- = h,(z) = 0}. Obvi-
ously we may assume that » > n. Let k € N, k > max{degh1,...,degh,}.
For a polynomial function f : R™ — R, deg f = d, which is positive on the
set V' we have
f(z)+h(z) >0, zeR"
and

Loo(f +N) = Lec(fIV)
for an effectively computed polynomial —h € T'(hy, —h1, ..., hy, —h,), with

degh < 2+4+2k+d+ 0(2k,n,d, Loo(f|V)),

of the form (see Theorem and Corollary [5.1)). We also obtain a
version of the above result for Loo(f + h) = B, where f < Loo(f|V) is
given (see Corollary . If additionally V' is an irreducible algebraic set
and f(x) >0 for x € V, with f|y # 0, then

f(@)fP(x) = =h(z) + o(x),
where o € Y. R(z)?, and —h € T(hy,—ha,...,hq, —h;) is of the form
(see Corollary . We also have an estimate for the degree of h similar to
the above.
For the basic semialgebraic set

X={zeR":gi(x)>0,...,g95(x) > 0,gj11(x) >0,...,9-(x) > 0},
where g1, ..., g, € R[z1,...,2,] and 1 < j <7, we put hi(z,y) = gi(v)y? — 1
fori=1,...,j and h;(x,y) = gi(z) —y? fori=j+1,...,r, and

Y ={(z,y) e R" xR": hy(x,y) =+ = hy(z,y) = 0}.

By Theoremwe obtain the following version of the Positivstellensatz (see
Corollary [5.2): if f: R™ — R is a polynomial and f(z) > 0 for z € X, then
f(@) + h(z,y) = o(z,y),
where o € Y. R(xz,y)?, and —h € T(hy, —h1, ..., hy, —h;) is of the form ([5.2)).
The degree of h is estimated similarly to the above in terms of deg f and the

Lojasiewicz exponent at infinity of f|y .

The main role in our considerations will be played by the following result

due to K. Kurdyka and S. Spodzieja (see [12, Corollary 10|, cf. [3]-[10],
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[23]). Let dist(z,V) be the distance from z € R™ to the set V' C R" in
the metric induced by the norm |- | (we set dist(xz,V) = 1 if V = (). By
the degree of a polynomial mapping F' = (f1,..., fm) : R” — R™ we mean
deg F' = max{deg fi,...,deg fim }.

THEOREM 1.1 ([12]). Let F = (f1,..., fm) : R = R™ be a polynomial
mapping of degree d. Then for some positive constant C,

dist(x, F71(0 d(6d—3)"~"1 n

2. Preliminaries. We denote by L(m, k) the set of all linear mappings
R™ — R* where for k = 0 we put R¥ = {0}.

We will use the following theorem (see [32, Theorem 4|, cf. [31]).

THEOREM 2.1. Let F' : R* — R™ be a polynomial mapping having a

compact set of zeros, and let n < k < m. Then for any L € L(m,k) such
that (L o F)~%(0) is compact, we have

(2.1) Loo(F)> Lo(LoF).
Moreover, for the generic L € L(m, k), i.e., outside a proper algebraic subset
of L(m, k), the set (L o F)~1(0) is compact and
(2.2) Loo(F)=Lsx(LoF).

Let m > k. We denote by A(m, k) the set of all linear mappings L =
(Ly,...,L) € L(m, k) of the form

m
Lilyr,-ym) =vi+ Y aijy, i=1,...,k,
j=k+1
where o; ; € R.
Theorem [2.1| implies the following corollary (see [32, Corollary 5]).

COROLLARY 2.2. Under the assumptions of Theorem[2.1}, for the generic
linear mapping L = (Ly,...,L;) € A(m, k), the set of zeroes of L o F is
compact and

Loo(F)=Lx(LoF).
Moreover, if d; = deg f; and di > -+ > dp,, then deg(L;j o F)) = d; for
j=1,... k.

Let us recall Proposition 2.10 of [19] (see also [1§]).

PROPOSITION 2.3. Let 5 = p/q, where p € Z, q € N. Then there ezists
a polynomial mapping ¥ : R? — R? such that

(a‘) ‘COO(W) = 57

(b) deg¥ < gq-(|p|+q).

Moreover, the mapping has at most one zero.
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Actually the polynomial mapping ¥ in the above proposition is of one
of the following forms: ¥ = (x,zy — 1) : R?> — R2, the gradient of the
polynomial hy(z,y) = y?T? — (z + y?)PT9 if p,q > 1, or of ho(z,y) = y —
Yy TP if —p > g > 1.

Let G}.(R™), where 0 < k < n, denote the set of all k-dimensional affine
subspaces of R™. Let G (R™), where 0 < k < n, be the set of all k-dimensional
linear subspaces of R™ (cf. [I3, B.6.11] for complex Grassmann spaces).

From Proposition [2.3] we obtain the following corollary.

COROLLARY 2.4. Let B = p/q, where p € Z, q € N. Let n > 2, and let
A € G45(R™). Then there exists a polynomial g : R™ — R, which is a sum
of squares of polynomials in Rlxz, ..., xy,], such that

(a) Loo(thpla) = B,
(b) degvs < 4q(|p| + 2q),
(c) wgl(()) C A contains at most one point.

Proof. Let E = (E1,...,Ey,—2) € L(n,n — 2) be a linear mapping and
z = (21,...,2n—2) € R" 2 be a point such that A = E~!(2). By using a
translation, we may assume that z = 0. By choosing an appropriate coordi-
nate system, we can assume that A = R? x {0}.

From Proposition there exists a polynomial mapping ¥ = (¢, 12) :
R? — R? such that

Loo(W) = %B and deg¥ < 2q(|p| + 29).
Let
V() = Y (21, 22) + 93 (21, 22) + B} () + - + Ej_5()
for x = (x1,...,2m) € R™. Then Lo(¢g|A) =2L(¥) = B and
deg s < max{2degin,2deg1)s, 2} = 2deg¥ < 4q(|p| + 2¢).

So, (a) and (b) are proved. Part (c) follows from the definition of 13 and the
fact that ¥~1(0) contains at most one point. m

Let V' C C" be a complex algebraic set. We denote by §(V') the total
degree of V,ie. §(V) :=deg Vi +---+deg Vs, where V.=V, U---UVj is the
decomposition of V' into irreducible components (see [13] p. 419]).

Let V C R™ be a real algebraic set and let F': R® — R™, where m > n,
be a polynomial mapping. Let V¢ be the Zariski closure of V in C™; we call
it the complexification of V. Let F¢ : C* — C™ denote the complexification
of F (i.e., F¢ is a complex polynomial mapping such that Fg|gn = F'). We
write §(V') for the total degree of Vi C C™.

We will need the following fact ([19, Proposition 2.11] or [18, Proposition
4.5]).
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PROPOSITION 2.5. Let V' C R" be a real algebraic set with 0 < dimg V' <
n—2. Then there exist A € GL(R™) and f € R[z1,...,xy] such that VN A=),
flv =0, fla=1 and deg f < 8(V).

As is shown in the proof of [19, Proposition 2.11], the affine subspace A
and the polynomial f in the above assertion can be effectively determined.
More precisely, after choosing an appropriate coordinate system (using for
instance a Grobner basis), one can choose a nonzero polynomial g €
Clz1, .-, 2n_2], deg g < §(V), vanishing on V¢. Hence there exists g € R" 2
such that Re g(zg) # 0. Then one can take A = {zo} x R? and f = u/u(xg),
where g|grn = u +iv and u,v € Rlzq,...,z,).

Let V' C R™ be a real algebraic set. We denote by (V') the infimum
of the numbers k& = max{deghy,...,degh,}, where r € N, hy,... h, €
Rlz1,...,zy) and V = {z € R® : hy(x) = -+ = h.(z) = 0}. From [19,
Proposition 2.13| we have

LEMMA 2.6. Let V C R™ be an algebraic set. Then (V) < 6(V).

3. Auxiliary results. We prove the following generalization of [19, The-
orem 1.1]. Let V' C R™ be an unbounded algebraic set of the form

V={zeR": h(x)="--=h.(z) =0},

where hi,..., h, € Rlzy,...,z,]. We can assume that r > n, defining h; = hy
for ¢ > r. Let k € N with

k > max{deghy,...,degh,}.

PROPOSITION 3.1. Let F : R®™ — R™, where m > n > 2, be a polynomial
mapping of degree d > 0 and suppose that the set F~1(0)NV is compact. Let
p be an integer satisfying

(3.1) P> Loo(FIV) + 0(k,n,d, Loo(F|V)).

Let £ = (&1,...,&) € R™, and H : R™ — R™ be the polynomial mapping
defined by

H(z) = (hi(x)(x; —&)Pri=1,...,r,j=1,...,n), x€&R"
Then for the generic linear mapping L € L(nr,m) we have
(3.2) Loo(F+ Lo H) = Loo(F|V),
and deg Lo H < k + p.

Proof. It suffices to prove the assertion for £ = 0 € R". Let F =
(fi,..., fm) : R®" = R™. Since F~1(0) NV is compact, we have Lo (F|V) >
—oo0. It is known that there exist constants C7, R1 > 0 such that

(3.3) |F(x)| > Cy|z[*~>FV) for & € V with |z| > Ry.
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Then there exists a positive constant C' such that (cf. [19, formula (3.2)])
(3.4) |F(z)] > Clw|*=TV) for x € V with |z| > Ry, & —w| < 1.

Diminishing C' or C7, we can assume that (3.4 holds with C' = C.
From the Mean Value Theorem, for every x,w € R™ and for any 4 there
is a point t; on the segment with end points z,w such that

(3.5) |fi(x) = fi(w)] < [V fi(ti)] |z — w].
Let M(w) = sup{|Vfi(z)| : |z| < |w|+ 1, i = 1,...,m}. Since deg Vf; <
d — 1, there exist constants Cy > 0 and Ry > Ry + 1 such that 0 < M(w) <

C|w|®=! for |w| > Ry. From (3.5) and the above, for |w| > Ry, |z —w| < 1
we have

(3.6) |F(z) — F(w)| < M(w)|z —w| < C’2|w|d_1|x—w|.
Let

W = {w € R" : dist(w, V) < min{l, ;C%’w‘ﬁoo(Flv)_d“rl}}'
2

By (3.3), (3.5) and (3.6)) we obtain (cf. [I9] (3.6)])

LEMMA 3.2. Under the above notations,
C
(3.7) |F(w)| > ?llwIE‘”(Flv) for w € W with |w| > Rs.

Let H = (h,...,h;) : R* — R". From Theorem there exists a
constant C3 > 0 such that

dist(w, V)

k(6k—3)" 1
T+ [l > for w € R" with |w| > Ra.
w

(38)  |H(w)| > Cs (
Let
U=R"\W

and 0 = 0(k,n,d, Loo(F|V)). We have Lo (H|U) > —6 by the following
lemma, which follows from (3.8)) (cf. [19, (3.9)]):

LEMMA 3.3. There exist constants Cy > 0 and R3 > Ry such that

(3.9) |H ()| |z|/FndLeFIV) > 0y for z € U with |z| > Rs.
It is easy to see that for some ¢, > 0 we have

(3.10) c|H(z)| < |H(x)||z|P < d|H(z)| for z € R™.
Let

¢ = (F,H) : R" - R™ x R""

Since ¥|y = (F,0)|y, from (3.7), (3.9) and (3.10) we obtain (cf. [19, (3.11)])
(3.11) Loo(P) = Loo(F|V).
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From Corollary for the generic linear mapping L € A(m + nr,m) we
have Loo(L 0 @) = Loo(P) and obviously L = idgm +L, where idgm is the
identity mapping on R™ and L € L(nr,m) is generic. Then Lo ®|y = Fly.
The inequality deg L o H < k + p is obvious. From the above and we
obtain the assertion of Proposition "

Note that the exponent L (F|V) may be a negative rational number.
Therefore, the use of the exponent in estimating the degree of the mapping
L o H improves the estimate.

4. Positive polynomials on algebraic sets. By using Proposition|3.1
we obtain the following theorem on extension of a positive polynomial on a

given algebraic set to a sum of squares. Let hy,...,h, € Rlz1,...,2,] and
let V' C R™ be an algebraic set of the form
(4.1) V={zxeR":h(z) =" = h(x) =0}

Let k € N, k > max{deghi,...,degh,}. We will assume that the set V is
unbounded.

THEOREM 4.1. Let f:R™ = R, n > 2, be a polynomial of degree d > 0.
Suppose that the set f~1(0) NV is compact and there exists an open set
U C R" such that V.C U and f(x) > 0 for allz € U\ V. Then there exists
a polynomial h : R™ — R of the form

(4.2) h(z) = Z Zai,jh?(x)(mj -&)P, zeR",

i=1 j=1

where a; j € R are positive, & = (&1, ...,&,) is an arbitrary point of V', and
p is an even number satisfying
(4.3) Lo(F|V)+602k,n,d,Loo(F|V)) <p<d+02k,n,d,Loo(f|V))+2,
such that

(a) (f+h)(z) >0 for z € R,

(b) Loo(f+h) = Lo(fIV),

(c) degh <p+2k.

Proof. Assertion (c) follows immediately from (4.2)). We will prove the
remaining assertions.

Let FF = (f1,..., fn) : R" — R"™, where f; = f for i = 1,...,n. Since
F7H0)NnV = f71(0) NV is compact, we have Loo(F|V) = Loo(f|V) > —o0.
Obviously

V={zecR":hi(z)="--=h3(z) =0}

and 2k > max{degh?,...,degh?}. Since d > L (F|V), on substituting
2k for k, the assumption (3.1) in Proposition is equivalent to (4.3). So,
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by Proposition for arbitrary £ = (&1,...,&,) € V, an even integer p
satisfying (4.3) and the polynomial mapping H : R™ — R™" defined by

H(z) = (hf(a:)(x] —-&)Pi=1,...,r,5=1,...,n), x€R",
for the generic linear mapping L € L(nr,n), we have
(4.4) Loo(F + Lo H) = Loo(F|V).

In particular, holds for the generic L € L(nr,n) with positive coeffi-
cients. Without loss of generality, we may assume that £ =0 € V. Then the
mapping H vanishes only on V.

By Lemma [3.2] there exist C7,Cy > 0 such that for

W = {w cR": dist(w, V) < min{L Cl|w‘£°°(f|v)_d+1}}
we obtain
|F(w)| > Colw|*=YIV) for w e W with |w| > R,.

By the assumptions of the theorem, we may assume that f(xz) > 0 forx € V
with |z| > Ra, so diminishing C5 if necessary, we have

(4.5) flw) > Cg]w|£°°(f|v) for w € W with |w| > Rs.
By Lemma there exist constants C3 > 0 and R3 > R such that
(4.6) |H(z)| > Cs]z|¢  for z € R™ \ W with |z| > Rs.

By the choice of d, increasing Rj if necessary, for some Cy > 0 we obtain
If(z)] < Cylz|?  for x € R™ with |z| > Rs.

Multiplying H by a sufficiently large number, we may assume that C3 > Cj.
Then from (4.5)), (4.6) and the fact that L; o H(x) > 0 for L; € L(nr,1)
with positive coefficients and x € R™ \ V, we see that for some mapping
L =(Ly,...,Ly,) € L(nr,n) with positive coefficients, (4.4 holds and

(4.7) fx)+ LioH(z) >0

for x € R™ with |z| > Rs3. Moreover, since f(x) > 0 for x € U\V, multiplying
H by a sufficiently large number, we may assume that (4.7) holds for z € R"
with |z| < Rs. Summing up, (4.7)) holds for any z € R"™, and (a) is verified.
Put Lo =L1+---+ L,, and let
LO(yh ce ynr) =aoa1y1 + -+ OnrYne,

where aq, ..., an, €R are positive. Then the polynomial h=Lgo H : R" —R
is of the form (4.2). Since the Euclidean and the polycylindric norms in R”
are equivalent, there exist ¢, > 0 such that

clnf(x)+ Loo H(x)] < |F(z)+ Lo H(x)| < d[nf(x)+ Loo H(x)]
for z € R™. Hence, from (4.4 we easily deduce that (b) holds. =
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From Theorem Lemma [2.6{and Artin’s Theorem (see I, Satz 1], cf.
[28, Theorem 1.1.1]) we obtain

COROLLARY 4.2. Let f : R™ — R be a polynomial satisfying the assump-
tions of Theorem[L.1] Then there exists a polynomial g : R™ — R of the form
g = f+h, where g is a sum of squares of rational functions and h is a sum
of squares of polynomials, such that

(a) glv = flv,
(b) [’oo(g) = [’oo(ﬂv);
(c) degg <d+20(V)+2+60(26(V),n,d, Lo (f|V)).

With an additional assumption we will show that when extending a pos-
itive polynomial on an algebraic set to a sum of squares, we can require the
Lojasiewicz exponent at infinity to have a fixed value. Precisely, we assume
that dimV < n — 3. Thus n > 4. According to Proposition there exist
A € GL(R™) and g € R[z1,...,z,] such that

VNA=0, glv=1, gla=0, degg<d(V).

Let E = (E1,...,En_2) € L(n,n — 2) be a linear mapping such that A =
L7 Y(z) for some z € R""2. By Corollary for any 8 = g € Q, pez,
q € N, there exists a polynomial 15 : R" — R which is a sum of squares of

polynomials, such that

Loo(¥plA) =8 and  degyps < (|p| +29) - 4g,
and @ZJEI(O) C A contains at most one point.

COROLLARY 4.3. Let f : R™ — R, wheren > 4, be a polynomial of degree
d > 0 and suppose that f(x) >0 forz € V. Let 8=p/qe Q,peZ, q€N,
and let B < Loo(f|V). Take an even integer P satisfying

(4.8) P>d+6(2k+2,n,D,p),
where D = ed(V') + max{d, (|p| + 2q) - 4q} and e > 2 is the smallest even
number greater than the order of 1g at its zero. Let £ = (&1,...,&,) € A.
Then there exists a polynomial h : R™ — R of the form
r n—2 n
W)= 3 aihi@)El(2)(x; - &), zeR",
i=1 1=1 j=1
where oy ; are positive real numbers, such that
(a) (9°f + (1= g*)g+ v = flv,
(b) (9°f + (1 = g*)1bg + h)(z) = 0 for z € R",
(¢) Loolg®f + (1 —g°)5 +h) =B,
(d) deg(g°f + (1 —g*)vg+h) < P+2k+2.
Proof. By the definition of the functions 13, g, the choice of e, and the
assumption that f(z) > 0 for z € V, there exists an open set U C R™ with
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V UA C U such that g?(x) f(
Moreover, the function g?(x)

yields the assertion. m

EXAMPLE 4.4. The assumption f > 0 on V is essential, as shown by the
following example. Let V = {(z,y) € R" : 22 — y3 = 0}, and let f(z,y) = v.
Then f > 0 on V, but for every h € R[x,y] vanishing on V there exists
(z,y) € R? such that f(x,y)+h(z,y) < 0. Indeed, h(x,y) = (22—y>)h1(z,y),
and f(0,y) + h(0,y) = y — y>h1(0,y). Thus £(0,%) + h(0,y) changes sign
at 0.

5. Positivstellensatz on algebraic and semialgebraic sets. Let
V' C R"™ be an algebraic set of the form (4.1)). Then V can be considered as
a basic semialgebraic set, since
V={zeR":gi(x) 20,...,92(x) >0},
where g1 = h1, g2 = —h1, ..., g2r—1 = hy, g2 = —h,. Then the preordering
T generated by g1, ..., go is of the form

T = { Z Oegit g5 1 O € ZR[@'F for e = (e1,...,eq) € {0, 1}2’"}.
ec{0,1}2"
From Theorem [£.I] and Artin’s Theorem we obtain the following version of

the Positivstellensatz on algebraic sets.

COROLLARY 5.1. If f : R™ — R with n > 2 is a polynomial of degree
d>0, and f(z) >0 forz €V, then

f(x) = =h(z) + o(x),
where o € Y R(z)?, h is of the form [4.2), and —h € T. If additionally
k = max{deggi, ...,degg,}, d =deg f and D = max{k,d}, then
(5.1) degh < d+2k+246(2k,n,d, —D(6D — 3)"1).
Proof. If V is a bounded algebraic set, then the assertion is obvious.

Assume that V' is unbounded. The first part of the assertion follows imme-
diately from Theorem [4.1} From [32, Corollary 6] (cf. [7]-[10]), we have

Loo(f|V) = =D(6D —3)" 1,
and by Theorem we obtain (5.1]). m

By considering a polynomial f € Rz, ..., z,] positive on a basic semial-
gebraic set X as an element of R[z1, ..., 2y, y1,...,yr], where r is the number
of inequalities defining X, we obtain a version of the Positivstellensatz on
any basic semialgebraic set (see Corollary below). Let us start with some
notations.
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Consider the basic semialgebraic set
X={zeR":gi(z) >0,...,g5(x) >0,gj+1(z) >0,...,9,(x) > 0},
where g1,...,9, € R[z1,...,7,) and 0 < j < r. Put hy(z,y) = gi(v)y? — 1
fori=1,...,j and h;(x,y) = gi(z) —y? fori=j+1,...,r, and let
Y ={(z,y) e R" xR": hy(x,y) =--- = hy(x,y) = 0}.

Then we have 7(Y) = X for the projection 7 : R” x R" 5 (z,y) —
x € R™. So, any polynomial f : R” — R can be considered as a polyno-
mial on Y, by identifying f o m with f. Denote by 77 the preordering of
Rlx1,...,Zn, Y1, -.,Yr| generated by hy, —hq,..., hy, —h,. By Theorem 4.1
we obtain the following version of the Positivstellensatz on basic semialge-
braic sets.

COROLLARY 5.2. Let f : R™ — R be a polynomial, and let f(x) > 0 for
x € X. Then

f(l') = —h(flf,y) + U(l’,y),
where 0 € Y. R(x,y)?, and —h € T} is of the form

(5.2)
r ntr
— () =SS aushila,y) - (“hia ) (w — &) (2.y) € RY xR,
i=1 j=1
where «; j are positive numbers, (wi,...,Wnir) = (T1,.. ., Tn, Y1, Yr),
and (&1, ..., &ntr) is an arbitrary point of Y and p is a positive even number
such that
(5.3) p<d+2+0(2k+4,n+rd —D(6D—3) 1),

provided k = max{degg1,...,degg,}, d =deg f and D = max{k + 2,d}.

Proof. By [32, Corollary 6], we have L (f|Y) > —D(6D — 3)"*" 1. It
is easy to see that max{deghi,...,degh,} < k + 2. So, for the smallest
positive even number satisfying

p>d+002k+4,n+rd —D6D—3)"1)
the inequality (5.3 holds. Moreover, the assumptions of Theorem are
satisfied. So Theorem [.1] yields the assertion. m

Corollary also includes the case when the basic semialgebraic set X
is closed or when it is open. It is known that for a basic closed semialgebraic
set

X={reR":gi(x) 20,...,9-(x) > 0},

where g1,...,9, € Rlz1,...,z,], there exists an algebraic set

Y:{(l'l)"'?xnayla"'ayr)ER”XRT:gl(x)_y%zoa"'ng(x)_yz:O}
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such that 7(Y) = X, where 7 : R® X R" 3 (z,y) — = € R"™. So, any
polynomial f : R™ — R can be considered as a polynomial on Y, upon
identifying f o with f. Then the preordering T} is generated by g1 (z) — 7,
—g1(x)+ 3, ... gm(x) — 2, —g(z) +y2. Thus Corollary gives the Posi-
tivstellensatz on a closed semialgebraic set for j = 0.

For j = r, Corollary [5.2] gives the Positivstellensatz for an open semi-
algebraic set. Indeed, for an open basic semialgebraic set X = {z € R" :
g1(x) > 0,...,g-(x) > 0}, there exists an algebraicset Y = {(x,y1,...,y,) €
R"xR" : g1(z)y?—1=0,...,g-(x)y?—1 = 0} such that 7(Y) = X. Then the
preordering T} is generated by g1(z)y? — 1, —g1(2)y? + 1,..., gm(2)y2, — 1,
—9r (I)y% + 1.

Let V be an irreducible algebraic set of the form (4.1)).

COROLLARY 5.3. Let f : R™ — R be a polynomial, and let f(z) > 0 for
x eV, and fly #0. Then

fp+1 =—h + g,
where o € Y. R(z)?, and —h € T is of the form
(5.4)  —h(x) =) Y aiiff(@)hi(x) - (~hi(2))(a; - &)

i=1 j=1

+ 3 aihi(@) - (—hi@)(1 = b f(2))", @ € RY xR,
=1

where «; j, 0y are positive numbers, (&1,...,&,) is an arbitrary point of V,
ént+1 € R and p is a positive even number such that
(5.5) p<d+2+02k+4,n+1,d,—D(6D —3)"),

provided k = max{deggi,...,degg,}, d = deg f and D = max{k,d + 1}.
Proof. Let X =V \ V(f). Then f(z) > 0 for z € X and X # (). Let
Y ={(z,y) eR"xR:x €V, f(r)y—1=0},

and define h;(x,y) = hi(z) for i =1,...,r and hy41(x,y) = f(x)y — 1. Then
by Theorem for any (&1,...,&n41) € Y, there exist positive numbers ay j,
i=1,....,r+1,j=1,...,n,and 0 € . R(x,)? such that

f([l?) = —h(.%',y) + a(x,y),

where
r+1n+1
—h(l',y) = Z Z ai,jhi(xa y) : (_hz(xay))(w] - éj)pv (.CC, y) € R" x Ra
i=1 j=1

and (w1, ..., Wp41) = (21,...,Tp,y). Setting y = 1/ f yields the assertion. m
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