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Triangularization properties of power linear maps
and the Structural Conjecture

by Michiel de Bondt (Nijmegen) and Dan Yan (Beijing)

Abstract. We discuss several additional properties a power linear Keller map may
have. The Structural Conjecture of Drużkowski (1983) asserts that certain two such prop-
erties are equivalent, but we show that one of them is stronger than the other. We even
show that the property of linear triangularizability is strictly in between. Furthermore, we
give some positive results for small dimensions and small Jacobian ranks.

1. Introduction. Throughout this paper, we will write K for any field
of characteristic zero, K̄ for its algebraic closure, and K[x] = K[x1, . . . , xn]
for the polynomial algebra over K with n indeterminates x = x1, . . . , xn. Let
F = (F1, . . . , Fn) : Kn → Kn be a polynomial map, that is, Fi ∈ K[x] for
all 1 ≤ i ≤ n, or briefly F ∈ K[x]n. We view F and x as column matrices,
and write ∂ = ∂1, . . . , ∂n, where ∂i = ∂/∂xi. Just like F = (F1, . . . , Fn), we
view any other tuple whose elements are separated by commas as a column
vector. Let M t be the transpose of a matrix M and write

JF = (∂(F t))t =


∂1F1 ∂2F1 · · · ∂nF1

∂1F2 ∂2F2 · · · ∂nF2

...
...

. . .
...

∂1Fn ∂2Fn · · · ∂nFn

 .

We say that a polynomial map F is a Keller map if detJF ∈ K∗. The well-
known Jacobian Conjecture, raised by O.-H. Keller in 1939 in [Kel], states
that a polynomial map F : Kn → Kn is invertible if it is a Keller map. This
conjecture is still open for all n ≥ 2. In [Dru, Th. 3], Ludwik Drużkowski
showed that it suffices to consider polynomial maps F : Cn → Cn of the
form F = x + (Ax)∗3, where A ∈ Matn(C) and M∗d is the dth Hadamard
power (repeated Hadamard product with itself) of a matrix M .
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In the same paper, Drużkowski also formulated the following Structural
Conjecture. Write M |x=G for the substitution of x by G in a matrix M .

Structural Conjecture. If F = x + (Ax)∗3 and detJF = 1, then
the following conditions are equivalent:

(JC) det((JF )|x=v1 + (JF )|x=v2) 6= 0 for all v1, v2 ∈ Cn.
(∗∗) There exist bi ∈ Cn and cj ∈ Cn such that ctjbi = 0 for every

i ≥ j ≥ 1, and F has the form x+
∑n−1

i=1 (ctix)3bi.

Actually, Drużkowski writes F = x +
∑n

j=1(a
t
jx)3ej instead of F =

x+ (Ax)∗3, where ej is the jth standard unit vector. Hence atj corresponds
to the jth row Aj of A. Since the vectors cj and bi are viewed as column
matrices, the matrix product ctjbi has only one entry, which we regard as an
element of C.

We call a polynomial map F over K linearly triangularizable if there
exists a T ∈ GLn(K) such that the Jacobian of T−1F (Tx) is a triangular
matrix. For Keller maps of the form F = x + H with H homogeneous
of degree d ≥ 2, the existence of such a T automatically means that the
diagonal of

J (T−1F (Tx)) = T−1(JH)|x=TxT
is zero, because JH has to be nilpotent due to the Keller condition.

We embed the Structural Conjecture in a more general context, where F
has the form x+H such that JH is nilpotent, and compare its conditions
with linear triangularizability and other properties. We give positive results
in special cases and counterexamples in general. When we give counterex-
amples, we produce one of the form F = x + H with H homogeneous of
degree d and one of the form F = x+ (Ax)∗d, for every d ≥ 3 and possibly
also for d = 2.

2. Triangularization. In the following proposition, the conditions (JC)
and (∗∗) of the Structural Conjecture are included in a chain of six prop-
erties. Furthermore, we consider maps x + H such that H has no constant
terms instead of being homogeneous.

Proposition 2.1. Let F = x + H be any polynomial map of degree d
over K. Consider the following conditions:

F is invertible;(JC−)

det
(d−1∑
i=1

JF |x=vi
)
∈ K̄∗ for all vi ∈ K̄n;(JC)

det
( n∑
i=1

JF |x=vi
)
∈ K̄∗ for all vi ∈ K̄n;(JC+)
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and the existence of bi ∈ Kn, cj ∈ Kn and di ∈ {1, . . . , d} such that ctjbi = 0
for every i ≥ j ≥ 1, and one of the following holds:

H =
N∑
i=1

(ctix)dibi for some N ∈ N;(∗)

H =

n−1∑
i=1

(ctix)dibi;(∗∗)

H =

n−1∑
i=1

(ctix)dibi and b1, . . . , bn−1 are linearly independent.(∗∗∗)

Then (JC−)⇐ (JC)⇐ (JC+)⇐ (∗)⇐ (∗∗)⇐ (∗∗∗).
Furthermore, (JC−), (JC) and (JC+) are satisfied when d ≤ 2.

Proof. Notice that the last two implications are trivial. The first two
follow from [GBDS, Cor. 2.3] and [GBDS, Th. 3.5] respectively. The last
claim follows from the first two implications and [GBDS, Prop. 3.1].

To show the third implication, assume (∗) holds and take v1, . . . , vn ∈ K̄
arbitrary. Then

S :=
n∑
k=1

(JH)|x=vk =
n∑
k=1

N∑
i=1

bi·di(ctivk)di−1·cti =
N∑
i=1

bi

(
di

n∑
k=1

(ctivk)
di−1

)
cti.

It follows that in the expansion of SN+1, each term will have a factor ctj · bi
such that i ≥ j ≥ 1, which is zero by assumption. Hence SN+1 = 0. Thus S
is nilpotent and det(

∑n
i=1 JF |x=vi) = det(nIn + S) = nn ∈ K̄∗.

In the last section, we will show that (JC−) ; (JC) and (JC+) ;
(∗) ; (∗∗) ; (∗∗∗), even in the case where H is homogeneous power lin-
ear, i.e. H =

∑n
i=1(c

t
ix)dei for some ci ∈ Kn and a d ≥ 1. But first, we

formulate a lemma and a theorem about the starred equations. We call H
nonhomogeneous power linear if H =

∑n
i=1(c

t
ix)diei for some ci ∈ Kn and

some di ≥ 1.

Lemma 2.2. Let N ∈ N and suppose that there exist bi, cj ∈ Kn and
di ∈ N such that

H =

N∑
i=1

(ctix)dibi.

Then the following statements are equivalent:

(i) There exists a σ ∈ SN such that ctσ(j)bσ(i) = 0 for every i ≥ j ≥ 1.

(ii) There exists a T ∈ GLn(K) such that the Jacobian of T−1(ctiTx)dibi
is lower triangular with zeroes on the diagonal for all i ≤ N .
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Furthermore, if b1, . . . , bN are linearly independent and σ is as in (i), then
in (ii) we can choose T ∈ GLn(K) such that

(1) bσ(i) = Ten−N+i for each i.

Proof. We prove that (i) and (ii) are equivalent, showing the last claim
along the way.

(ii)⇒(i). Suppose that (ii) holds. For each j, let mj be the number of
trailing zero coordinates of T tcj . By reordering the terms of H, we can
obtain mj ≥ mi for i ≥ j ≥ 1. By (ii),

(2) J (T−1(ctiTx)dbi) = T−1bi · di(ctiTx)di−1 · ctiT
is lower triangular with zeroes on the diagonal. Hence the number of leading
zero coordinates of T−1bi is at least n − mi ≥ n − mj for i ≥ j ≥ 1.
Comparing the numbers of leading and trailing zero coordinates, we get
ctjbi = ctjT · T−1bi = 0 for i ≥ j ≥ 1, which is (i) with σ = 1. So we can take
σ = 1 when mj ≥ mj+1 for each j already before reordering the terms of H.

(i)⇒(ii). Suppose that (i) holds. Again by reordering the terms of H,
we can obtain σ = 1. Suppose that the vector space spanned by the column
vectors b1, . . . , bN has dimension r. Then there are τ(1) < · · · < τ(r) such
that bτ(1), . . . , bτ(r) is a basis of this vector space. Now choose τ(1)+· · ·+τ(r)
as large as possible. Then bi is linearly dependent on bτ(k), bτ(k+1), . . . , bτ(r)
for all k and all i > τ(k − 1), where τ(0) = 0 and where zero vectors are
linearly dependent on the empty set. Furthermore, ctibτ(k) = ctibτ(k+1) =
· · · = ctibτ(r) = 0 for all k and all i ≤ τ(k) on account of (i) with σ = 1.

Take T ∈ GLn(K) such that the last r columns of T are bτ(1), . . . , bτ(r),
in that order. Then we have (1) with σ = 1 if b1, . . . , bN are linearly indepen-
dent. Take i ≤ N arbitrary. It suffices to show that (2) is lower triangular
with zeroes on the diagonal. This is trivial when bi = 0, so assume that
bi 6= 0. Then by definition of r and τ , there exists a k ≥ 1 such that
τ(k) ≥ i > τ(k − 1). As we have seen above, bi is linearly dependent on
bτ(k), bτ(k+1), . . . , bτ(r) and ctibτ(k) = ctibτ(k+1) = · · · = ctibτ(r) = 0.

Hence T−1bi is linearly dependent on en−r+k, en−r+k+1, . . . , en and
ctiT · en−r+k = ctiTen−r+k+1 = · · · = ctiTen = 0 by definition of T . Conse-
quently, all nonzero entries of (2) are within the submatrix consisting of
rows n− r+k, . . . , n and columns 1, . . . , n− r+k−1. Since i was arbitrary,
we obtain (ii).

Theorem 2.3. Let x+H be any map of degree d ≥ 1 over K such that
H(0) = 0. Then:

(i) H is of the form (∗) if and only if there exists a T ∈ GLn(K)
such that the Jacobian of T−1H(Tx) is lower triangular with ze-
roes on the diagonal, i.e. H is linearly triangularizable and JH is
nilpotent.
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(ii) H is of the form (∗∗) if and only if there exist bi, cj ∈ Kn and

T ∈ GLn(K) such that H =
∑n−1

i=1 (ctix)dibi and the Jacobian of
T−1(ctiTx)dibi is lower triangular with zeroes on the diagonal for
all i ≤ n− 1.

(iii) H is of the form (∗∗∗) if and only if there exists a T ∈ GLn(K)
such that each component of T−1H(Tx) is a power of a linear form
and the Jacobian of T−1H(Tx) is lower triangular with zeroes on
the diagonal.

Proof. Since the three results have similarities, we structure the proof
as follows.

Only-if-parts. All only-if-parts follow immediately from (i)⇒(ii) of Lem-
ma 2.2, except the claim in (iii) that each component of T−1H(Tx) is a power
of a linear form. So assume that H is of the form (∗∗∗). By (∗∗∗) and (1),
we have

T−1H(Tx) =

n−1∑
i=1

T−1(ctσ(i)Tx)dibσ(i) =
n−1∑
i=1

(ctσ(i)Tx)diei+1

for some σ ∈ Sn−1. So T−1H(Tx) is of the desired form.

If-parts. The if-part of (ii) follows immediately from (ii)⇒(i) of Lem-
ma 2.2. To prove the if-part of (i), suppose that T−1H(Tx) has a lower
triangular Jacobian with zeroes on the diagonal. Then there exists an r ∈ N
such that we can write the (i + 1)th component of T−1H(Tx) as a lin-
ear combination of r powers of linear forms ctjTx in K[x1, . . . , xi], for each

i ≥ 1. Furthermore, the first component of T−1H(Tx) is zero on account of
H(0) = 0. Hence

T−1H(Tx) =

n−1∑
i=1

r∑
j=1

(ctr(i−1)+jTx)dr(i−1)+jei+1

= T−1
n−1∑
i=1

r∑
j=1

(ctr(i−1)+jTx)dr(i−1)+jTei+1.

Taking br(i−1)+j = Tei+1 for all i and all j with 1 ≤ j ≤ r, we have

H =

n−1∑
i=1

r∑
j=1

(ctr(i−1)+jx)dr(i−1)+jbr(i−1)+j =

r(n−1)∑
i=1

(ctix)dibi.

Furthermore, for each j, the Jacobian of (ctjTx)djT−1bj only has nonzero
entries in the submatrix consisting of row i + 1 and columns 1, . . . , i, by
definition of cj and bj , where i = dj/re. Hence the Jacobian of (ctjTx)djT−1bj
is lower triangular with zeroes on the diagonal for all j. Now the if-part
of (i) follows from (ii)⇒(i) of Lemma 2.2. The if-part of (iii) follows as well,
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because we can take r = 1 in that case, so that r(n − 1) = n − 1 and the
bi’s are linearly independent.

3. Positive results. First, we formulate a theorem about maps x+H
with H homogeneous and JH nilpotent.

Theorem 3.1. Assume that H ∈ K[x]n is homogeneous of degree d ≥ 1,
and JH is nilpotent. Then we have (∗∗∗) (and hence five ⇒’s) if n ≤ 2,
and (∗) (and hence three ⇒’s) if n = 3 or n = 4 = d+ 2. Furthermore, the
implication chain (JC)⇒ (JC+)⇒ (∗) holds when n = 4 = d+ 1.

If H is in addition power linear, then the above claims even hold with
the estimates on n replaced by estimates on rkJH.

Proof. We show the equivalent properties in (i) and (iii) of Theorem 2.3
respectively instead of (∗) and (∗∗∗). We start with the cases where H is
only homogeneous.

The case n ≤ 2 follows from [Che, Lem. 3], and the case n = 3 follows
from [BE, Th. 1.1]. The case n = 4 = d + 2 follows from a corresponding
strong nilpotence result in [MO], and the equivalence of strong nilpotence
and the property in (i) of Theorem 2.3, which is proved in [EH]. The case
n = 4 = d + 1 follows from [B1, Th. 4.6.5] and the fact that F = x + H
with H as in [B1, Th. 4.6.5] does not satisfy (JC), because the rightmost
two columns of (JF )|x=(1,i,0,0) + (JF )|x=(1,−i,0,0) are equal, where H =(
0, λx31, x2(x1x3 − x2x4) + p(x1, x2), x1(x1x3 − x2x4) + q(x1, x2)

)
.

Assume from now on that H is in addition power linear. The case
rkJH ≤ 2 follows from [TB, Th. 4.7], becauseK = C is not used in its proof,
or from Theorem 3.2 below. The cases rkJH = 3 and rkJH = 4 = d + 2
follow via [Che, Th. 2] from the cases n = 3 and n = 4 = d+ 2 respectively.
The case rkJH = 4 = d+ 1 follows from the case n = 4 = d+ 1 by using a
variant of [Che, Th. 2], namely with (∗) replaced by (JC) ⇒ (∗). To prove
this variant, one can follow the proof of [Che, Th. 2] to see that in that proof
it suffices to show that F1 = T−1 ◦ F ◦ T satisfies (JC) if F does.

In Theorem 3.2 below, which is the nonhomogeneous variant of Theo-
rem 3.1, we must replace the estimates on n and rkJH of Theorem 3.1 by
estimates on n + 1 and rkJH + 1 respectively, except the estimate n ≤ 2
for (∗∗) ⇒ (∗∗∗), and the estimate rkJH ≤ 2 for (∗∗∗), which can be
maintained.

Theorem 3.2. Assume that H ∈ K[x]n has degree d, H(0) = 0 and JH
is nilpotent. Then we have (∗∗∗) (and hence five⇒’s) if n ≤ 1, both (∗) and
(∗∗)⇒ (∗∗∗) (and hence four ⇒’s) if n = 2, and (∗) (and hence three ⇒’s)
if n = 3 = d+ 1. Furthermore, the implication chain (JC)⇒ (JC+)⇒ (∗)
holds when n = 3 = d.
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If H is in addition power linear, then the above claims even hold when we
replace the estimates on n by estimates on rkJH, and additionally (∗∗∗)
(and hence five ⇒’s) holds when rkJH = 2.

Furthermore, if we replace (∗) and (∗∗∗) by their equivalents in (i)
and (iii) of Theorem 2.3, then the condition H(0) = 0 is no longer nec-
essary.

Proof. We show the equivalent properties in (i) and (iii) of Theorem 2.3
respectively instead of (∗) and (∗∗∗). We start with the cases where H only
has a nilpotent Jacobian.

The case n = 1 is trivial, because H = 0 in that case. Notice that in
the cases n = 2 and n = 3 = d + 1, the homogeneization xdn+1H(x−1n+1x, 0)
of H has a strongly nilpotent Jacobian on account of Theorem 3.1. By
substituting xn+1 = 1, we see that the Jacobian of H itself is strongly
nilpotent as well. By the equivalence of strong nilpotence and the property
in (i) of Theorem 2.3, which is proved in [EH], we have the latter property,
and hence also (∗), when n = 2 or n = 3 = d + 1. This gives the case
n = 3 = d+ 1, and also the case n = 2, because (∗∗) and (∗∗∗) are trivially
equivalent when n = 2.

In order to prove the case n = 3 = d, assume that H does not have the
property in (i) of Theorem 2.3. By [B1, Cor. 4.6.6], we may assume that
the first component of T−1H(Tx) equals λ ∈ K for some T ∈ GL3(K).
Following the proof of [B1, Th. 4.6.5], we see that T−1H(Tx) =

(
λ, x1(x2−

x1x3)+p(x1), (x2−x1x3)+q(x1)
)

for some T ∈ GL3(K). Since the rightmost
two columns of (JF )|x=(i,0,0) + (JF )|x=(−i,0,0) are equal, we see that (JC)
does not hold, as desired.

Assume from now on that H is in addition (nonhomogeneous) power
linear. The cases rkJH = 3 = d and rkJH = 3 = d+ 1 follow in a similar
manner to the cases rkJH = 4 = d+ 1 and rkJH = 4 = d+ 2 respectively
in Theorem 3.1. So assume that rkJH ≤ 2. Take λ and µ as in Lemma 3.3
below. If µtH is a power of a linear form, then we take T ∈ GLn(K) such
that λt and µt are the first two rows of T−1, in that order, and for the
remaining rows of T−1 we transpose standard unit vectors. Since λt and µt

generate the row space of JH, we see that λtT = e1 and µtT = e2 generate
the row space of J (T−1H(Tx)). Using additionally that µtH ∈ K[λtx], we
find that T−1H(Tx) ∈ K × K[x1] × K[x1, x2]

n−2 has a lower triangular
Jacobian with zeroes on the diagonal. So we have (i) of Theorem 2.3 and
hence also (∗).

Now assume that µtH is not a power of a linear form. By Lemma 3.3
below,

(3) µtH = ν1(λ
tx)d1 + · · ·+ νr(λ

tx)dr

where r ≥ 2, ν ∈ (K \ {0})r and {0, 1} 3 λtH ≤ d1 < · · · < dr. Take
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T ∈ GLn(K) such that λt is the first row of T−1. Let V ∈ Matr,n({0, 1})
with Vij = 1 if and only if degHj = di. Without worrying about linear
independence of rows at this stage, take for each i with 2 ≤ i ≤ r the
(i + 1)th row of T−1 equal to T−1i+1 = ν−1i µt ∗ Vi, where ∗ is the Hadamard

product and Vi is the ith row of V . Then the (i + 1)th component T−1i+1H

of T−1H is ν−1i times the homogeneous part of degree di of (3), which is
ν−1i νi(λ

tx)di = (λtx)di , for each i with 2 ≤ i ≤ r.
Still without worrying about linear independence of rows, take the second

row of T−1 equal to

T−12 = ν−11

(
µt − (µt ∗ (V2 + · · ·+ Vr))

)
.

Since µt ∗Vi = νiT
−1
i+1 for each i with 2 ≤ i ≤ r by definition of T−1, we have

(4) T−12 = ν−11

(
µt − (ν2T

−1
3 + · · ·+ νrT

−1
r+1)

)
and the second component of T−1H equals

T−12 H = ν−11

(
µtH − (ν2T

−1
3 H + · · ·+ νrT

−1
r+1H)

)
= ν−11

(
µtH − (ν2(λ

tx)d2 + · · ·+ νr(λ
tx)dr)

)
,

which by (3) is equal to ν−11 ν1(λ
tx)d1 = (λtx)d1 . Thus for each i ∈ {1, . . . , r},

the (i+ 1)th component of T−1H is equal to (λtx)di .

Since {0, 1} 3 λtH ≤ d1 < · · · < dr, we have deg T−11 H = deg λtH <λtH
and the degrees of the first r + 1 components of T−1H are strictly increas-
ing. Hence as T−11 = λt 6= 0, the first r + 1 rows of T−1 are indeed lin-
early independent. Take transposed standard unit vectors for the remaining
rows of T−1. As λtT = et1, the first r + 1 components of T−1H(Tx) are

λtH,xd11 , . . . , x
dr
1 , so T−1H(Tx) ∈ K × K[x1]

r × K[x]n−r−1. Furthermore,
we see that T−1H(Tx) is power linear.

By (4), we have
∑r

i=1 νiT
−1
i+1 = µt, so µt is a linear combination of the

first r + 1 rows of T−1. Since λt and µt generate the row space of JH
and are linear combinations of the first r + 1 rows of T−1, we see that
λtT and µtT generate the row space of (JH) · T and are linear combi-
nations of et1, . . . , e

t
r+1. From the fact that H is (nonhomogeneous) power

linear, we deduce that the row space of (JH) · T is the same as that of
J (T−1H(Tx)). Hence T−1H(Tx) ∈ K[x1, . . . , xr+1]

n. Since we have shown
above that T−1H(Tx) ∈ K × K[x1]

r × K[x]n−r−1 as well, we can deduce
that T−1H(Tx) ∈ K × K[x1]

r × K[x1, . . . , xr+1]
n−r−1. Hence T−1H(Tx)

has a lower triangular Jacobian with zeroes on the diagonal. So we have (i)
of Theorem 2.3 and hence also (∗).

Lemma 3.3. Assume that H ∈ K[A1x, . . . , Anx]n, where Aj is the jth
row of a matrix A ∈ Matn(K) such that rkA ≤ 2 and JH is nilpotent.
Then there exist linearly independent λ, µ ∈ Kn such that µtH ∈ K[λtx]
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has no terms of degree less than λtH ∈ {0, 1}, and λt and µt generate the
row space of A.

Proof. Using the case n = 2 of Theorem 3.2 (instead of the case n = 3
of Theorem 3.1), by similar techniques to the proof of the case rkJH = 3
of Theorem 3.1 we deduce that there exists a T ∈ GLn(K) such that ATx ∈
K[x1, x2]

n and the Jacobian of T−1H(Tx) ∈ K[x1, x2]
n is lower triangular

with zeroes on the diagonal. By a subsequent linear conjugation on the
first two coordinates, we can even have in addition the first component of
T−1H(Tx) contained in {0, 1}, and the second component without constant
term if the first component already has one.

Now take for λt the first row of T−1 and for µt the second row of T−1.
Then λtH(Tx) ∈ {0, 1} and ATx ∈ K[x1, x2]

n. Furthermore, µtH(Tx) ∈
K[x1] only has terms of degree greater than deg λtH(Tx), and hence no
terms of degree less than λtH(Tx) (∈ {0, 1}) itself. Thus substituting x =
T−1x gives the desired results.

Notice that in the case where H is power linear and rkJH = 1 in
Theorem 3.2, we can even get T−1H(Tx) ∈ k[x1]

n in (iii) of Theorem 2.3,
namely by taking λt in the row space of JH. This is similar to the case where
H is power linear and rkJH = 2 in Theorem 3.1, in the proof of which T is
taken such that T−1H(Tx) ∈ k[x1, x2]

n in (iii) of Theorem 2.3. It is however
not always possible to take T such that T−1H(Tx) ∈ k[x1, x2]

n in (iii)
of Theorem 2.3 when H is power linear and rkJH = 2 in Theorem 3.2:
consider e.g. H = (0, xd1, x

d−1
1 , (x2 + x3)

d).

Theorems 3.1 and 3.2 contain positive results with estimates on rkJH,
but for power linear H only. Theorem 3.4 below however brings two results
with estimates on rkJH without the requirement that H is power linear.
Furthermore, the homogeneous counterexamples (9) and (10) later in this
article show that the estimates in Theorem 3.4 cannot be improved, even if
we have the extra condition that H is homogeneous.

Theorem 3.4. Assume that H ∈ K[x]n has degree d, H(0) = 0 and JH
is nilpotent. If rkJH = 1 or rkJH = 2 = d, then H is of the form (∗).

Furthermore, if we replace (∗) by its equivalent in (i) of Theorem 2.3,
then the condition H(0) = 0 is no longer necessary.

Proof. We show the equivalent property in (i) of Theorem 2.3 instead
of (∗). The case rkJH ≤ 1 follows from the corresponding strong nilpotence
result in (2) ⇒ (3) of [B2, Th. 4.2], and from the equivalence of strong
nilpotence and the property in (i) of Theorem 2.3, which is proved in [EH].

So assume that rkJH = 2 = d and suppose without loss of generality
that H(0) = 0. The additional claim that the diagonal is zero follows from
the nilpotency of JH, so we do not need to worry about that any more. By
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Lemma 3.5 below, there exists a T ∈ GLn(K) such that for H̃ := T−1H(Tx),
we have one of the following cases, which we treat separately.

• H̃ ∈ K[x1, x2]
n. Then by Theorem 3.2, (H̃1, H̃2) has the property

in (i) of Theorem 2.3. Hence we can choose T such that Jx1,x2(H̃1, H̃2) is

lower triangular. It follows that J H̃ is lower triangular as well, which is the
property in (i) of Theorem 2.3.

• H̃3 = · · · = H̃n = 0. Then by [E, Th. 7.2.25], we have

(H̃1, H̃2) = (bg(ax1 − bx2) + d, ag(ax1 − bx2) + c),

where a, b, c, d ∈ K[x3, . . . , xn] and g is a univariate polynomial over
K[x3, . . . , xn]. Hence aH̃1−bH̃2 ∈ K[x3, x4, . . . , xn]. Using that deg(H̃1, H̃2)
= 2, we see that either g is constant, or both a and b are constant.

In both cases, there exists a nontrivial K-linear combination of H̃1 and
H̃2 which is in K[x3, . . . , xn]. By choosing T appropriately, we can get
H̃2 ∈ K[x3, . . . , xn], in which case J H̃ is upper triangular. By a subse-
quent conjugation of H̃ with the map (xn, xn−1, . . . , x1), we get the desired
lower triangular form of the Jacobian, which gives the property in (i) of
Theorem 2.3.

• H̃2 = H̃2
3 6= 0 and H̃4 = · · · = H̃n = 0. If H̃3 ∈ K[x4, . . . , xn],

then J H̃ is upper triangular, and a subsequent conjugation of H̃ with
the map (xn, xn−1, . . . , x1) gives the desired result. So assume that H̃3 /∈
K[x4, . . . , xn]. Applying polynomial extension of scalars to the case n = 3 =
d+ 1 of Theorem 3.2, it follows that there exists a T̃ ∈ GL3(K(x4, . . . , xn))
such that Jx̃(T̃−1(H̃1, H̃2, H̃3)|x̃=T̃ x̃) is lower triangular with zeroes on the
diagonal, where x̃ = x1, x2, x3.

By clearing denominators in the first row of T̃−1, we see that there is a
nonzero λ ∈ K[x4, , . . . , xn]3 such that λ1H̃1+λ2H̃2+λ3H̃3 ∈ K[x4, . . . , xn].
Since H̃2 and H̃3 have different positive degrees with respect to x̃, it follows
that λ1 6= 0 and H̃1 ∈ K[H̃3, x4, . . . , xn].

Now take S ∈ GLn(K) such that the ith row of S−1 equals eti for all i ≥ 4
and the third row of S−1 equals J H̃3. Then only the first three components of
S−1H̃(Sx) are nonzero, and we have H̃3(Sx) = x3 and (Sx)i = xi for all i ≥ 4.
Consequently, the first three components of S−1H̃(Sx) are in K[x3, . . . , xn].
Hence the Jacobian of S−1H̃(Sx) is upper triangular, and a subsequent conju-
gation of H̃ with the map (xn, xn−1, . . . , x1) gives the desired lower triangular
form of the Jacobian. This gives the property in (i) of Theorem 2.3.

Lemma 3.5. Assume that H ∈ K[x]n has degree 2, H(0) = 0 and
rkJH ≤ 2. Then there exists a T ∈ GLn(K) such that H̃ := T−1H(Tx)
has one of the three forms that are specified in the proof of Theorem 3.4.

Proof. We can choose T such that H̃1, . . . , H̃r have linearly independent
quadratic parts over K, H̃r+1, . . . , H̃s are linear forms which are independent
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over K, and H̃s+1 = H̃s+2 = · · · = 0. If s ≤ 2, then H̃ = T−1H(Tx) has
the second form in the proof of Theorem 3.4, so assume that s ≥ 3. We
distinguish three cases.

• r ≤ 1. Then H̃2 and H̃3 are linear forms which are independent over K.
Hence we can take S ∈ GLn(K) such that the first two rows of S−1 are
J H̃2 and J H̃3. By the chain rule, J (H̃2(Sx)) = et1 and J (H̃3(Sx)) = et2,
so H̃2(Sx) = x1 and H̃3(Sx) = x2. Hence H̃(Sx)∈K[x1, x2]

n and S−1H̃(Sx)
= (TS)−1H((TS)x) has the first form in the proof of Theorem 3.4.

• r ≥ 3. Since rkJ H̃ = 2, the rows of J (H̃1, H̃2, H̃3) are linearly de-
pendent over K(x) and hence also over K[x]. By looking at leading homoge-
neous parts, we see that rkJ (H̄1, H̄2, H̄3) ≤ 2, where H̄i is the leading and
quadratic homogeneous part of H̃i for each i ≤ 3. By [B1, Th. 4.3.1], there
exist linear forms p, q such that H̄1, H̄2, H̄3 are linearly dependent over K
on p2, pq and q2. Furthermore, p and q are independent over K, and p2,
pq and q2 are in turn linearly dependent over K on H̄1, H̄2, H̄3. Thus there
exists an L ∈ GL3(K) such that L

(
H̄1, H̄2, H̄3

)
= (p2, pq, q2).

Take S ∈ GLn(K) such that the first two rows of S−1 are J p and J q, in
that order. Then L

(
H̄1(Sx), H̄2(Sx), H̄3(Sx)

)
= (x21, x1x2, x

2
2). The 2-minor

determinants of Jx1,x2(x21, x1x2, x
2
2) are 2x22, 4x1x2 and 2x21, which are also

linearly independent over K. It follows that

detJx1,x2,xi
(
L(H̃1(Sx), H̃2(Sx), H̃3(Sx))

)
6= 0

if i ≥ 3, and the last column of the Jacobian matrix on the left hand side,
which can only be constant, is nonzero. Hence L(H̃1(Sx), H̃2(Sx), H̃3(Sx)) ∈
K[x1, x2]

3. Since the first two rows of its Jacobian are linearly independent
over K, and L is invertible, H̃(Sx) ∈ K[x1, x2]

n as well. So S−1H̃(Sx) =
(TS)−1H((TS)x) has the first form in the proof of Theorem 3.4.

• r = 2. If s ≥ 4, then we can proceed as in the case r ≤ 1, but with H̃3

and H̃4 instead of H̃2 and H̃3. So assume that s = 3.
Since multiplication of the third row of J H̃ by 2H̃3 does not change

the rank of J H̃, we have rkJ (H̃1, H̃2, H̃
2
3 ) ≤ 2. Let H̄i be the leading

homogeneous part of H̃i for each i ≤ 3. If H̄2
3 is linearly independent over

K of H̄1 and H̄2, then we can proceed as in the case r ≥ 3 to obtain
H̃i(Sx) ∈ K[x1, x2] for each i 6= 3 and H̃3(Sx)2 ∈ K[x1, x2] for some S ∈
GLn(K). So S−1H̃(Sx) = (TS)−1H((TS)x) has the first form in the proof
of Theorem 3.4 in that case.

Now assume that H̄2
3 is linearly dependent over K on H̄1 and H̄2. Then

we can choose T such that H̄2 = H̄2
3 . If the linear part of H̃2 is dependent

over K on H̃3, then we can choose T such that even H̃2 = H̃2
3 . Since s = 3,

we see that H̃ = T−1H(Tx) has the third form in the proof of Theorem 3.4
in that case.
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Finally, assume that the linear part of H̃2 is independent over K of H̃3.
Then H̃2−H̃2

3 and H̃3 are linear forms which are independent over K. Since
J (H̃2 − H̃2

3 ) = J H̃2 − 2H̃3J H̃3, we can replace H̃2 by H̃2 − H̃2
3 without

affecting the Jacobian rank of H̃, and proceed as in the case r ≤ 1 to infer
that et1 and et2 are in the row space of J H̃(Sx) for some S ∈ GLn(K). Hence
H̃(Sx) ∈ K[x1, x2]

n and S−1H̃(Sx) = (TS)−1H((TS)x) has the first form
in the proof of Theorem 3.4.

4. Lemmas. The lemmas in this section are required for the proofs that
the counterexamples in the next section are indeed counterexamples.

Lemma 4.1. Let d ≥ 1 and a1, . . . , a2d+2 ∈ Kn be pairwise linearly
independent. Suppose that for all j ≥ min{3, d2} and all k with 3 ≤ k ≤
d+2, the set {aj , ak, ak+d} consists of two or three vectors which are linearly
independent (depending on whether j ∈ {k, k + d} or not). If

(5)

2d+2∑
i=1

λi(a
t
ix)d = 0

for some λi ∈ K, not all zero, then λ1λ2 6= 0.

Proof. Assume that (5) holds. Since a1 and a2 are linearly independent,
we may assume without loss of generality that λ3 6= 0. If d = 1, then
λ1λ2 = 0 implies that either a1 or a2 is linearly dependent on a3 and a4,
which is a contradiction. Hence the following cases remain:

• d = 2. Since a4, a5 and a6 are linearly independent and d = 2, we may
assume without loss of generality that a1, a3, a6 are linearly independent
vectors. Consequently, there exists a b1 ∈ Kn such that bt1a1 = bt1a6 = 0 6=
bt1a3. Applying bt1∂ to (5) gives

5∑
i=2

µi(a
t
ix)1 = 0

where µi = 2λib
t
1ai for all i. Since a3, a4, a5 are linearly independent and

µ3 6= 0, we have µ2 6= 0 as well. Hence λ2 6= 0. In a similar manner, λ1 6= 0
follows.

• d > 2. Since a3, ad+2 and a2d+2 are linearly independent, there exists
a b2 ∈ Kn such that bt2ad+2 = bt2a2d+2 = 0 6= bt2a3. Applying bt2∂ to (5) gives

d+1∑
i=1

µi(a
t
ix)d−1 +

2d+1∑
i=d+3

µi(a
t
ix)d−1 = 0

where µi = dλib
t
2ai for all i. Since µ3 6= 0, it follows by induction on d that

µ1µ2 6= 0. Hence λ1λ2 6= 0.
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Lemma 4.2. We have

(6)

d∑
i=0

(−1)i
(
d

i

)
(x1 + ix3)

d =

d∑
i=0

(−1)i
(
d

i

)
(x2 + ix3)

d

and if d ≥ 2 and ζd ∈ K is a primitive dth root of unity, then

(7)
d−1∑
i=0

ζid(ζ
i
dx1 + x2 + x3)

d +

d−1∑
i=0

ζid(ζ
i
dx1 + x2 − x3)d = 2d2xd−11 x2.

Proof. We first prove (6). Assume that (6) holds when we replace d by
d− 1. By substituting x2 = x1 + x3 on both sides, we obtain

d−1∑
i=0

(−1)i
(
d− 1

i

)
(x1 + ix3)

d−1 =
d−1∑
i=0

(−1)i
(
d− 1

i

)
(x1 + (i+ 1)x3)

d−1

= −
d∑
i=1

(−1)i
(
d− 1

i− 1

)
(x1 + ix3)

d−1

As
(
d
i

)
=
(
d−1
i−1
)

+
(
d−1
i

)
, both sides combine to

0 =
d∑
i=0

(−1)i
(
d

i

)
(x1 + ix3)

d−1 =
1

d
∂1

d∑
i=0

(−1)i
(
d

i

)
(x1 + ix3)

d.

Hence the left hand side of (6) is in K[x3]. By a symmetry argument, (6)
follows by induction on d, because the case d = 0 is trivial.

Assume that d ≥ 2 and that ζd ∈ K is a primitive dth root of unity. By
substituting x2 = x2 ± x3 in

(8)

d−1∑
i=0

ζid(ζ
i
dx1 + x2)

d = d2xd−11 x2

we get (7). So in order to prove (7), it suffices to show (8). This can be done
as follows:

d−1∑
i=0

ζid(ζ
i
dx1 + x2)

d =

d−1∑
i=0

ζid

d∑
j=0

(
d

j

)
(ζidx1)

jxd−j2

=

d∑
j=0

(
d

j

)
xj1x

d−j
2

d−1∑
i=0

ζ
i(j+1)
d

=

(
d

d− 1

)
xd−11 x12

d−1∑
i=0

1 = d2xd−11 x2.

Notice that (7) is not true for d = 1, because we are using the fact that∑d−1
i=0 ζ

(j+1)
d = 0 for j = d, which does not hold for d = 1.



260 M. de Bondt and D. Yan

Lemma 4.3. To write xd−11 x2 as a linear combination of xd1 and other
dth powers of linear forms, at least d such powers are necessary besides xd1.

Proof. The case d = 1 is easy, so let d ≥ 2 and suppose that xd−11 x2
can be written as a linear combination of xd1, (a

t
3x)d, . . . , (atd+1x)d. Assume

without loss of generality that n ≥ 2d+2 and that the vectors e1, a3, . . . , ad+1

are pairwise linearly independent. By applying ∂2 to this linear combination,
we obtain

xd
′

1 = λ3(a
t
3x)d

′
+ λ4(a

t
4x)d

′
+ · · ·+ λd′+2(a

t
d′+2x)d

′

where d′ = d − 1. Take a1 = e1 and take a2 linearly independent of
a1, a3, . . . , ad′+2. Next, take ai linearly independent of a1, . . . , ai−1 for all
i with d′ + 3 ≤ i ≤ 2d′ + 2. Then Lemma 4.1 with d replaced by d′ gives a
contradiction.

5. Counterexamples. We start by giving counterexamples x + H to
(JC−)⇒ (JC) and (JC+)⇒ (∗), such that H is homogeneous of degree d ≥
3 and d ≥ 2 respectively. Using known techniques, these counterexamples
can be improved to counterexamples of the form x+ (Ax)∗d.

Theorem 5.1. If n = 4 and d ≥ 3, then

(9) H = xd−31

(
0, 0, x2(x1x3 − x2x4), x1(x1x3 − x2x4)

)
is a homogeneous counterexample of degree d to (JC−) ⇒ (JC).

If n = 5 and d ≥ 2, then

(10) H = (0, 0, xd−12 x4, x
d−1
1 x3 − xd−12 x5, x

d−1
1 x4)

is a homogeneous counterexample of degree d to (JC+)⇒ (∗).
Furthermore, there exist a power linear counterexample to (JC−)⇒ (JC)

for each d ≥ 3, and a power linear counterexample to (JC+)⇒ (∗) for each
d ≥ 2.

Proof. Assume first that n = 4 and H is as in (9). Since the compo-
nents of H are composed of the invariants x1, x2, x1x3 − x2x4 of x+H, we
see that x + H is a quasi-translation, i.e. x − H is the inverse of x + H.
One can compute that the trailing principal 2-minor of (d− 1)I4 + (d− 2)·
(JH)|x=(1,0,0,0) + (JH)|x=(1,c,0,0) equals(

d− 1 + c −c2

d− 1 d− 1− c

)
and that its determinant equals c2(d−2)+(d−1)2. So if we take c = d−1√

d−2 i,

then

det
(
(d− 1)I4 + (d− 2)(JH)|x=(1,0,0,0) + (JH)|x=(1,c,0,0)

)
= 0,

which contradicts (JC−)⇒ (JC).
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Assume next that n = 5 and H is as in (10). Then one can compute that

JH =


0 0 0 0 0

0 0 0 0 0

∗ ∗ 0 b 0

∗ ∗ a 0 −b
∗ ∗ 0 a 0


for certain polynomials a, b. The form on the right hand side does not change
by substitution and adding copies of JH with different substitutions, so∑n

i=1(JH)|x=vi is nilpotent for all vi ∈ Kn. This gives (JC+).

On the other hand, (JH)|x1=0 · (JH)|x2=0 is a lower triangular matrix
with diagonal (0, 0, xd−11 xd−12 ,−xd−11 xd−12 , 0), so (JH)|x1=0 · (JH)|x2=0 is
not nilpotent. By [EH], we see that H is a counterexample to (JC+)⇒ (∗).

To obtain power linear counterexamples, we can use the concept of GZ-
pairing of [GZ]. For that purpose, let H be any of the above two maps. By
[GZ, Th. 1.3], there exist N > n and A ∈ MatN (K) such that x+H
and X + (AX)∗d are GZ-paired through matrices B ∈ Matn,N (K) and
C ∈ MatN,n(K), where X = (x1, . . . , xN ).

Take M ∈ MatN,N−n(K) whose columns form a basis of kerB and de-
fine T̄ = (C | M). Then one can show that T̄ is as in the proof of [Che,
Th. 2], with F = X + (AX)∗d and F1 = (x + H, . . .). Now one can use
similar techniques as in the proof of Theorem 3.1 to deduce that (AX)∗d

is a counterexample as also is H, or use the following invariance results for
GZ-pairing. The GZ-invariance of (JC−) follows from [GZ, Th. 1.3(9)] and
that of (∗) from [LDS, Th. 3(2)]. The GZ-invariance of (JC) and (JC+) can
be proved with the techniques of [GZ, proof of Th. 2.4].

Example 5.2. Let x = (x1, . . . , x5) and X = (x1, . . . , x13). Take H as
in (10) and

G =
(
0, 0, (x4 − x1)3, (x4 + x1)

3, x34, (x4 − x2)3, (x4 + x2)
3,

(x3 − x1)3, (x3 + x1)
3, x33, (x5 − x2)3, (x5 + x2)

3, x35
)
.

Then kerJxG is trivial and 6H = BG, where

B =


1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −2 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 −2 −1 −1 2

0 0 1 1 −2 0 0 0 0 0 0 0 0


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has full rank. Hence there exists a matrix C such that BC = I5. Conse-
quently, x+H and X + 1

6G(BX) are GZ-paired through B and C.

In the next theorem, we give threedimensional counterexamples F =
x + H to (∗) ⇒ (∗∗) and (∗∗) ⇒ (∗∗∗), such that H is homogeneous of
degree d ≥ 3. The techniques in the proof of the previous theorem to get
counterexamples of the form F = x + (Ax)∗d do not work, so we improve
our counterexamples to that form by hand.

Theorem 5.3. Assume that d ≥ 2, and either

(11)



H1

H2

H3

H4

...

Hd+2

Hd+3

Hd+4

...

H2d+2



:=



0

νxd1
xd1 − xd2

(x1 + 2x3)
d

...

(x1 + dx3)
d

(x2 + x3)
d

(x2 + 2x3)
d

...

(x2 + dx3)
d


or

(12)



H1

H2

H3

H4

...

Hd+2

Hd+3

Hd+4

...

H2d+2



:=



0

νxd1
xd−11 x2

(ζdx1 + x2 + x3)
d

...

(ζd−1d x1 + x2 + x3)
d

(x1 + x2 − x3)d

(ζdx1 + x2 − x3)d
...

(ζd−1d x1 + x2 − x3)d


for some ν ∈ K, where ζd is a primitive root of unity of K in the case
of (12). Then 2d+ 2 ≥ 6,

(13) d(x1 + x3)
d = H3 +

d∑
i=2

(−1)i
(
d

i

)
Hi+2 −

d∑
i=1

(−1)i
(
d

i

)
Hi+d+2
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in the case of (11) and

(14) (x1 + x2 + x3)
d = 2d2H3 − ζdH4 − ζ2dH5 − · · · − ζ2d−1d H2d+2

in the case of (12), and there exists a T ∈ GL2d+2(K) such that T (H(T−1x))
is power linear if n = 2d+ 2.

If 3 ≤ n ≤ 2d + 2, then H = (H1, . . . ,Hn) is of the form (∗) and we
have the following:

(i) If H is of the form (∗∗), then c1 and c2 are linearly independent
linear combinations of e1 and e2.

(ii) H is of the form (∗∗) if and only if either H is as in (11), or H
is as in (12) with H2 = 0 = d− 2.

(iii) H is of the form (∗∗∗) if and only if H is as in (11) with H2 6= 0.

Proof. Since JH is lower triangular with zeroes on the diagonal, it fol-
lows from (i) of Theorem 2.3 that H is of the form (∗). By (6) and (7) in
Lemma 4.2, we get (13) and (14) respectively. So H is a linear triangular-
ization of a power linear map if n = 2d+ 2.

In the case of (11), set

at2+ix := x1 + ix3, atd+2+ix := x2 + ix3,

for i = 1, . . . , d. In the case of (12), set

at2+ix := ζi−1d x1 + x2 + x3, atd+2+ix := ζi−1d x1 + x2 − x3,
for i = 1, . . . , d. Then Hi = (atix)d for all i ≥ 4 and the left hand side of
(13) or (14) respectively is a multiple of (at3x)d. Hence the linear span S of
H3, . . . ,Hn is contained in that of (at3x)d, . . . , (at2d+2x)d.

(i) We have

Claim. If µtH and µ2H2 are both linearly dependent over K on the
same power of a linear form in x1 and x2 for some µ ∈ Kn, then µ is a
linear combination of e1 and e2.

To prove the claim, assume that µtH and µ2H2 are as above. Then there
exists a nontrivial linear combination a2 of e1 and e2 such that both µtH
and µ2H2 are linearly dependent on (at2x)d. On account of H1 = 0, we have

0xd4 + (µ2H2 − µtH) + µ3H3 + µ4H4 + · · ·+ µnHn = 0

Take a1 = e4. By (13) and (14) respectively, there exists a λ ∈ K2d+2 with
λ1 = 0 such that

λ1(a
t
1x)d + λ2(a

t
2x)d + λ3(a

t
3x)d + · · ·+ λ2d+2(a

t
2d+2x)d = 0.

Furthermore, there exists an injective linear map which maps (µ3, . . . , µn)
to (λ3, . . . , λ2d+2). By Lemma 4.1 and λ1 = 0, we have λ = 0. Thus µ3 =
· · · = µn = 0. So µ is a linear combination of e1 and e2 and the claim has
been proved.
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Suppose that H is of the form (∗∗). Since ctjbi = 0 for all i ≥ j ≥ 1, we
have

(15) ct1H = ct1

n−1∑
i=1

(ctix)dbi =
n−1∑
i=1

ct1bi(c
t
ix)d = 0,

thus c1 is a linear combination of e1 and e2 on account of the above claim.
Using (15) again, we see that c1 is linearly dependent on e1 if H2 6= 0. Hence
(ct1x)d and H2 are linearly dependent on the same power of a linear form in
x1 and x2. By using ctjbi = 0 for all i ≥ j ≥ 1 again, we obtain

(16) ct2H = ct2

n−1∑
i=1

(ctix)dbi =
n−1∑
i=1

ct2bi(c
t
ix)d = ct2b1(c

t
1x)d.

It follows from the above claim that c2 is a linear combination of e1 and e2
as well.

Suppose that c1 and c2 are linearly dependent. Then there exist a non-
trivial linear combination a2 of e1 and e2 such that both c1 and c2 are
linearly dependent on a2. Using the claim with µ1 = µ2 = 0, and µtH = 0
and µtH = (at2x)d respectively, we obtain dimS = n− 2 and (at2x)d /∈ S.

The space S∗ generated by (ct1x)d, . . . , (ctn−1x)d, which contains S, is gen-

erated by n− 2 powers of linear forms, namely (at2x)d, (ct3x)d, . . . , (ctn−1x)d.
Hence S∗ ⊇ S and dimS∗ ≤ n − 2 = dimS. It follows that S = S∗. Since
(at2x)d /∈ S = S∗, we have c1 = c2 = 0 and dimS∗ < n− 2. This contradicts
S = S∗ and dimS = n− 2, so c1 and c2 are linearly independent.

(ii) If H is as in (11), then we can take

c1 = e1, b1 = νe2 + e3,

c2 = e2, b2 = −e3,
ci = ai+1, bi = ei+1,

for all i > 2, which shows that H is of the form (∗∗). If H is as in (12) with
H2 = 0 = d− 2, then we can take

c1 = e1 + e2, b1 = 1
4e3,

c2 = e1 − e2, b2 = −1
4e3,

ci = ai+1, bi = ei+1,

for all i > 2, which shows that H is again of the form (∗∗).
Conversely, suppose that H is as in (12) and of the form (∗∗). By

Lemma 4.3, at least d powers of linear forms are necessary to write H2

and H3 as their linear combinations if H2 = 0, and at least d+ 1 such pow-
ers otherwise. Now assume that H2 6= 0 or d ≥ 3. Then there are at least
three powers of linear forms necessary to write H2 and H3 as their linear
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combinations. Hence there exists a linear combination h of H2 and H3 which
is not a linear combination of (ct1x)d and (ct2x)d.

Since dimS∗ ≤ n− 1 < n, there exists a nonzero µ ∈ Kn such that

µ1(c
t
1x)d + µ2(c

t
2x)d + µ3h+ µ4H4 + µ5H5 + · · ·+ µnHn = 0.

By applying ∂3 to both sides, we get

(17) dµ4(a
t
4x)d

′
+ · · ·+ dµd+2(a

t
d+2x)d

′ − dµd+3(a
t
d+3x)d

′

− dµd+4(a
t
d+4x)d

′ − · · · − dµ2d+2(a
t
2d+2x)d

′
= 0

where d′ = d − 1 and µn+1 = µn+2 = · · · = µ2d+2 = 0. Take a′1 = e4 and
a′2 = ad+3. Additionally set a′i+1 = ai+2 and a′i+d = ai+d+2 for all i with
2 ≤ i ≤ d. By Lemma 4.1 with d and a replaced by d′ and a′ respectively,
we get µ4 = · · · = µ2d+2 = 0. Hence h is a linear combination of (ct1x)d

and (ct2x)d, a contradiction, so H is not of the form (∗∗).
(iii) Assume first that H2 6= 0. If H is as in (11), then we can take the

cj ’s and the bi’s as in (ii), and we have (∗∗∗). If H is as in (12), then by (ii),
H is not of the form (∗∗) and hence neither of the form (∗∗∗).

Assume next that H2 = 0 and that H is of the form (∗∗∗). From H1 =
H2 = 0 and the fact that c2 is linearly dependent on e1 and e2, we have
ct2H = 0. Consequently, ct2b1 = 0 on account of (16). By definition of (∗∗∗),
we have ct1bi = ct2bi = 0 for all i. Since c1 and c2 are linearly independent,
we have a contradiction with the independence of the bi’s.

We can make nonhomogeneous variants of (9) and (10) as follows. In
(9), we can replace x2 by 1, remove H2, and replace xi+1 by xi for all i ≥ 1.
In (10), we can replace xd−12 by xd−21 , remove H2, and replace xi+1 by xi
for all i ≥ 1. In this manner, we get rid of the second coordinate, so that
the dimension and the Jacobian rank each decrease by one, in return for
abandoning homogeneity, just as with most of Theorem 3.2 with respect to
Theorem 3.1.

The maps H = (0, xd1 − x
d−1
1 ) and H = (0, 0, xd1 − x

d−1
1 ) are additional

nonhomogeneous counterexamples to (∗) ⇒ (∗∗) and (∗∗) ⇒ (∗∗∗) respec-
tively. By comparing the counterexamples with the positive results of The-
orems 3.1, 3.2 and 3.4, we get the following four questions.

The first two questions are whether (JC) implies (JC+) in general and
whether (JC+) implies (∗) in dimension three if JH is nilpotent (if F sat-
isfies (JC+), then by [GBDS, Th. 3.9], JH gets nilpotent in addition if we
compose F with some linear map). In case H is homogeneous, the questions
are whether (JC) implies (JC+) in general and whether (JC+) implies (∗) in
dimension four, which are the last two questions. By Theorems 3.1 and 3.2,
the last and the second question have an affirmative answer when the degree
is at most three.
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