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Existence of positive solutions for a fourth-order
differential system

by Ravi P. AGARwAL (Kingsville, TX), B. Kovacs (Miskolc)
and D. O’'REGAN (Galway)

Abstract. This paper investigates the existence of positive solutions for a fourth-
order differential system using a fixed point theorem of cone expansion and compression
type.

1. Introduction. It is well known that the bending of an elastic beam
can be described by using fourth-order boundary value problems. An elastic
beam with its two ends simply supported can be described by the fourth-
order boundary value problem

(1.1)

Existence of solutions for problem was established for example by
Gupta [G], Liu [L], Ma [M], Ma et al. [MZF], Ma and Wang [MW], Aftabi-
zadeh [A], Yang [Y] and del Pino and Mandsevich [DM] (see also the ref-
erences therein). All of those results are based on the Leray—Schauder con-
tinuation method, topological degree and the method of lower and upper
solutions.

Recently, Wang and An [WA] studied the existence of positive solutions
for the second-order boundary value problem

"+ X =up+ f(t,u), 0<t<l,
—o" =pu, 0<t<l,

u(0) = u(1) =0,

©(0) = ¢(1) =0,

(1.2)
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where A\ > —m2, 1 is a positive parameter, and f : [0, 1] x [0, 00) — [0, 00) is
continuous.

In this paper we shall discuss the existence of positive solutions for the
fourth-order boundary value problem

u(4):<pu—|—f(t,u,u"), 0<t<l,
" =pu, 0<t<l,
u(0) = u(1) = u”(0) = u"(1) = 0,
©(0) = ¢(1) =0,
where p is a positive parameter and f : [0,1] x [0, 00) X (—o0,0] — [0, 00)
is continuous. In fact, as we will see below, in Sections 2 and 3 one could
consider f(t,u,v) = g(t)h(t,u,v) with h : [0,1] x [0, 00) X (—o0,0] = [0, c0)
continuous and g € (C(0,1), R") provided

11

S S K(r,7)K(1,5)g(s)dsdr < 00;

00

(1.3)

here K is as defined in Section 2.

2. Preliminaries. Let Y = C[0,1] and Y, = {u € Y :u(t) > 0,¢t €
[0,1]}. Tt is well known that Y is a Banach space equipped with the norm
[ullo = supsepo,1) [u(t)]. We denote the norm [[ul|z by

[ullz = max{|jullo, [u"]lo}-
It is easy to show that C?[0,1] is complete with the norm ||u||2, and ||u[|s <
[[ullo + [[u"llo < 2[[ull2.
Suppose that K(t,s) is the Green function associated with
(2.1) —d = J(1), u(0) = u(1) =0,
which is explicitly expressed by
K(ts) {1&(1—5)7 0<t<s<1,

s(I—t), 0<s<t<l1.
We need the following lemmas.

LEMMA 2.1. K(t,s) has the following properties:

(i) K(t,s) >0 for allt,s € (0,1);
(i) K(t,s) < K(s,s) forallt,s € [0,1];
(i) K(t,s) > K(t,t)K(s,s) for all t,s € [0,1];
(iv) |K(t1,s) — K(ta,s)] < |t1 — to| for all t1,tq,s € [0,1].

LemmA 2.2 ([GL]). Let E be a real Banach space and let P C E be a
cone in E. Assume (2, {25 are open subsets of E with 0 € (1, {21 C (2o,
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and let Q : PN (£22\ 1) — P be a completely continuous operator such that
either

() [|Qul < ||ul|, w € PNasy and ||Qul|| > |jul|, u € PN OS2s; or
i) Qull > llull, u € PN o2 and |Qul < [lul, u € P oo,

Then Q has a fived point in PN (25 \ 21).
The boundary value problem

—¢" = pu,  (0) = (1) =0,
can be solved by using the Green function, namely,
1
(2.2) p(t) = p\K(t,s)u(s)ds, 0<t<l.
0
Inserting (2.2)) into the first equation of (1.3]), we have
1
u® = put) K (8, s)u(s) ds + f(t,u,u),
0
u(0) = u(1) = 4"(0) = u"(1) = 0.
Now we consider the existence of a positive solution of (2.3]). A function
u € C*(0,1)NC?[0,1] satisfying (2.3) is a positive solution of (2.3) if u(t) > 0
for all ¢t € [0, 1], and u # 0.
Then the solution of (2.3|) can be expressed as

(2.3)

11 1
(2.4) u(t) = u\ VK (t, 1)K (7, s)u(s) | K (s, v)u(v) dv ds dr
00 0
11
+ K (1)K (79)f (s,uls), u"(s)) ds dr
00

and the second-order derivative u” can be expressed by
1 1
(2.5) u"(t) = —p\ K(t,s) u(s) | K (s, v)u(v) dvds

Let

P ={ucC?0,1]: u(0) =u(1) =0,u>0,u" <0on [0,1],
u(t) > ol|ullo and —u"(t) > o|ju”||o for t € [1/4,3/4]},
where o = mine(1 /4,34 K(,1) = 3/16.
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Note that P is a cone in C?[0,1]. For R > 0, write B = {u € C?[0,1] :
[ulls < R}.
We now define a mapping T : P — C?[0,1] by
11 1
(2.6) Tu(t) = p\\K(t,7)K (7, 5)u(s) | K(s,v) u(v) dvds dr
00 0
11

+ K (8, 1)K (7, 5) f(s,uls),u"(s)) ds dr.
00

LEMMA 2.3. Let w € P. Then the following relations hold:
(a) (Tw)(t) > K(t,t)[|[Twlo fort € [0,1], and
(b) —(Tw)"(t) = K(t,t)[[Tw"|lo for t € [0,1].

Proof. For simplicity we denote

11 1
I= ,LLHK(T, T)K (T, s)w(s) SK(s,v)w(v) dvdsdr
00 0
11
+\\K(r,7)K (7, 5)h(s) ds dr,
00
1 1 1
J:MSK SK )dvds—i—SK(s,s)h(s)ds,
0 0 0

h(s) = f(s,w(s), w”(s)).

From Lemma it is easy to see that
(2.7) K@) <Tw(t)<I, K(t)J<—-(Tw)"(t)<J, te]lo,1].
Using (2.7)), we have |[Twl|jo < I and || — (Tw)"|lo < J, hence

(Tw)(t) = K(t, O)|Twlo,  —(Tw)"(t) = K(t,)[Tw"|lo, t€[0,1]. m

Throughout this paper, we assume additionally that the function f sat-
isfies

(H1) fltuv) < filt) fo(lul + [v]), t€(0,1), ue R, veRT,
where f1 € C([0,1],R™), fo € C(RT,R™).
Let us introduce the following constants:
11 1
Dy =\\ K(r,7)K(7,s)dsdr, Dy=\K(s,s) fi(s)ds

00 0
111

D3 = SSS K(r,7)K(1,8)K(s,v) dvdsdr,
000
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11 3/43/4
Dy = SS K(r,7)K(1,8)f1(s) dsdr, Ds= S S K(1/2,7)K(T,s)dsdr.
00 1/41/4

LEMMA 2.4. Let (H1) hold. Then for all u € C?[0,1] such that u(0) =
u(1) =0, u >0, and u” <0, we have

(Tu)(t) < pDslull§ + D2 stlopl)fz(IU(S)HIu”(S)I), te(0,1),
se(0,

—(Tu)"(t) < uD1||ull§ + Do Sup)f2(IU(8)! +[u"(s)]), te(0,1).
s€(0,1
Proof. 1t is easy to see that D3 < D1 and Dy < Ds.
By Lemma and (H1) we have

111
Tu(t) < p\\\ K(7,7) K(r, ) K (s,v) dv ds dr||ul|3
000
11
+\\K(r,7)K(7,5) fi(s)dsdr sup fo(Ju(s)| + [u(s)])
00 s€(0,1)
< Dy |lullg 4+ D2 sup fo(lu(s)] + [u"(s)]),
s€(0,1)
and similarly
11
—(Tu)"(t) < p\\ K(7,7)K(7,5) ds dr||ul3
00
1
+\ K(s,5) fi(s)dsdr sup fo(lu(s)| + [u”"(s)])
0 s€(0,1)
< uDi||ul[§ + Dy sup folu(s)| + [u"(s)]). =

s€(0,1)
LEMMA 2.5. T(P) C P and T : P — P is completely continuous.
Proof. Let u € P. From ({2.6)), it is clear that

(Tu)"(t) = —p S K(t, s)u(s) S K(s,v)u(v)dvds
0 0

0
By Lemma
Tu(t) 2 K&, t)[[Tullo = o[ Tullo, te[1/4,3/4],
—(Tw)"(t) = K, )(Tw)"lo = ol|(Tu)"llo, ¢ € [1/4,3/4].

Hence T'(P) C P.
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Let V C P be a bounded set. Then sup{|jull2: u € V} =:d > 0.

First we prove T(V) is bounded. Since ||ull2 = max{||u||o,||uv"||o}, we
have |u(t)| + |v”(t)] < |lullo + [[u”]jo < 2d for all t € [0,1]. Let My =
sup{ fa(w) : w € [0,2d]}. From Lemma for any u € V and t € [0,1] we
have

11 1
| Tu(t)| = ’,uSSK(t,T)K(T, s)u(s) | K (s,v) u(v) dvds dr
00 0
11
+ (K () K (7. 5) f(5,uls),u"(s)) ds dT‘
00
< uDi|lul|§ + D2 sup fo(lu(s)| + [u"(5)]) < pD1d® + MgDs.

s€(0,1)

We have a similar inequality for |(Tu)”(t)|. Therefore T'(V') is bounded.
Next we prove that T'(V) is equicontinuous. From Lemma for any
uw eV and any t1,t2 € [0, 1] we have

[(Tu)(tr) = (Tw)(t2)]

11 1
<\ K (t1,7) = K(ta,7)|K (7, 5)u(s) | K (s, v)u(v) dv ds dr
00 0
11
+ SS |K(t1,7) — K(t2,7)|K(T,8)f(s,u(s),u”(s))dsdr
111
< u\\VIE(t1,7) = K(ts,7)|K (1, 8)K (s,v) dv ds dr|[ul§
000
11
+\ V1K (41, 7) = K (2, 7)[K (7, 8) f1() fo([u(s)] + [u” (5)]) ds dr
00 L
< plts — to| |\ K (5,5) K (s, 0) dvds |[ul§
00

1

+ Malty —to] | K(s,5) f1(s) ds
0

< (,LLD1d2 + MdD3)|t1 — t2|.

We have a similar inequality for |(Tw)”(t1) — (T'w)”(t2)|. Therefore T(V) is
equicontinuous.

Next we prove that T' is continuous. Suppose u,,u € P and ||u, — u||2
— 0, which implies that u,(t) = u(t),u! (t) = «”(t) uniformly on [0, 1] and
similarly for f(t,u,v) = g(t)h(t,u,v), h(t,u,(t),ul(t)) — h(t,u(t),u”(t))

»'n
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uniformly on [0, 1]. The assertion follows from the estimate

| Tun(t) — Tu(t)|

11 1
<\ Kt 1) K(7,5)|un(s) — u(s)| | K (s,0) [un(v) — u(v)| dvds dr
00 0
11
+ VK (t,m) K (7, 9)|g(s)| [h(s, un(s), uyy (5)) — h(t, u(s),u” (s))| ds dr
00

and a similar estimate for |[(Tuy)”(t) — (T'uw)”(t)| by an application of a
standard theorem on convergence of integrals. m

LEMMA 2.6. If u(0) = u(1) = 0 and u € C?[0,1], then ||ullo < ||u"]|o,
and so [lull2 = [lu"[lo.

Proof. Since u(0) = (1), there is a a € (0,1) such that u/(a) =
and so u/(t) = (" u(s)ds for t € [0,1]. Hence [u/(t)] < (' |u"(s )\ds <
S(l) [u”(s)]ds < ||u”]]p for ¢ € [0,1]. Thus [|u/[|o < ||u”]lo. Since u(0) = 0, we
have u(t) = Sf) u'(s)dsfort € [0,1], and so |u(t)| < S(l) |u/(s)| ds < ||v/||o. Thus
lullo < [u'llo < [lu"[lo- Since |Jully = max{]|ullo, [[u"[lo} and [[ullo < [lu"]lo,
we conclude that [Julls = ||u”]|o. =

COROLLARY 2.7. Letr >0 and u € 0B, N P. Then ||ull2 = ||u"|lo =7

3. Main results

THEOREM 3.1. Let (H1) hold. Assume that
(H2) lim sup f2(w) =0, liminf min inf ftuv) =00
woot W lv|—oo te[1/4,3/4] uel0,00)  |V]
If we (0,1/(4Dy)), then problem (L.3)) has at least one positive solution.

Proof. Let us choose 0 < ¢; < 1/(8D3). Then from (H2), there exists

0 <r <1/2 such that
fa(Jul +[ol) < er(ful +of), 0 <fuf +[o] < 2r.

Let u € 9B, N P. Then by Corollary 2.7, ||lull2 = |[u”|lo = r and u(0)
u(1) = 0. Also since |lullo < [[u”]|o we have u(t) < ||ullo < r and |u”(t)]
|u”|lo =, for all ¢ € [0,1]. Thus 0 < |u(t)| + |u”(t)| < 2r for all t € [0,1].

Hence, by Lemma [2.4] (H1) and (H2), we have

111

(Tu)(t) < p\\\ K (7, 7) K (7, ) K (s,v) dv ds dr ||ul|§
000
11

+\VK (7, 7)K (7, 5) f1(5) fo|u] + [u]) ds dr
00

IA I
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< uDs |3 + e1Da([lullo + [[u"]lo)

< uD1[ull3 + e1Da([fullo + [[«"]lo)
llulld + Ellulla < Fllull3 + Fllullz
Hlulla,  YueIB, NP, te0,1].

[VARVA

Consequently,
(3.1) [Tullo < &|ull2, Vu€dB.NP.
Similarly we also have

1 1
(Tu)"(t) = —p S K(t,s)u(s) S K(s,v)u(v)dvdsdr

Hence
11 1
(Tw)" ()] < u\\ K (s,9)K (s,7) ds dr ||ullg + | K (s, 5) f1(s) fo(|u] + [u"]) ds
00 0
< uD1[ul[§ + e1Da([fullo + [[u”[lo)
< Ml + tlulle < lulls,  VYu€ 0B, NP, te0,1].
Consequently,
(3.2) 1(Tw)" o < %HUHQ, Vu € OB, N P.
Using (3.1) and (3.2) we have
(3.3) [Tullz < I Tullo + [(Tw)"llo < llull2,  Vu € 0B, NP.

Let us choose ¢a > 1/(0Ds). Then from condition (H2), there exists
R; > 0 such that

flt,u,v) > calv|, Vu€ RY, Vju| > Ry, t €[1/4,3/4].

Let R > max{Ry/o,r}. Let uw € dBr N P. Then ||u"|[p = R. Thus we
have

min |u"] > o||u”"|jo =0R > Ry, Yu€OBrNP.
te[1/4,3/4]

Then, by Lemma 2.1 (H1) and (H2), we have
3/43/43/4
(Tu)(1/2) > p | | | K(@1/2,7)K (7, s)u(s)K (s, v)u(v) dvdsdr
1/41/41/4
3/43/4
+ | | K(1/2,7)K (7, 8)f(t, u(s),u (s)) ds dr
1/41/4
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3/43/4
> | | K271 K7 9)|u"(s)|dsdr
1/41/4
3/43/4
>0 | | K(1/2,7)K(7,5)dsdr |u"]lo > [[u”]]o,
1/41/4
SO
(Tu)(1/2) > [[u”|lo = ||lull2, VYu € dBrN P.
Consequently,

lullz < [|[Tullo < ||Tull2, Yu € IBrNP.

Finally, from Lemma by (3.3) and the above inequality we see that the
problem (|1.3)) has a positive solution. m

THEOREM 3.2. Let (H1) hold. Assume that

lim inf min M = 00,
(13) |ul+|v] =0+ te[1/4,3/4] |u| + |v]
liminf min inf M =
[v|—oo te[1/4,3/4] ue0,00) V]
(H4) there exists 0 < p < 1/2 such that
0
3.4 sup fo(w) < —.
(34) ) < g

If we (0,1/(4Dy)), then problem (1.3)) has at least two positive solutions.
We note for the argument below that Dy < Ds.

Proof. By condition (H4) there exists 0 < o < 1/2 such that (3.4)) is
fulfilled. Let u € 0B, N P. Then from Corollary lu|lo = 0 and u(0) =
u(1) = 0. Also since ||ullp < [|[u”||o we have u(t) < ||ullo < o and |u”(t)] <
|u”|lo = o, for all t € [0,1]. Thus 0 < |u(t)|+ |[u"(t)| < 1 for all ¢t € [0, 1]. By
condition (H4), for all w € 9B, N P and t € [0, 1], we have
111

(Tu)(t) < ||| K (r, 7K (7, $)K (5, 0) dv ds [l
000
11

+ VK (r ) K (7, 9) fu() ol + ")) ds dr
00

11
< uDslull + 5§V K (7. 1)K (7 ) fals) ds dr
00
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11
< uDs||ulld + — VK (7. 7)K (7, 5) fi(s) ds dr
00
ull2 + 20 = Yl + Lu"llo = LlulZ + Llulla

< il
< %HUH% + iHUH2 < %HUHQ, Yu € 0B,N P, t € 0,1].

Consequently, we get

(3.5) ITullo < ||ulla, Vu € dB,N P.
Similarly,
1 1
(Tu)"(t) = —p\ K (t, s)u(s) | K(s,v)u(v) dvdsdr
0 0

1
— K (t, ) f(t,u(s),u"(s)) ds dr.
0

Hence
11 1
(Tw)' ()] < u\\ K (s,9)K (s,7) dsdr |[ullg + | K (s, 5) f1(s) fo(|u] + [u"]) ds
00 0
0 1
< pDilullg + 5= K (s, 5) f1(s) ds
4D9 5
< qllullg + Fo = Fllullg + Flul
< gllull3 + tllulla < 3llulle,  Vu€dB, NP, te(0,1].
Consequently,
(3.6) I(Tw)"llo < 3llull2,  Yu € dB,NP.
Using (3.5)) and (3.6 we have
(3.7) [Tull2 < | Tullo + [(Tw)"llo < [lull2, VYuedB,NP.

Let us choose ¢g > 1/(0Ds). Then from condition (H3), there exists
0 < r < p such that

ft,u,v) > es(|ul + |v]), Yue[0,r], Y|v| € [0,7], t € [1/4,3/4].
Let u € 9B, N P. By Corollary 2.7}, [|u”||o = r and u(0) = u(1) = 0. Also
since |lullo < ||u”]lo we have
0<u®)<|ullo<r, 0Z|d"@)] <|u"|jo=|lull2=r, VYu€dB.NP.
Moreover,

min |u"| > o||u”|jo =or, Yu€ OB, NP.
te[1/4,3/4)
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The estimate for (T'u)(1/2) is similar to that in the proof of Theorem 3.1
from Lemma [2.1] and (H1) we have

3/43/4
(Tu)(1/2) > cs | | K(1/2,7)K (7, 5)(|u(s)| + [u"(s)]) ds dr
1/41/4
3/43/4
>cs0 | | K(1/2,7)K(7,s)dsdr |u”"]lo > [|u”]]o.
1/41/4
Thus
(Tu)(1/2) > |u"llo = |lull2, Yu € 0B, NP.
Consequently,

lullz < [|[Tullo < ||T'ul|2, Yu e dB,NP.
Finally, we show that for sufficiently large R > 1/2, we have
ITull2 > ||lu|l2, Yu € OBrNP.

To see this we choose ¢a > 1/(0D5). Then from condition (H4), there exist
R > 0 such that

fltu,0) > ealvl,  YueRY, Vol > Ry, t € [1/4,3/4].

Let R > max{Ri/0,1/2}. Let u € 0Br N P. Then from Corollary
|u”]|o = R. Thus we have

min | |u"| > o||u"|jo =cR >Ry, YuedBrNP.

te[1/4,3/4
Then, by Lemma 2.1, (H1) and (H4),
3/43/4
(Tu)(1/2) > ca | | K(1/2,7)K (7, 5)[u"(s)| dsdr
1/41/4
3/43/4
>0 | | K(1/2,7)K(r,s)dsdr|[u" o > |u”]|o,
1/41/4
SO
(Tw)(1/2) > || ||o = ||ull2, VYu € dBrNP.
Consequently,

lulla < | Tullo < [[Tull, VuedBrOP.

Then by Lemma [2.2 we know that 7" has at least two fixed points in
(BR\ B,)NP and (B,\ B,) NP, i.e. problem (1.3) has at least two positive
solutions. m
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