ANNALES POLONICI MATHEMATICI 112.3 (2014)

Existence of positive solutions for a fourth-order differential system

by Ravi P. Agarwal (Kingsville, TX), B. Kovacs (Miskolc) and D. O'Regan (Galway)

Abstract. This paper investigates the existence of positive solutions for a fourth-order differential system using a fixed point theorem of cone expansion and compression type.

1. Introduction. It is well known that the bending of an elastic beam can be described by using fourth-order boundary value problems. An elastic beam with its two ends simply supported can be described by the fourth-order boundary value problem

(1.1)
$$u^{(4)}(t) = f(t, u(t), u''(t)), \quad 0 < t < 1, u(0) = u(1) = u''(0) = u''(1) = 0.$$

Existence of solutions for problem (1.1) was established for example by Gupta [G], Liu [L], Ma [M], Ma et al. [MZF], Ma and Wang [MW], Aftabizadeh [A], Yang [Y] and del Pino and Manásevich [DM] (see also the references therein). All of those results are based on the Leray–Schauder continuation method, topological degree and the method of lower and upper solutions.

Recently, Wang and An [WA] studied the existence of positive solutions for the second-order boundary value problem

(1.2)
$$-u'' + \lambda u = u\varphi + f(t, u), \quad 0 < t < 1,$$

$$-\varphi'' = \mu u, \quad 0 < t < 1,$$

$$u(0) = u(1) = 0,$$

$$\varphi(0) = \varphi(1) = 0,$$

DOI: 10.4064/ap112-3-7

2010 Mathematics Subject Classification: Primary 34Bxx; Secondary 34Lxx. Key words and phrases: positive solution, boundary value problem, existence.

where $\lambda > -\pi^2$, μ is a positive parameter, and $f:[0,1]\times[0,\infty)\to[0,\infty)$ is continuous.

In this paper we shall discuss the existence of positive solutions for the fourth-order boundary value problem

(1.3)
$$u^{(4)} = \varphi u + f(t, u, u''), \quad 0 < t < 1,$$
$$-\varphi'' = \mu u, \quad 0 < t < 1,$$
$$u(0) = u(1) = u''(0) = u''(1) = 0,$$
$$\varphi(0) = \varphi(1) = 0,$$

where μ is a positive parameter and $f:[0,1]\times[0,\infty)\times(-\infty,0]\to[0,\infty)$ is continuous. In fact, as we will see below, in Sections 2 and 3 one could consider f(t,u,v)=g(t)h(t,u,v) with $h:[0,1]\times[0,\infty)\times(-\infty,0]\to[0,\infty)$ continuous and $g\in(C(0,1),\mathbb{R}^+)$ provided

$$\iint_{0}^{1} K(\tau, \tau) K(\tau, s) g(s) \, ds \, d\tau < \infty;$$

here K is as defined in Section 2.

2. Preliminaries. Let Y = C[0,1] and $Y_+ = \{u \in Y : u(t) \geq 0, t \in [0,1]\}$. It is well known that Y is a Banach space equipped with the norm $||u||_0 = \sup_{t \in [0,1]} |u(t)|$. We denote the norm $||u||_2$ by

$$||u||_2 = \max\{||u||_0, ||u''||_0\}.$$

It is easy to show that $C^2[0,1]$ is complete with the norm $||u||_2$, and $||u||_2 \le ||u||_0 + ||u''||_0 \le 2||u||_2$.

Suppose that K(t,s) is the Green function associated with

$$(2.1) -u'' = f(t), u(0) = u(1) = 0,$$

which is explicitly expressed by

$$K(t,s) = \begin{cases} t(1-s), & 0 \le t \le s \le 1, \\ s(1-t), & 0 \le s \le t \le 1. \end{cases}$$

We need the following lemmas.

Lemma 2.1. K(t,s) has the following properties:

- (i) K(t,s) > 0 for all $t, s \in (0,1)$;
- (ii) $K(t,s) \le K(s,s)$ for all $t,s \in [0,1]$;
- (iii) $K(t,s) \ge K(t,t)K(s,s)$ for all $t,s \in [0,1]$;
- (iv) $|K(t_1, s) K(t_2, s)| \le |t_1 t_2|$ for all $t_1, t_2, s \in [0, 1]$.

LEMMA 2.2 ([GL]). Let E be a real Banach space and let $P \subseteq E$ be a cone in E. Assume Ω_1 , Ω_2 are open subsets of E with $\theta \in \Omega_1$, $\overline{\Omega}_1 \subset \Omega_2$,

and let $Q: P \cap (\overline{\Omega}_2 \setminus \Omega_1) \to P$ be a completely continuous operator such that either

(i)
$$||Qu|| \le ||u||$$
, $u \in P \cap \partial \Omega_1$ and $||Qu|| \ge ||u||$, $u \in P \cap \partial \Omega_2$; or

(ii)
$$||Qu|| \ge ||u||$$
, $u \in P \cap \partial \Omega_1$ and $||Qu|| \le ||u||$, $u \in P \cap \partial \Omega_2$.

Then Q has a fixed point in $P \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

The boundary value problem

$$-\varphi'' = \mu u, \quad \varphi(0) = \varphi(1) = 0,$$

can be solved by using the Green function, namely,

(2.2)
$$\varphi(t) = \mu \int_{0}^{1} K(t, s) u(s) \, ds, \quad 0 < t < 1.$$

Inserting (2.2) into the first equation of (1.3), we have

(2.3)
$$u^{(4)} = \mu u(t) \int_{0}^{1} K(t, s) u(s) ds + f(t, u, u''),$$
$$u(0) = u(1) = u''(0) = u''(1) = 0.$$

Now we consider the existence of a positive solution of (2.3). A function $u \in C^4(0,1) \cap C^2[0,1]$ satisfying (2.3) is a positive solution of (2.3) if $u(t) \ge 0$ for all $t \in [0,1]$, and $u \ne 0$.

Then the solution of (2.3) can be expressed as

(2.4)
$$u(t) = \mu \int_{0}^{1} \int_{0}^{1} K(t,\tau)K(\tau,s)u(s) \int_{0}^{1} K(s,v)u(v) dv ds d\tau + \int_{0}^{1} \int_{0}^{1} K(t,\tau)K(\tau,s)f(s,u(s),u''(s)) ds d\tau$$

and the second-order derivative u'' can be expressed by

(2.5)
$$u''(t) = -\mu \int_{0}^{1} K(t,s) u(s) \int_{0}^{1} K(s,v) u(v) dv ds$$
$$-\int_{0}^{1} K(t,s) f(s,u(s),u''(s)) ds.$$

Let

$$P = \{ u \in C^{2}[0,1] : u(0) = u(1) = 0, \ u \ge 0, \ u'' \le 0 \text{ on } [0,1],$$
$$u(t) \ge \sigma \|u\|_{0} \text{ and } -u''(t) \ge \sigma \|u''\|_{0} \text{ for } t \in [1/4,3/4] \},$$

where $\sigma = \min_{t \in [1/4,3/4]} K(t,t) = 3/16$.

Note that *P* is a cone in $C^2[0,1]$. For R > 0, write $B_R = \{u \in C^2[0,1] : ||u||_2 < R\}$.

We now define a mapping $T: P \to C^2[0,1]$ by

(2.6)
$$Tu(t) = \mu \int_{0}^{1} \int_{0}^{1} K(t,\tau) K(\tau,s) u(s) \int_{0}^{1} K(s,v) u(v) dv ds d\tau + \int_{0}^{1} \int_{0}^{1} K(t,\tau) K(\tau,s) f(s,u(s),u''(s)) ds d\tau.$$

LEMMA 2.3. Let $w \in P$. Then the following relations hold:

(a)
$$(Tw)(t) \ge K(t,t) ||Tw||_0$$
 for $t \in [0,1]$, and

(b)
$$-(Tw)''(t) \ge K(t,t) ||Tw''||_0 \text{ for } t \in [0,1].$$

Proof. For simplicity we denote

$$I = \mu \int_{00}^{11} K(\tau, \tau) K(\tau, s) w(s) \int_{0}^{1} K(s, v) w(v) dv ds d\tau$$

$$+ \int_{00}^{11} K(\tau, \tau) K(\tau, s) h(s) ds d\tau,$$

$$J = \mu \int_{0}^{1} K(s, s) w(s) \int_{0}^{1} K(s, v) w(v) dv ds + \int_{0}^{1} K(s, s) h(s) ds,$$

$$h(s) = f(s, w(s), w''(s)).$$

From Lemma 2.1 it is easy to see that

(2.7)
$$K(t,t)I \leq Tw(t) \leq I$$
, $K(t,t)J \leq -(Tw)''(t) \leq J$, $t \in [0,1]$. Using (2.7), we have $||Tw||_0 \leq I$ and $||-(Tw)''||_0 \leq J$, hence

$$(Tw)(t) \ge K(t,t) \|Tw\|_0, \quad -(Tw)''(t) \ge K(t,t) \|Tw''\|_0, \quad t \in [0,1].$$

Throughout this paper, we assume additionally that the function f satisfies

(H1)
$$f(t, u, v) \leq f_1(t) f_2(|u| + |v|), \quad t \in (0, 1), u \in \mathbb{R}^+, v \in \mathbb{R}^-,$$

where $f_1 \in C([0, 1], \mathbb{R}^+), f_2 \in C(\mathbb{R}^+, \mathbb{R}^+).$

Let us introduce the following constants:

$$D_{1} = \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) \, ds \, d\tau, \qquad D_{2} = \int_{0}^{1} K(s, s) \, f_{1}(s) \, ds,$$

$$D_{3} = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) K(s, v) \, dv \, ds \, d\tau,$$

$$D_4 = \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) f_1(s) \, ds \, d\tau, \quad D_5 = \int_{1/4}^{3/4} \int_{1/4}^{3/4} K(1/2, \tau) K(\tau, s) \, ds \, d\tau.$$

LEMMA 2.4. Let (H1) hold. Then for all $u \in C^2[0,1]$ such that u(0) = $u(1) = 0, u \ge 0, \text{ and } u'' \le 0, \text{ we have }$

$$(Tu)(t) \le \mu D_1 ||u||_0^2 + D_2 \sup_{s \in (0,1)} f_2(|u(s)| + |u''(s)|), \quad t \in (0,1),$$
$$-(Tu)''(t) \le \mu D_1 ||u||_0^2 + D_2 \sup_{s \in (0,1)} f_2(|u(s)| + |u''(s)|), \quad t \in (0,1).$$

$$-(Tu)''(t) \le \mu D_1 ||u||_0^2 + D_2 \sup_{s \in (0,1)} f_2(|u(s)| + |u''(s)|), \quad t \in (0,1).$$

Proof. It is easy to see that $D_3 \leq D_1$ and $D_4 \leq D_2$. By Lemma 2.1 and (H1) we have

$$Tu(t) \leq \mu \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) K(s, v) dv ds d\tau ||u||_{0}^{2}$$

$$+ \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) f_{1}(s) ds d\tau \sup_{s \in (0, 1)} f_{2}(|u(s)| + |u''(s)|)$$

$$\leq \mu D_{1} ||u||_{0}^{2} + D_{2} \sup_{s \in (0, 1)} f_{2}(|u(s)| + |u''(s)|),$$

and similarly

$$-(Tu)''(t) \le \mu \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) \, ds \, d\tau \|u\|_{0}^{2}$$

$$+ \int_{0}^{1} K(s, s) \, f_{1}(s) \, ds \, d\tau \sup_{s \in (0, 1)} f_{2}(|u(s)| + |u''(s)|)$$

$$\le \mu D_{1} \|u\|_{0}^{2} + D_{2} \sup_{s \in (0, 1)} f_{2}(|u(s)| + |u''(s)|). \quad \blacksquare$$

LEMMA 2.5. $T(P) \subset P$ and $T: P \to P$ is completely continuous.

Proof. Let $u \in P$. From (2.6), it is clear that

$$(Tu)''(t) = -\mu \int_{0}^{1} K(t,s)u(s) \int_{0}^{1} K(s,v)u(v) dv ds$$
$$-\int_{0}^{1} K(t,s)f(s,u(s),u''(s)) ds \le 0.$$

By Lemma 2.3,

$$Tu(t) \ge K(t,t) \|Tu\|_0 \ge \sigma \|Tu\|_0, \qquad t \in [1/4,3/4],$$

 $-(Tu)''(t) \ge K(t,t) \|(Tu)''\|_0 \ge \sigma \|(Tu)''\|_0, \quad t \in [1/4,3/4].$

Hence $T(P) \subset P$.

Let $V \subset P$ be a bounded set. Then $\sup\{\|u\|_2 : u \in V\} =: d > 0$.

First we prove T(V) is bounded. Since $||u||_2 = \max\{||u||_0, ||u''||_0\}$, we have $|u(t)| + |u''(t)| \le ||u||_0 + ||u''||_0 \le 2d$ for all $t \in [0, 1]$. Let $M_d = \sup\{f_2(w) : w \in [0, 2d]\}$. From Lemma 2.4 for any $u \in V$ and $t \in [0, 1]$ we have

$$\begin{split} |Tu(t)| &= \left| \mu \int\limits_{0}^{1} \int\limits_{0}^{1} K(t,\tau) K(\tau,s) \, u(s) \int\limits_{0}^{1} K(s,v) \, u(v) \, dv \, ds \, d\tau \right. \\ &+ \left. \int\limits_{0}^{1} \int\limits_{0}^{1} K(t,\tau) K(\tau,s) \, f(s,u(s),u''(s)) \, ds \, d\tau \right| \\ &\leq \mu D_1 \|u\|_0^2 + D_2 \sup_{s \in (0,1)} f_2(|u(s)| + |u''(s)|) \leq \mu D_1 d^2 + M_d D_2. \end{split}$$

We have a similar inequality for |(Tu)''(t)|. Therefore T(V) is bounded.

Next we prove that T(V) is equicontinuous. From Lemma 2.4 for any $u \in V$ and any $t_1, t_2 \in [0, 1]$ we have

$$(Tu)(t_{1}) - (Tu)(t_{2})|$$

$$\leq \mu \int_{0}^{1} \int_{0}^{1} |K(t_{1}, \tau) - K(t_{2}, \tau)| K(\tau, s) u(s) \int_{0}^{1} K(s, v) u(v) \, dv \, ds \, d\tau$$

$$+ \int_{0}^{1} \int_{0}^{1} |K(t_{1}, \tau) - K(t_{2}, \tau)| K(\tau, s) f(s, u(s), u''(s)) \, ds \, d\tau$$

$$\leq \mu \int_{0}^{1} \int_{0}^{1} |K(t_{1}, \tau) - K(t_{2}, \tau)| K(\tau, s) K(s, v) \, dv \, ds \, d\tau ||u||_{0}^{2}$$

$$+ \int_{0}^{1} |K(t_{1}, \tau) - K(t_{2}, \tau)| K(\tau, s) f_{1}(s) f_{2}(|u(s)| + |u''(s)|) \, ds \, d\tau$$

$$\leq \mu |t_{1} - t_{2}| \int_{0}^{1} K(s, s) K(s, v) \, dv \, ds \, ||u||_{0}^{2}$$

$$+ M_{d}|t_{1} - t_{2}| \int_{0}^{1} K(s, s) f_{1}(s) \, ds$$

$$\leq (\mu D_{1} d^{2} + M_{d} D_{3})|t_{1} - t_{2}|.$$

We have a similar inequality for $|(Tu)''(t_1) - (Tu)''(t_2)|$. Therefore T(V) is equicontinuous.

Next we prove that T is continuous. Suppose $u_n, u \in P$ and $||u_n - u||_2 \to 0$, which implies that $u_n(t) \to u(t), u_n''(t) \to u''(t)$ uniformly on [0,1] and similarly for $f(t,u,v) = g(t)h(t,u,v), h(t,u_n(t),u_n''(t)) \to h(t,u(t),u_n''(t))$

uniformly on [0,1]. The assertion follows from the estimate

$$|Tu_{n}(t) - Tu(t)| \le \mu \int_{0}^{1} \int_{0}^{1} K(t,\tau)K(\tau,s)|u_{n}(s) - u(s)| \int_{0}^{1} K(s,v)|u_{n}(v) - u(v)| dv ds d\tau + \int_{0}^{1} \int_{0}^{1} K(t,\tau)K(\tau,s)|g(s)| |h(s,u_{n}(s),u_{n}''(s)) - h(t,u(s),u''(s))| ds d\tau$$

and a similar estimate for $|(Tu_n)''(t) - (Tu)''(t)|$ by an application of a standard theorem on convergence of integrals.

LEMMA 2.6. If u(0) = u(1) = 0 and $u \in C^2[0,1]$, then $||u||_0 \le ||u''||_0$, and so $||u||_2 = ||u''||_0$.

Proof. Since u(0) = u(1), there is a $\alpha \in (0,1)$ such that $u'(\alpha) = 0$, and so $u'(t) = \int_{\alpha}^{t} u''(s) \, ds$ for $t \in [0,1]$. Hence $|u'(t)| \leq \int_{\alpha}^{t} |u''(s)| \, ds \leq \int_{0}^{1} |u''(s)| \, ds \leq \|u''\|_{0}$ for $t \in [0,1]$. Thus $\|u'\|_{0} \leq \|u''\|_{0}$. Since u(0) = 0, we have $u(t) = \int_{0}^{t} u'(s) \, ds$ for $t \in [0,1]$, and so $|u(t)| \leq \int_{0}^{1} |u'(s)| \, ds \leq \|u'\|_{0}$. Thus $\|u\|_{0} \leq \|u'\|_{0} \leq \|u''\|_{0}$. Since $\|u\|_{2} = \max\{\|u\|_{0}, \|u''\|_{0}\}$ and $\|u\|_{0} \leq \|u''\|_{0}$, we conclude that $\|u\|_{2} = \|u''\|_{0}$. ■

COROLLARY 2.7. Let r > 0 and $u \in \partial B_r \cap P$. Then $||u||_2 = ||u''||_0 = r$.

3. Main results

Theorem 3.1. Let (H1) hold. Assume that

(H2)
$$\limsup_{w \to 0^+} \frac{f_2(w)}{w} = 0, \quad \liminf_{|v| \to \infty} \min_{t \in [1/4, 3/4]} \inf_{u \in [0, \infty)} \frac{f(t, u, v)}{|v|} = \infty.$$

If $\mu \in (0, 1/(4D_1))$, then problem (1.3) has at least one positive solution.

Proof. Let us choose $0 < c_1 \le 1/(8D_2)$. Then from (H2), there exists 0 < r < 1/2 such that

$$f_2(|u|+|v|) \le c_1(|u|+|v|), \quad 0 \le |u|+|v| \le 2r.$$

Let $u \in \partial B_r \cap P$. Then by Corollary 2.7, $||u||_2 = ||u''||_0 = r$ and u(0) = u(1) = 0. Also since $||u||_0 \le ||u''||_0$ we have $u(t) \le ||u||_0 \le r$ and $||u''(t)| \le ||u''||_0 = r$, for all $t \in [0, 1]$. Thus $0 \le |u(t)| + |u''(t)| \le 2r$ for all $t \in [0, 1]$.

Hence, by Lemma 2.4, (H1) and (H2), we have

$$(Tu)(t) \leq \mu \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) K(s, v) \, dv \, ds \, d\tau \, ||u||_{0}^{2}$$

$$+ \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) f_{1}(s) f_{2}(|u| + |u''|) \, ds \, d\tau$$

$$\leq \mu D_3 \|u\|_0^2 + c_1 D_4 (\|u\|_0 + \|u''\|_0)$$

$$\leq \mu D_1 \|u\|_0^2 + c_1 D_2 (\|u\|_0 + \|u''\|_0)$$

$$\leq \frac{1}{4} \|u\|_0^2 + \frac{1}{4} \|u\|_2 \leq \frac{1}{4} \|u\|_2^2 + \frac{1}{4} \|u\|_2$$

$$\leq \frac{1}{2} \|u\|_2, \quad \forall u \in \partial B_r \cap P, \ t \in [0, 1].$$

Consequently,

$$(3.1) ||Tu||_0 \le \frac{1}{2} ||u||_2, \forall u \in \partial B_r \cap P.$$

Similarly we also have

$$(Tu)''(t) = -\mu \int_{0}^{1} K(t,s)u(s) \int_{0}^{1} K(s,v)u(v) dv ds d\tau$$
$$-\int_{0}^{1} K(t,s)f(t,u(s),u''(s)) ds d\tau.$$

Hence

$$|(Tu)''(t)| \leq \mu \int_{0}^{1} \int_{0}^{1} K(s,s)K(s,\tau) \, ds \, d\tau \, ||u||_{0}^{2} + \int_{0}^{1} K(s,s)f_{1}(s)f_{2}(|u| + |u''|) \, ds$$

$$\leq \mu D_{1}||u||_{0}^{2} + c_{1}D_{2}(||u||_{0} + ||u''||_{0})$$

$$\leq \frac{1}{4}||u||_{0}^{2} + \frac{1}{4}||u||_{2} \leq \frac{1}{2}||u||_{2}, \quad \forall u \in \partial B_{r} \cap P, \ t \in [0,1].$$

Consequently,

(3.2)
$$||(Tu)''||_0 \le \frac{1}{2} ||u||_2, \quad \forall u \in \partial B_r \cap P$$

Using (3.1) and (3.2) we have

$$(3.3) ||Tu||_2 < ||Tu||_0 + ||(Tu)''||_0 < ||u||_2, \forall u \in \partial B_r \cap P.$$

Let us choose $c_2 \geq 1/(\sigma D_5)$. Then from condition (H2), there exists $R_1 > 0$ such that

$$f(t, u, v) \ge c_2 |v|, \quad \forall u \in \mathbb{R}^+, \forall |v| \ge R_1, t \in [1/4, 3/4].$$

Let $R > \max\{R_1/\sigma, r\}$. Let $u \in \partial B_R \cap P$. Then $||u''||_0 = R$. Thus we have

$$\min_{t \in [1/4, 3/4]} |u''| \ge \sigma ||u''||_0 = \sigma R > R_1, \quad \forall u \in \partial B_R \cap P.$$

Then, by Lemma 2.1, (H1) and (H2), we have

$$(Tu)(1/2) \ge \mu \int_{1/4}^{3/4} \int_{1/4}^{3/4} K(1/2,\tau)K(\tau,s)u(s)K(s,v)u(v) dv ds d\tau + \int_{1/4}^{3/4} \int_{1/4}^{3/4} K(1/2,\tau)K(\tau,s)f(t,u(s),u''(s)) ds d\tau$$

$$\geq c_2 \int_{1/4}^{3/4} \int_{1/4}^{K(1/2,\tau)} K(\tau,s) |u''(s)| \, ds \, d\tau$$

$$\geq c_2 \sigma \int_{1/4}^{3/4} \int_{1/4}^{3/4} K(1/2,\tau) K(\tau,s) \, ds \, d\tau \, ||u''||_0 \geq ||u''||_0,$$

SO

$$(Tu)(1/2) \ge ||u''||_0 = ||u||_2, \quad \forall u \in \partial B_R \cap P.$$

Consequently,

$$||u||_2 \le ||Tu||_0 \le ||Tu||_2, \quad \forall u \in \partial B_R \cap P.$$

Finally, from Lemma 2.2, by (3.3) and the above inequality we see that the problem (1.3) has a positive solution. \blacksquare

Theorem 3.2. Let (H1) hold. Assume that

(H3)
$$\lim \inf_{|u|+|v|\to 0^+} \min_{t\in [1/4,3/4]} \frac{f(t,u,v)}{|u|+|v|} = \infty, \\ \lim \inf_{|v|\to\infty} \min_{t\in [1/4,3/4]} \inf_{u\in [0,\infty)} \frac{f(t,u,v)}{|v|} = \infty.$$

(H4) there exists $0 < \varrho < 1/2$ such that

(3.4)
$$\sup_{w \in [0,1]} f_2(w) \le \frac{\varrho}{4D_2}.$$

If $\mu \in (0, 1/(4D_1))$, then problem (1.3) has at least two positive solutions.

We note for the argument below that $D_4 \leq D_2$.

Proof. By condition (H4) there exists $0 < \varrho < 1/2$ such that (3.4) is fulfilled. Let $u \in \partial B_{\varrho} \cap P$. Then from Corollary 2.7, $||u''||_0 = \varrho$ and u(0) = u(1) = 0. Also since $||u||_0 \le ||u''||_0$ we have $u(t) \le ||u||_0 \le \varrho$ and $|u''(t)| \le ||u''||_0 = \varrho$, for all $t \in [0, 1]$. Thus $0 \le |u(t)| + |u''(t)| < 1$ for all $t \in [0, 1]$. By condition (H4), for all $u \in \partial B_{\varrho} \cap P$ and $t \in [0, 1]$, we have

$$(Tu)(t) \leq \mu \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) K(s, v) \, dv \, ds \, d\tau \, ||u||_{0}^{2}$$

$$+ \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) f_{1}(s) f_{2}(|u| + |u''|) \, ds \, d\tau$$

$$\leq \mu D_{3} ||u||_{0}^{2} + \frac{\varrho}{4D_{2}} \int_{0}^{1} \int_{0}^{1} K(\tau, \tau) K(\tau, s) f_{1}(s) \, ds \, d\tau$$

$$\leq \mu D_1 \|u\|_0^2 + \frac{\varrho}{4D_4} \int_0^1 K(\tau, \tau) K(\tau, s) f_1(s) \, ds \, d\tau$$

$$\leq \frac{1}{4} \|u\|_0^2 + \frac{1}{4} \varrho = \frac{1}{4} \|u\|_0^2 + \frac{1}{4} \|u''\|_0 = \frac{1}{4} \|u\|_0^2 + \frac{1}{4} \|u\|_2$$

$$\leq \frac{1}{4} \|u\|_2^2 + \frac{1}{4} \|u\|_2 \leq \frac{1}{2} \|u\|_2, \quad \forall u \in \partial B_\varrho \cap P, \ t \in [0, 1].$$

Consequently, we get

$$(3.5) ||Tu||_0 \le ||u||_2, \forall u \in \partial B_\varrho \cap P.$$

Similarly,

$$(Tu)''(t) = -\mu \int_{0}^{1} K(t,s)u(s) \int_{0}^{1} K(s,v)u(v) dv ds d\tau$$
$$-\int_{0}^{1} K(t,s)f(t,u(s),u''(s)) ds d\tau.$$

Hence

$$|(Tu)''(t)| \leq \mu \int_{0}^{1} \int_{0}^{1} K(s,s)K(s,\tau) \, ds \, d\tau \, ||u||_{0}^{2} + \int_{0}^{1} K(s,s)f_{1}(s)f_{2}(|u| + |u''|) \, ds$$

$$\leq \mu D_{1}||u||_{0}^{2} + \frac{\varrho}{4D_{2}} \int_{0}^{1} K(s,s)f_{1}(s) \, ds$$

$$\leq \frac{1}{4}||u||_{0}^{2} + \frac{1}{4}\varrho = \frac{1}{4}||u||_{0}^{2} + \frac{1}{4}||u||_{2}$$

$$\leq \frac{1}{4}||u||_{2}^{2} + \frac{1}{4}||u||_{2} \leq \frac{1}{2}||u||_{2}, \quad \forall u \in \partial B_{\varrho} \cap P, \, t \in [0,1].$$

Consequently,

(3.6)
$$\|(Tu)''\|_0 \le \frac{1}{2} \|u\|_2, \quad \forall u \in \partial B_\rho \cap P.$$

Using (3.5) and (3.6) we have

$$(3.7) ||Tu||_2 \le ||Tu||_0 + ||(Tu)''||_0 \le ||u||_2, \forall u \in \partial B_\rho \cap P.$$

Let us choose $c_3 \geq 1/(\sigma D_5)$. Then from condition (H3), there exists $0 < r < \varrho$ such that

$$f(t, u, v) \ge c_3(|u| + |v|), \quad \forall u \in [0, r], \ \forall |v| \in [0, r], \ t \in [1/4, 3/4].$$

Let $u \in \partial B_r \cap P$. By Corollary 2.7, $||u''||_0 = r$ and u(0) = u(1) = 0. Also since $||u||_0 \le ||u''||_0$ we have

$$0 \le u(t) \le ||u||_0 \le r$$
, $0 \le |u''(t)| \le ||u''||_0 = ||u||_2 = r$, $\forall u \in \partial B_r \cap P$.

Moreover,

$$\min_{t \in [1/4,3/4]} |u''| \ge \sigma ||u''||_0 = \sigma r, \quad \forall u \in \partial B_r \cap P.$$

The estimate for (Tu)(1/2) is similar to that in the proof of Theorem 3.1: from Lemma 2.1 and (H1) we have

$$(Tu)(1/2) \ge c_3 \int_{1/4}^{3/4} \int_{1/4}^{3/4} K(1/2,\tau)K(\tau,s)(|u(s)| + |u''(s)|) \, ds \, d\tau$$

$$\ge c_3 \sigma \int_{1/4}^{3/4} \int_{1/4}^{3/4} K(1/2,\tau)K(\tau,s) \, ds \, d\tau \, ||u''||_0 \ge ||u''||_0.$$

Thus

$$(Tu)(1/2) \ge ||u''||_0 = ||u||_2, \quad \forall u \in \partial B_r \cap P.$$

Consequently,

$$||u||_2 \le ||Tu||_0 \le ||Tu||_2, \quad \forall u \in \partial B_r \cap P.$$

Finally, we show that for sufficiently large R > 1/2, we have

$$||Tu||_2 \ge ||u||_2, \quad \forall u \in \partial B_R \cap P.$$

To see this we choose $c_2 \ge 1/(\sigma D_5)$. Then from condition (H4), there exist $R_1 > 0$ such that

$$f(t, u, v) \ge c_2 |v|, \quad \forall u \in \mathbb{R}^+, \forall |v| \ge R_1, t \in [1/4, 3/4].$$

Let $R > \max\{R_1/\sigma, 1/2\}$. Let $u \in \partial B_R \cap P$. Then from Corollary 2.7, $||u''||_0 = R$. Thus we have

$$\min_{t \in [1/4, 3/4]} |u''| \ge \sigma ||u''||_0 = \sigma R > R_1, \quad \forall u \in \partial B_R \cap P.$$

Then, by Lemma 2.1, (H1) and (H4),

$$(Tu)(1/2) \ge c_2 \int_{1/4}^{3/4} \int_{1/4}^{3/4} K(1/2, \tau) K(\tau, s) |u''(s)| \, ds \, d\tau$$

$$\ge c_2 \sigma \int_{1/4}^{3/4} \int_{1/4}^{3/4} K(1/2, \tau) K(\tau, s) \, ds \, d\tau \, ||u''||_0 \ge ||u''||_0,$$

SO

$$(Tu)(1/2) \ge ||u''||_0 = ||u||_2, \quad \forall u \in \partial B_R \cap P.$$

Consequently,

$$||u||_2 \le ||Tu||_0 \le ||Tu||_2, \quad \forall u \in \partial B_R \cap P.$$

Then by Lemma 2.2, we know that T has at least two fixed points in $(\overline{B}_R \setminus B_\rho) \cap P$ and $(\overline{B}_\rho \setminus B_r) \cap P$, i.e. problem (1.3) has at least two positive solutions. \blacksquare

References

- [A] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary problems, J. Math. Anal. Appl. 116 (1986), 415–426.
- [DM] M. A. del Pino and R. F. Manásevich, Existence for a fourth-order boundary problem under a two-parameter nonresonance condition, Proc. Amer. Math. Soc. 112 (1991), 81–86.
- [GL] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
- [G] C. P. Gupta, Existence and uniqueness theorems for a bending of an elastic beam equation, Appl. Anal. 26 (1988), 289–304.
- [L] B. Liu, Positive solutions of fourth-order two point boundary value problems, Appl. Math. Comput. 148 (2004), 407–420.
- [M] R. Ma, Positive solutions of fourth-order two point boundary value problems, Ann. Differential Equations 15 (1999), 305–313.
- [MW] R. Ma and H. Wang, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal. 59 (1995), 225–231.
- [MZF] R. Ma, J. Zhang and S. Fu, The method of lower and upper solutions for fourthorder two point boundary value problems, J. Math. Anal. Appl. 215 (1997), 415– 422.
- [WA] F. Wang and Y. An, Positive solutions for a second-order differential systems, J. Math. Anal. Appl. 373 (2011), 370–375.
- [Y] Y. Yang, Fourth-order two-point boundary value problems, Proc. Amer. Math. Soc. 104 (1988), 175–180.

Ravi P. Agarwal Department of Mathematics Texas A&M University–Kingsville 700 University Blvd. Kingsville, TX 78363-8202, U.S.A. E-mail: Ravi.Agarwal@tamuk.edu B. Kovacs
Department of Analysis
3515 University of Miskolc
Egyetemvaros, Hungary
E-mail: matmn@uni-miskolc.hu

D. O'Regan

School of Mathematics, Statistics and Applied Mathematics National University of Ireland Galway, Ireland

E-mail: donal.oregan@nuigalway.ie

Received 8.4.2013 and in final form 21.1.2014 (3080)