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Decompositions and asymptotic limit for bicontractions

by Marek Kosiek (Kraków) and Laurian Suciu (Sibiu)

Abstract. The asymptotic limit of a bicontraction T (that is, a pair of commuting
contractions) on a Hilbert space H is used to describe a Nagy–Foiaş–Langer type decom-
position of T . This decomposition is refined in the case when the asymptotic limit of T is
an orthogonal projection. The case of a bicontraction T consisting of hyponormal (even
quasinormal) contractions is also considered, where we have ST∗ = S2

T∗ .

1. Introduction. Let H be a complex Hilbert space and B(H) be the
Banach algebra of all bounded linear operators on H with the identity ele-
ment I. The range and the kernel of T ∈ B(H) are denoted by R(T ) and
N (T ), respectively. Recall that T is hyponormal if TT ∗ ≤ T ∗T , and T is
quasinormal if T ∗T 2 = TT ∗T . Obviously, every quasinormal operator is hy-
ponormal.

A (closed) subspaceM⊂ H is invariant for T if TM⊂M, and whenM
is invariant for T and T ∗ one says thatM reduces (orM is reducing for) T .
Also, PM stands for the orthogonal projection in B(H) corresponding toM.

A bicontraction on H is a pair T = (T0, T1) of commuting contractions
on H, that is, a pair of operators satisfying ‖Ti‖ ≤ 1 (i = 0, 1) and T0T1 =
T1T0. If T0 and T1 are isometries then T is called a bi-isometry on H.

Let T = (T0, T1) be a bicontraction. It is known (see [D], [SNF], [K], [S1])
that the asymptotic limit of Ti is defined by

STih = lim
n→∞

T ∗ni Tni h (h ∈ H)

and clearly, 0 ≤ STi ≤ T ∗i Ti, T
∗
i STiTi = STi , i = 0, 1 (the last condition

means that Ti is an STi-isometry [S1], [S2]). It follows that

T ∗m0 ST1T
m
0 ≤ T ∗m0 T ∗n1 Tn1 T

m
0 = T ∗n1 T ∗m0 Tm0 T

n
1

for any m,n ∈ N, and letting m→∞ one obtains

0 ≤ s-lim
m→∞

T ∗m0 ST1T
m
0 ≤ T ∗n1 ST0T

n
1 (n ∈ N).
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Letting n→∞ we infer that

s-lim
m→∞

T ∗m0 ST1T
m
0 ≤ s-lim

n→∞
T ∗n1 ST0T

n
1 ,

and by symmetry equality holds in this relation. Thus, the asymptotic limit
of T can be defined by

STh = lim
m→∞

T ∗m0 ST1T
m
0 h = lim

n→∞
T ∗n1 ST0T

n
1 h

= lim
m→∞

lim
n→∞

T ∗m0 T ∗n1 Tn1 T
m
0 h = lim

n→∞
lim
m→∞

T ∗m0 T ∗n1 Tn1 T
m
0 h

for any h ∈ H. Note that 0 ≤ ST ≤ STi and T ∗i STTi = ST for i = 0, 1. In
fact,

ST = max{A ∈ B(H) : 0 ≤ A ≤ I, T ∗i ATi = A, i = 0, 1}.
We say that T is strongly stable if N (ST ) = {0}, that is, Tm0 Tn1 h → 0

(m,n→∞) for h ∈ H.
Our goal in this paper is to find some orthogonal decompositions of H

induced by bicontractions T for which ST is an orthogonal projection. So, in
Section 2 we get some conditions on T under which ST = S2

T . We describe
in the language of asymptotic limits the Nagy–Foiaş–Langer type decom-
position of T relative to a bicontraction T . The case when T consists of
hyponormal or quasinormal contractions is considered here, where we show
that ST ∗ = S2

T ∗ .
In Section 3 we use the operators ST and STi (i = 0, 1) to refine the Nagy–

Foiaş–Langer type decomposition for the bicontractions T with ST = S2
T

(and ST ∗ = S2
T ∗). This decomposition is related to the general Wold type

decomposition of a bi-isometry, obtained by D. Popovici [P] and recently, in
a different way, by Bercovici–Douglas–Foiaş [BDF].

2. Invariant subspaces induced by the asymptotic limit. As in the
case of a single contraction (see [K]), many interesting facts for bicontractions
arise in the case when ST is an orthogonal projection, that is, ST = S2

T , or
equivalently N (ST − S2

T ) = H. The following proposition, which extends
Lemmas 1 and 2 of [KVP], gives interesting information for this case of
bicontractions.

Proposition 2.1. For any bicontraction T = (T0, T1) on H we have:

(i) N (ST − S2
T ) = N (I − ST )⊕N (ST ) is the maximum subspace of H

which is invariant for T0 and T1 and on which ST commutes with T0
and T1.

(ii) N (I − ST ) and N (ST ) are the maximum invariant subspaces for T0
and T1 in H such that T0 and T1 are isometries on N (I − ST ), and
T is strongly stable on N (ST ). In addition,

N (I − ST ) = {h ∈ H : ‖Tm0 Tn1 h‖ = ‖h‖, ∀m,n ∈ N}.(2.1)
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Moreover, if N (I − STi) is invariant for T1−i (i = 0, 1) then

N (I − ST ) = N (I − ST0) ∩N (I − ST1).(2.2)
Proof. Observe that N (I−ST ) and N (ST ) are contained in N (ST −S2

T ),
and are orthogonal. So, N (I − ST )⊕N (ST ) ⊂ N (ST − S2

T ). Conversely, let
h ∈ N (ST − S2

T ) be such that h is orthogonal to N (I − ST )⊕N (ST ). Then
STh ∈ N (I −ST ) and therefore 〈h, STh〉 = 0, which means that STh = 0 or
h ∈ N (ST ). Hence h = 0, since h is orthogonal to N (ST ). Consequently,

N (ST − S2
T ) = N (I − ST )⊕N (ST ).

Now recall that T ∗i STTi = ST , whenceN (ST ) is invariant for Ti (i = 0, 1).
As we also have (Ti is a contraction)

T ∗i (I − ST )Ti ≤ I − ST ,
it follows that N (I − ST ) is invariant for Ti (i = 0, 1).

Furthermore, for m,n, p, q ∈ N one has

T
∗(m+p)
0 T

∗(n+q)
1 Tn+q1 Tm+p

0 ≤ T ∗m0 T ∗n1 Tn1 T
m
0 ,

and setting p, q →∞ we get ST ≤ T ∗m0 T ∗n1 Tn1 T
m
0 , whence

I − T ∗m0 T ∗n1 Tn1 T
m
0 ≤ I − ST .

This gives on one hand,
N (I − ST ) ⊂ {h ∈ H : ‖Tm0 Tn1 h‖ = ‖h‖, ∀m,n ∈ N}.

On the other hand, if ‖Tm0 Tn1 h‖= ‖h‖ for m,n∈N then letting m,n → ∞
one obtains ‖STh‖ = ‖h‖, and since 0 ≤ ST ≤ I one infers h = STh, that is,
h ∈ N (I − ST ). Hence the relation (2.1) holds.

Next, if h ∈ N (ST − S2
T ) and h = h1 ⊕ h0 with h1 ∈ N (I − ST ),

h0 ∈ N (ST ) then
(STTi − TiST )h = Tih1 − Tih1 = 0, i = 0, 1,

therefore ST commutes with T0 and T1 on N (ST − S2
T ).

Let nowM ⊂ H be another subspace invariant for T0 and T1 such that
STTik = TiSTk for k ∈ M, i = 0, 1. Then STTm0 Tn1 k = Tm0 T

n
1 STk for any

m,n ∈ N, and this implies (Ti being an ST -isometry)
STk = T ∗m0 T ∗n1 STT

m
0 T

n
1 k = T ∗m0 T ∗n1 Tm0 T

n
1 STk.

Letting m,n → ∞ we get STk = S2
Tk, that is, k ∈ N (ST − S2

T ). So M ⊂
N (ST − S2

T ) and we conclude that N (ST − S2
T ) is the maximum invariant

subspace for Ti on which ST commutes with Ti, i = 0, 1, which proves (i).
It is clear (by (2.1)) that Ti is an isometry on N (I − ST ), i = 0, 1,

and (by the definition of ST ) we have Tm0 Tn1 h → 0 (m,n → ∞) for h ∈
N (ST ), that is, T is strongly stable on N (ST ). In addition, it is obvious
that N (I − ST ) and N (ST ) are the maximum subspaces with the above
mentioned properties. This proves (ii).
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Finally, if N (I −STi) is invariant for T1−i then N (I −ST0)∩N (I −ST1)
is invariant for T0 and T1, and clearly Ti is an isometry on this subspace for
i = 0, 1. Since N (I −ST ) ⊂ N (I −ST0)∩N (I −ST1) it follows that the two
subspaces coincide (by the maximality of N (I − ST ) cited in (ii)).

Corollary 2.2. For a bicontraction T = (T0, T1) on H we have ST =
S2
T if and only if STTi = TiST for i = 0, 1. Furthermore, if ST = ST ∗ then
ST = S2

T .

Proof. If ST = S2
T then N (ST − S2

T ) = H, so ST commutes with T0
and T1 on H (by Proposition 2.1). Conversely, if STTi = TiST (i = 0, 1)
then necessarily N (ST − S2

T ) = H (by the maximality of N (ST − S2
T ) in

Proposition 2.1(i)), that is, ST = S2
T .

Assume now that ST = ST ∗ . For m,n ∈ N and h ∈ H one has

STh = T ∗m0 T ∗n1 STT
n
1 T

m
0 h = T ∗m0 T ∗n1 ST ∗T

n
1 T

m
0 h

= T ∗m0 T ∗n1 Tn1 T
m
0 ST ∗T

∗m
0 T ∗n1 Tn1 T

m
0 h→ S3

Th (m,n→∞),

hence ST = S3
T . It follows that ST = S2

T .

This corollary extends the corresponding assertions for contractions in
Lemma 1 and Proposition 1 of [KVP].

A special case of bicontractions for which their asymptotic limits are
orthogonal projections is mentioned in the following theorem.

As usual, a bicontraction T = (T0, T1) on H is called completely nonuni-
tary if there is no nonzero subspaces of H which reduce T0 and T1 to uni-
tary operators. Clearly, every strongly stable bicontraction T is completely
nonunitary, because in this case H = N (ST ), therefore N (I−ST ) = {0} (by
Proposition 2.1(i)).

Theorem 2.3. Let T = (T0, T1) be a bicontraction on H with T0 and
T1 hyponormal. Then ST ∗ = S2

T ∗ and the maximum subspace of H which
reduces T0 and T1 to unitary operators is

N (I − ST ∗) =
⋂

m,n≥0
Tm0 T

n
1 [N (I − ST ∗0 ) ∩N (I − ST ∗1 )].(2.3)

Moreover, T ∗ is strongly stable if and only if T is completely nonunitary.

Proof. Since Ti is hyponormal we know (see the proof of [K, Theorem
5.3]) that ST ∗i = S2

T ∗i
and R(ST ∗i ) = N (I − ST ∗i ) reduces Ti to a unitary

operator, for i = 0, 1. As N (ST ∗) is invariant for T ∗0 and T ∗1 , R(ST ∗) will be
invariant for T0 and T1. In addition, because

R(ST ∗) ⊂ R(ST ∗0 ) ∩R(ST ∗1 ) = N (I − ST ∗0 ) ∩N (I − ST ∗1 )

it follows that T0 and T1 are isometries on R(ST ∗). So, we infer from Propo-



Decompositions for bicontractions 47

sition 2.1 that
R(ST ∗) ⊂ N (I − ST ).

Take an arbitrary h = h1 ⊕ h0 ∈ H with h1 ∈ R(ST ∗), h0 ∈ N (ST ∗). We
have (by the above inclusion)

T0ST ∗h = T0ST ∗h1 = T0ST ∗T
∗
0 T0h1 = ST ∗T0h1.

But T ∗0 ST ∗T0h0 = ST ∗h0 = 0, that is, ST ∗T0h0 ∈ N (T ∗0 ) ⊂ N (ST ∗), hence
ST ∗T0h0 = 0. Thus, we obtain T0ST ∗h = ST ∗T0h, and by symmetry one has
T1ST ∗h = ST ∗T1h. This means that ST ∗ commute with T0 and T1, and by
Corollary 2.2 we have ST ∗ = S2

T ∗ .
Now it follows that N (I − ST ∗) is the maximum subspace of H which

reduces T ∗0 and T ∗1 to isometries. In fact, by the above remark, N (I−ST ∗) =
R(ST ∗) is the maximum subspace which reduces T0 and T1 to unitary oper-
ators. Obviously, this subspace is contained in the right side of (2.3), briefly
denoted by NT .

Let h ∈ NT be orthogonal to N (I − ST ∗). So h ∈ N (ST ∗), that is,
T ∗m0 T ∗n1 h → 0 (m,n → ∞). Since h ∈ NT , for any m,n ∈ N there exist
hm,n ∈ N (I−ST ∗0 )∩N (I−ST ∗1 ) such that h = Tm0 T

n
1 hm,n. As N (I−ST ∗0 )∩

N (I − ST ∗1 ) is invariant for T0 and T1, while T0, T1 are isometries on this
subspace, we get

hm,n = T ∗m0 T ∗n1 Tn1 T
m
0 hm,n = T ∗m0 T ∗n1 h→ 0, m, n→∞.

This yields ‖h‖ = ‖hm,n‖ → 0 (m,n→∞), hence h = 0. Thus, (2.3) holds.
Finally, it is clear that N (I−ST ∗) = {0} implies H = N (ST ∗), therefore

T ∗ is strongly stable if (and only if, by the above remark) T is completely
nonunitary.

Remark 2.4. W. Mlak proved in [M] that the “unitary part” in H of
a hyponormal contraction T0 is

⋂
n≥0 T

n
0 N (I − T0T ∗0 ), by using the mini-

mal unitary dilation of T0. This fact was recovered in [S2] without using
dilation, by an argument as above involving the asymptotic limit. In the
present context we cannot use N (I−T0T ∗0 )∩N (I−T1T ∗1 ) in (2.3) instead of
N (I − ST ∗0 ) ∩ N (I − ST ∗1 ), because the former subspace is not invariant for
T0 and T1, in general.

We say that a bicontraction T = (T0, T1) on H is unitary if T0 and T1
are unitary operators. We now give the “asymptotic” version of the Nagy–
Foiaş–Langer decomposition for bicontractions.

Theorem 2.5. For every bicontraction T on H there exists a unique
decomposition of H of the form

H = Hu ⊕H⊥u(2.4)
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such that Hu reduces T to a unitary bicontraction and H⊥u reduces T to a
completely nonunitary bicontraction. In addition,

Hu = N (I − ST ) ∩N (I − ST ∗) = N (I − STST ∗) = N (I − ST ∗ST )(2.5)

= N (I − S1/2
T ST ∗S

1/2
T ) = N (I − S1/2

T ∗ STS
1/2
T ∗ ).

Proof. If h ∈ N (I−ST )∩N (I−ST ∗) then h = STh = ST ∗h = STST∗h =
ST ∗STh, so N (I − ST ) ∩ N (I − ST ∗) ⊂ N (I − STST ∗) ∩ N (I − ST ∗ST ).
Conversely, let h ∈ N (I − STST ∗), that is, h = STST ∗h. We have

‖h‖2 = 〈ST ∗h, STh〉 ≤ ‖S1/2
T ∗ h‖ ‖S

1/2
T h‖ ≤ ‖S1/2

T h‖ ‖h‖,

whence ‖h‖ = ‖S1/2
T ‖, or equivalently (I − ST )h = 0 (as 0 ≤ ST ≤ I).

Similarly, one has ‖h‖ = ‖S1/2
T ∗ h‖, that is, (I − ST ∗)h = 0, and so

N (I − ST ) ∩N (I − ST ∗) = N (I − STST ∗) = N (I − ST ∗ST ).

Now, if h = STST ∗h then as above ‖h‖ = ‖S1/4
T h‖ = ‖S1/4

T ∗ h‖, therefore
h = S

1/2
T h = S

1/2
T ∗ h = STh = ST ∗h = S

1/2
T ST ∗S

1/2
T h = S

1/2
T ∗ STS

1/2
T ∗ h. This

shows that N (I − STST ∗) ⊂ N (I − S
1/2
T ST ∗S

1/2
T ) ∩ N (I − S

1/2
T ∗ STS

1/2
T ∗ ).

Conversely, h = S
1/2
T ST ∗S

1/2
T h gives

‖h‖2 = ‖S1/2
T ∗ S

1/2
T h‖2 ≤ ‖S1/2

T h‖2 ≤ ‖S1/4
T h‖2 ≤ ‖h‖2,

whence ‖h‖2 = ‖S1/2
T h‖2 = ‖S1/4

T h‖2. Hence h = STh = S
1/2
T h and therefore

‖S1/2
T ∗ h‖ = ‖S

1/2
T ∗ S

1/2
T h‖ = ‖h‖ (the last equality follows from our assump-

tion), which yields h = ST ∗h. So, N (I − S1/2
T ST ∗S

1/2
T ) and (by symmetry)

N (I−S1/2
T ∗ STS

1/2
T ∗ ) are contained in N (I−ST )∩N (I−ST ∗). Thus, the above

equalities between subspaces are completed with the last two from (2.5).
Next, by (2.1) for T and T ∗ we see immediately that the subspace Hu :=

N (I−ST )∩N (I−ST ∗) reduces T0 and T1 to unitary operators. In addition,
if M ⊂ H is another such subspace, then M ⊂ Hu by Proposition 2.1(ii).
Hence Hu is the maximum subspace with the property above, and finally,
the reducing decomposition (2.4) for T is unique with T is unitary on Hu,
and completely nonunitary on H⊥u .

Corollary 2.6. For every bi-isometry T = (T0, T1) on H we have
ST ∗ = ST ∗0 T ∗1 , hence Hu = N (I − ST ∗0 T ∗1 ) and H⊥u = N (ST ∗0 T ∗1 ) in (2.4).
Moreover, T is completely nonunitary if and only if T0T1 is a (unilateral)
shift on H.

Proof. Since T0T1 is an isometry, by Theorem 2.3 the maximum subspace
of H which reduces T0T1 to a unitary operator is N (I − ST ∗0 T ∗1 ). So, by
Theorem 2.5 one obtains N (I − ST ∗) ⊂ N (I − ST ∗0 T ∗1 ). On the other hand,
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since
N (I − ST ∗0 T ∗1 ) = N (I − S(T0,T1)∗) =

⋂
n≥0

Tn0 T
n
1 H,

it follows immediately that N (I−ST ∗0 T ∗1 ) reduces T0 and T1 to unitary oper-
ators, hence N (I −ST ∗0 T ∗1 ) ⊂ N (I −ST ∗) by Theorem 2.5. Thus N (I −ST ∗)
= N (I − ST ∗0 T ∗1 ), and since ST ∗ , ST ∗0 T ∗1 = S(T0,T1)∗ are orthogonal projec-
tions, also N (ST ∗) = N (ST ∗0 T ∗1 ). We conclude that ST ∗ = ST ∗0 T ∗1 , and the
remaining assertions of the corollary follow from Theorems 2.3 and 2.5.

Another interesting particular case of Theorem 2.3 is considered below.
Notice that the case of a single quasinormal contraction was considered in
[KVP, Example 3].

Proposition 2.7. For every bicontraction T = (T0, T1) on H with T0
and T1 quasinormal one has ST ∗ = S2

T ∗ . Moreover, ST = S2
T if and only if

either T ∗0 |R(ST )
or T ∗1 |R(ST )

is a coisometry.

In addition, ST = ST ∗ if and only if T ∗i |R(ST )
is normal and R(ST ) is

invariant for TiT ∗i (i=0, 1). In this case N (I−ST )=N (I−ST ∗0 )∩N (I−ST ∗1 ).

Proof. Clearly, ST ∗ = S2
T ∗ by Theorem 2.3. Furthermore, because Ti is

quasinormal, we have (see [S1], or Lemma 2.8 below) STi = S2
Ti

so R(STi) =
N (I − STi) and R(ST ) ⊂ N (I − STi), i = 0, 1. So, if ST = S2

T then R(ST )
reduces T ∗0 and T ∗1 to coisometries.

Conversely, assume that, say, T ∗0 |R(ST )
is a coisometry (R(ST ) being in-

variant for T ∗0 and T ∗1 ). Put T0∗ = T ∗0 |R(ST )
. Then T ∗0∗ = P

R(ST )
T0|R(ST )

is

an isometry on R(ST ). Hence for h ∈ H we obtain

‖STh‖ = ‖PR(ST )
T0STh‖ ≤ ‖T0STh‖ ≤ ‖STh‖,

whence T0STh = P
R(ST )

T0STh. We infer that R(ST ) reduces T0, and since
R(ST ) ⊂ N (I − ST1) we have for m,n ∈ N and h ∈ H,

STh = T ∗m0 Tm0 STh = T ∗m0 T ∗n1 Tn1 T
m
0 STh.

Letting m,n→∞ we infer that ST = S2
T .

Obviously, if ST = ST ∗ then R(ST ) reduces Ti to unitary operators,
i = 0, 1. Conversely, suppose that T ∗i |R(ST )

are normal operators for i = 0, 1.
Then for h ∈ H we have

T ∗0PR(ST )
T0STh = P

R(ST )
T0T

∗
0 STh = T0T

∗
0 STh,

since PN (ST )T0T
∗
0 STh = 0 by the assumption that R(ST ) is invariant for

T0T
∗
0 . It follows that T ∗0PN (ST )T0STh = 0, which gives PN (ST )T0STh = 0,

that is, T0STh = P
R(ST )

T0STh. Hence R(ST ) reduces T0, and so T0T ∗0 STh =
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T ∗0 T0STh = STh which means that T0 is unitary on R(ST ). By symmetry,
R(ST ) also reduces T1 to a unitary operator, and by Theorem 2.3 we get

R(ST ) = N (I − ST ∗) = N (I − ST ).

Finally, this leads to ST = ST ∗ . In this case

N (I − ST ) ⊂ N (I − ST ∗0 ) ∩N (I − ST ∗1 ) ⊂ N (I − ST0) ∩N (I − ST1),

and since N (I−ST ∗0 )∩N (I−ST ∗1 ) is invariant for T0 and T1 it follows (from
the second inclusion) that T0 and T1 are isometries on this subspace. Thus
N (I − ST ) = N (I − ST ∗0 ) ∩ N (I − ST ∗1 ), by the maximality of N (I − ST )
given in Proposition 2.1(ii).

Let us remark that if T = (T0, T1) consists of quasinormal commut-
ing contractions and either T0ST1 = ST1T0 or T1ST0 = ST0T1 then ST =
ST0ST1 = ST1ST0 , hence ST = S2

T . We see in the example below that the
condition ST = S2

T does not ensure the commutativity of T1−i with STi ,
i = 0, 1. We first give

Lemma 2.8. For every quasinormal contraction T0 on H one has ST0 =
ST ∗0 T0 = S2

T0
.

Proof. Since T0 is quasinormal we have (by induction) (T ∗0 T0)n = T ∗n0 Tn0
for any n ∈ N. Then

ST0h = lim
n→∞

T ∗2n0 T 2n
0 h = lim

n→∞
(T ∗0 T0)

2nh = ST ∗0 T0h = S2
T0h

for h ∈ H. Moreover, the above operator is an orthogonal projection because
T ∗0 T0 is positive.

Example 2.9. Let S be the canonical shift on l2+ and K = R(S) ⊕ l2+.
Put S0 = S|R(S) and let S1 : l2+ → R(S) be given by S1 = SPN (S∗). Consider
T0, T1 ∈ B(K) defined by the operator matrices

T0 =

(
S0 S1

0 0

)
, T1 =

(
0 0

0 S

)
relative to the above decomposition of K. We have

T ∗0 T0 = IR(S) ⊕ PN (S∗), T ∗0 T
2
0 = T0 = T0T

∗
0 T0,

hence T0, and also T1, are quasinormal contractions on K. In addition T0T1 =
T1T0 = 0, so T = (T0, T1) is a bicontraction on K, and clearly, by the above
commutativity condition for T0 and T1 we have ST = 0.

On the other hand, (by Lemma 2.8) ST0 = ST ∗0 T0 = T ∗0 T0 and

T1ST0 = 0⊕ SPN (S∗) = 0⊕ S1 6= 0 = 0⊕ PN (S∗)S = ST0T1.
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Similarly, since ST1 = 0⊕ Il2+ we get

T0ST1 =

(
0 S1

0 0

)
6= 0 = ST1T0.

We conclude that ST = S2
T but T1−iSTi 6= STiT1−i, or equivalently

T1−i|Ti| 6= |Ti|T1−i because |Ti| = STi in this case, for i = 0, 1. This also
shows that the conditions T1−i|Ti| = |Ti|T1−i (i = 0, 1) are not necessary to
ensure ST = S2

T , when T0 and T1 are quasinormal.

3. Decompositions in the case ST = S2
T . The asymptotic limits can

be used to refine the Nagy–Foiaş–Langer decomposition for bicontractions
when ST is an orthogonal projection. This decomposition (to be given below)
generalizes the Wold type decompositions for bi-isometries which appear in
[P] and [BDF]. Recall that a similar result for contractions can be found
in [K].

We say (briefly) that a subspaceM⊂ H is invariant (resp. reducing) for
a bicontraction T = (T0, T1) on H ifM is invariant (resp. reducing) for T0
and T1. Also, we say that T is coisometric on H if both Ti are coisometries.

The statements of Theorem 3.1 and Corollary 3.2 below extend Theo-
rem 1 and Corollary 1 of [KVP] obtained for a single contraction.

Theorem 3.1. Let T = (T0, T1) be a bicontraction on H with ST = S2
T .

Then H admits the decomposition

H = N (I − ST ) ∩N (I − ST ∗)⊕N (I − ST ) ∩N (ST ∗)⊕N (ST )(3.1)
where all the three summands reduce T in such a way that T is unitary on
N (I − ST ) ∩ N (I − ST ∗), T ∗ is coisometric and strongly stable on N (I −
ST ) ∩N (ST ∗), and T is strongly stable on N (ST ).

Moreover, if N (ST ) 6= {0} and ST ∗ = S2
T ∗ then N (ST ) admits the de-

composition

N (ST ) = N (I − ST ∗) ∩N (ST )⊕N (ST ∗) ∩N (ST ),(3.2)
where the two summands reduce T , and T is coisometric and strongly stable
on N (I − ST ∗) ∩ N (ST ), while T and T ∗ are strongly stable on N (ST ) ∩
N (ST ∗).

Proof. Since ST = S2
T one has H = N (I−ST )⊕N (ST ) where N (I−ST )

reduces T to a bi-isometry and T is strongly stable on N (ST ).
Let W = (W0,W1) where Wi = Ti|N (I−ST ), i = 0, 1. By (2.5), the maxi-

mum subspace which reduces T to a unitary bicontraction is
Hu = N (I − ST ) ∩N (I − ST ∗).

Now since Wi is an isometry on N (I − ST ) it follows that SW ∗i = S2
W ∗i

for i = 0, 1, and by Corollary 2.6 we obtain SW ∗ = S2
W ∗ . Therefore
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N (I − ST ) = N (I − SW ∗)⊕N (SW ∗)

where the summands reduce Wi, and so Ti, i = 0, 1. We also have

N (I − SW ∗) = N (I − ST ) ∩N (I − ST ∗) = Hu,
N (SW ∗) = N (I − ST ) ∩N (ST ∗),

hence T ∗m0 T ∗n1 h→ 0 (m,n→∞) for h ∈ N (SW ∗) ,that is, T ∗ is co-isometric
and strongly stable on N (SW ∗).

Next supposeN (ST ) 6= {0} and letW ′ = (W ′0,W
′
1) whereW ′i = Ti|N (ST ),

i = 0, 1. Then relative to the decomposition

H = Hu ⊕N (SW ∗)⊕N (ST )

we have ST ∗ = I ⊕ 0⊕ SW ′∗ , whence
N (ST ∗) = N (SW ∗)⊕N (SW ′∗) ⊂ N (SW ∗)⊕N (ST ).

Since N (SW ∗) ⊂ N (I − ST ) = H	N (ST ) we infer that

N (SW ′∗) = N (ST ∗) ∩N (ST ).

On the other hand, since I − ST ∗ = 0⊕ I ⊕ (I − SW ′∗) we have

N (I − ST ∗) = Hu ⊕N (I − SW ′∗) ⊂ Hu ⊕N (ST ),

whence
N (I − SW ′∗) = N (I − ST ∗) ∩N (ST ).

Assume ST = S2
T and ST ∗ = S2

T ∗ . Clearly, the second condition is equiv-
alent to SW ′∗ = S2

W ′∗ , which also means

N (ST ) = N (I − SW ′∗)⊕N (SW ′∗).

Thus, the summands, reducing for W ′, also reduce T in such a way that
T ∗ is a bi-isometry and T is strongly stable on N (I − SW ′∗), and T, T ∗ are
strongly stable bicontractions on N (SW ′∗).

Corollary 3.2. For a bicontraction T = (T0, T1) on H one has ST =
ST ∗ if and only if Ti = Ui ⊕ Si (i = 0, 1) relative to a decomposition H =
M⊕M⊥, whereM reduces T so that U = (U0, U1) is unitary onM, while
S = (S0, S1) and S∗ are strongly stable onM⊥.

Proof. Suppose ST = ST ∗ . Then for m,n ≥ 1 we have

ST = T ∗m0 T ∗n1 ST ∗T
n
1 T

m
0 = T ∗m0 T ∗n1 Tn1 T

m
0 ST ∗T

∗m
0 T ∗n1 Tn1 T

m
0 ,

and letting m,n→∞ we get ST = STST ∗ST = S3
T . It follows that S

2
T = S4

T
and so ST = S2

T . By our assumption, N (I − ST ) ∩ N (ST ∗) = {0} and
N (I − ST ∗) ∩N (ST ) = {0}, so we infer from (3.1) and (3.2) that

H = N (I − ST ) ∩N (I − ST ∗)⊕N (ST ) ∩N (ST ∗) = N (I − ST )⊕N (ST ).

Thus T is unitary onM = N (I − ST ), while T and T ∗ are strongly stable
onM⊥ = N (ST ), and Ti = Ti|M ⊕ Ti|M⊥ , i = 0, 1.
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Conversely, if Ti = Ui ⊕ Si on H =M⊕M⊥ andM reduces T and Ui
is unitary onM for i = 0, 1, while S = (S0, S1) and S∗ are strongly stable
onM⊥, then ST = I ⊕ 0 = ST ∗ .

The decomposition (3.1) can be refined by the general Wold type decom-
position of a bi-isometry which was obtained in [P] and recently in [BDF].
So, the following result holds.

Theorem 3.3. Let T = (T0, T1) be a bicontraction on H with ST = S2
T .

Then H admits a unique decomposition of the form

H = Hu ⊕Hus ⊕Hsu ⊕Hs ⊕H1 ⊕H0,(3.3)

where all the summands reduce T , and where T0|Hu⊕Hus and T1|Hu⊕Hsu are
unitary, T0|Hsu and T1|Hus are shift operators, T is a bi-shift on Hs, T is
strongly stable on H0, while T is a bi-isometry on H1 and there is no nonzero
reducing subspace for T of H1 on which either T is a bi-shift, or T0 is unitary
or T1 is unitary. Moreover, T0T1 is a shift on H1.

Proof. Clearly, Hu = N (I − ST ) ∩ N (I − ST ∗) and H0 = N (ST ) by
Theorem 3.1. Denote W = (W0,W1), Wi = Ti|N (I−ST ), i = 0, 1. Since W is
an isometry we have (by Corollary 2.6)

N (I − ST ) = N (I − SW ∗)⊕N (SW ∗) = Hu ⊕N (SW ∗0W ∗1 ).

So, we infer from (3.1) that

N (I − ST ) ∩N (ST ∗) = N (SW ∗0W ∗1 ) =
⊕
n≥0

Wn
0 W

n
1 N (W ∗0W

∗
1 )

⊃
⊕
n≥0

Wn
1

⋂
m≥0

Wm
0 N (W ∗1 ) ⊃

⊕
n≥0

Wn
1

⋂
m≥0

Wm
0

⊕
j≥0
N (W ∗1W

j
0 ) =: Hus.

Observe that the subspace

H0∗ :=
⋂
j≥0
N (W ∗1W

j
0 ) ⊂ N (W ∗1 )

is invariant for W0, so for T0, and the subspace⋂
m≥0

Wm
0 H0∗ = N (I − S(T0|H0∗ )

∗) ⊂ N (W ∗1 )

is wandering for W1 and it reduces T0|H0∗ to a unitary operator. Hence the
subspace

Hus =
⊕
n≥0

Wn
1 N (I − S(T0|H0∗ )

∗) =W0

⊕
n≥0

Wn
1 (W0|H0∗)

∗N (I − S(T0|H0∗ )
∗)

reduces W1 to a shift, and from the second equality we get Hus = W0Hus,
so Hus also reduces W0. This implies that Hus reduces T1 to a shift and T0
to a unitary operator.
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Similarly, if H1∗ :=
⋂
j≥0N (W ∗0W

j
1 ) then

Hsu :=
⊕
m≥0

Wm
0 N (I − S(T1|H1∗ )

∗) ⊂ N (I − ST ) ∩N (ST ∗)

reduces T0 to a shift and T1 to a unitary operator. Since SW ∗i = S2
W ∗i

, i = 0, 1,
and we have

Hus ⊂ N (I − SW ∗0 ) ∩N (SW ∗1 ),

Hsu ⊂ N (I − SW ∗1 ) ∩N (SW ∗0 ),

it follows that the subspaces Hu, Hus and Hsu are pairwise orthogonal in
N (I − ST ) ∩N (ST ∗).

Now, the subspace H0∗ ∩ H1∗ ⊂ N (W ∗0 ) ∩ N (W ∗1 ) is wandering for the
bi-isometry W = (W0,W1), and the subspace

Hs :=
⊕
m,n≥0

Wm
0 W

n
1 (H∗0 ∩H∗1)

is invariant for W , and also for T . In fact,

W0Hs =
⊕

m≥1,n≥0
Wm

0 W
n
1 (H∗0 ∩H∗1) = Hs 	

⊕
n≥0

Wn
1 (H∗0 ∩H∗1)

whence (as W ∗0Wn
1 H1∗ = {0}, n ≥ 0)

W ∗0Hs = Hs +W ∗0

(⊕
n≥0

Wn
1 (H∗0 ∩H∗1)

)
= Hs.

Similarly, W ∗1Hs = Hs, and therefore Hs reduces W , and so T , to a
bi-shift. Since Hs ⊂ N (SW ∗0 ) ∩N (SW ∗1 ), we have

N (I −ST )∩N (ST ∗)	Hs ⊃ N (I −SW ∗0 )∨N (I −SW ∗1 ) ⊃ Hu⊕Hus⊕Hsu,

whence the subspace

H1 := N (I − ST ) ∩N (ST ∗)	 (Hu ⊕Hus ⊕Hsu)

is also reducing for T . In addition it is easy to see (as in [P]) that the
subspaces Hus, Hsu and Hs are maximal with the properties quoted above.
This implies that H1 contains no nonzero reducing subspace for T on which
either T is a bi-shift, or T0 is unitary, or T1 is unitary.

Finally, since H1 ⊂ N (ST ∗), T ∗|H1 is strongly stable, that is, T0T1|H1 is
a shift, by Corollary 2.6.

Remark 3.4. The structure of the subspaces Hus, Hsu and Hs for a
bi-isometry V was obtained by D. Popovici [P]. Here we describe these sub-
spaces as well as the other from decomposition (3.3) using the context of
asymptotic limits of a bicontraction T = (T0, T1).
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Corollary 3.5. Let T = (T0, T1) be a bicontraction on H with ST = S2
T ,

ST ∗ = S2
T ∗ and N (ST ) 6= {0}. Then H admits a unique decomposition of the

form

H = Hu ⊕Hus ⊕Hsu ⊕Hs ⊕Huc ⊕Hcu ⊕Hc ⊕H11 ⊕H00,(3.4)

where all summands reduce T and where T0|Hu⊕Hus⊕Huc and T1|Hu⊕Hsu⊕Hcu

are unitary, T0|Hsu and T1|Hus are shifts, T0|Hcu and T1|Huc are coshifts, T
and T ∗ are strongly stable on H00, and there is no nonzero reducing subspace
for T of H11 on which either T0 or T1 is unitary, or T or T ∗ is a bi-shift.

In addition, Ti|H11 = Zi⊕Z ′i on H11 = H1⊕H′1 where Zi are isometries
and Z0Z1 is a shift on H1, while Z ′i are coisometries, and Z ′0Z

′
1 is a co-shift

on H′1, for i = 0, 1.

Proof. By Theorem 3.3 for the bi-isometry W and the bicontraction W ′
(W,W ′ as in the proof of Theorem 3.1) we have

N (I − ST ) = Hu ⊕Hus ⊕Hsu ⊕Hs ⊕H1,

and respectively

N (ST ) = H0 = Huc ⊕Hcu ⊕Hc ⊕H′1 ⊕H00.

Here H00 = N (ST ) ∩ N (ST ∗), H′1 contains no nonzero reducing subspaces
for T on which either T ∗ is a bi-shift, or the coisometries T0 or T1 are
unitary, and in addition, T is strongly stable, that is, T0T1 is a co-shift
on H′1. Clearly, the other subspaces of N (ST ) have the meaning from (3.4)
for the bi-isometry T ∗. So, putting H11 = H1⊕H′1 we get the decomposition
(3.4) of H = N (I − ST )⊕N (ST ), in view of (3.1) and (3.2).

Since Hus ⊕Hsu ⊕Hs ⊂ N (I − ST ) ∩N (ST ∗) we have necessarily

Hus ⊂ N (I − ST ∗0 ) ∩N (I − ST ) ∩N (ST ∗1 )(3.5)

= N (I − ST ∗0 ) ∩N (I − ST ) ∩N (ST ),

Hsu ⊂ N (I − ST ∗1 ) ∩N (I − ST ) ∩N (ST ∗0 )(3.6)

= N (I − ST ∗1 ) ∩N (I − ST ) ∩N (ST ),

and

(3.7) Hs ⊂ N (I − ST ) ∩N (ST ∗0 ) ∩N (ST ∗1 ),

but the inclusions may be strict, as in Remark 3.9 below.
By Theorem 3.1 of [KO] we also get the following

Corollary 3.6. Let T = (T0, T1) be a bicontraction on H. Then there
exist a unique minimal Hilbert space K ⊃ H and a bicontraction T̃ = (T̃0, T̃1)
on K extending T (i.e. such that T̃ |H = T ) and admitting a unique decom-
position of the form given in Theorem 3.3.
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We find now when these inclusions become equalities. Clearly, we can
reduce this problem to the case of a bi-isometry (by (3.3)).

Proposition 3.7. Let T = (T0, T1) be a bi-isometry on H. Then
(i) Hus = N (I−ST ∗0 )∩N (ST ∗1 ) and Hsu = N (I−ST ∗1 )∩N (ST ∗0 ) if and

only if Hs ⊕H1 = N (ST ∗0 ) ∩ N (ST ∗1 ), where H1 is the subspace ap-
pearing in decomposition (3.3). In this case, Hs⊕H1 is the maximum
subspace which reduces Ti (i = 0, 1) to a shift.

(ii) Hs = N (ST ∗0 ) ∩ N (ST ∗1 ) and H1 = {0} if and only if T0 and T1
doubly commute.

Proof. Suppose we have equalities in (3.5) and (3.6), where N (I − ST )
= H. Since T0 is a shift on Hsu, that is, T ∗n0 h → 0 (n → ∞) for h ∈ Hsu,
we have Hsu ⊂ N (ST ∗0 ). Thus, since ST ∗0 = S2

T ∗0
and ST ∗ = S2

T ∗ (T is a
bi-isometry), we get the decompositions

H = N (I − ST ∗0 )⊕N (ST ∗0 )

= N (I − ST ∗)⊕ [N (I − ST ∗0 )	N (I − ST ∗)]⊕Hsu ⊕ [N (ST ∗0 )	Hsu]
= Hu ⊕Hus ⊕Hsu ⊕ [N (ST ∗0 )	Hsu].

Then from (3.3) we infer (as H0 = N (ST ) = {0} in this case) that Hs⊕H1 =
N (ST ∗0 ) 	 Hsu, or N (ST ∗0 ) = Hsu ⊕ Hs ⊕ H1. By symmetry we also have
N (ST ∗1 ) = Hus ⊕Hs ⊕H1, and so

Hs ⊕H1 ⊂ N (ST ∗0 ) ∩N (ST ∗1 ) =: Hss.
Now if h ∈ Hss and we write h = h1 ⊕ h0 = h2 ⊕ h′0 with h1 ∈ Hus,
h2 ∈ Hsu and h0, h

′
0 ∈ Hs ⊕ H1, then h1 ⊕ (−h2) ⊕ (h0 − h′0) = 0, hence

h1 = h2 = 0 and h0 = h′0. This implies h = h0 ∈ Hs ⊕H1, and we conclude
that Hs ⊕ H1 = Hss. Clearly, in this case the subspace Hss reduces Ti
(i = 0, 1) to a shift, and it contains any other subspace of H with this
property.

Conversely, assume that Hs ⊕ H1 = N (ST ∗0 ) ∩ N (ST ∗1 ). Then as above
we get the decomposition

H = Hu⊕[N (I−ST ∗0 )	N (I−ST ∗)]⊕[N (ST ∗0 )	N (ST ∗0 )∩N (ST ∗1 )]⊕Hs⊕H1,

and from (3.3) we infer that

Hus ⊕Hsu = N (I − ST ∗0 ) ∩N (ST ∗1 )⊕N (ST ∗0 ) ∩ [N (ST ∗0 ) ∩N (ST ∗1 )]
⊥.

Since Hus ⊂ N (I − ST ∗0 ) ∩ N (ST ∗) and Hsu ⊂ N (I − ST ∗1 ) ∩ N (ST ∗0 ) (by
(3.3)), the preceding equality leads to Hus = N (I −ST ∗0 )∩N (ST ∗1 ) and also
(because ST ∗1 = S2

T ∗1
)

Hsu = N (ST ∗0 ) ∩ [N (ST ∗0 ) ∩N (ST ∗1 )]
⊥ ⊃ N (ST ∗0 ) ∩N (I − ST ∗1 ),

hence Hsu = N (I − ST ∗1 ) ∩N (ST ∗0 ). This completes the proof of (i).
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For (ii) it is clear that if Hs = N (ST ∗0 ) ∩ N (ST ∗1 ) and H1 = {0} then
T0 and T1 doubly commute on Hs, and finally, they doubly commute on
H = Hu ⊕Hus ⊕Hsu ⊕Hs (T being a bi-isometry).

Conversely, if T0T ∗1 = T ∗1 T0 then N (I − ST ∗i ) and N (ST ∗i ) reduce T1−i,
and soN (I−ST ∗i )∩N (ST ∗1−i

) reduces Ti (resp. T1−i) to a unitary (resp. shift)
operator, for i = 0, 1. Thus, it is needed that Hus = N (I − ST ∗0 ) ∩ N (ST ∗1 )
and Hsu = N (I−ST ∗1 )∩N (ST ∗0 ), which gives Hs⊕H1 = N (ST ∗0 )∩N (ST ∗1 ).
But, in this case we have Hs = N (ST ∗0 )∩N (ST ∗1 ) because T0 and T1 doubly
commute on Hs ⊕H1, hence H1 = {0}. This ends the proof.

Remark 3.8. In fact, this proposition shows that a bi-isometry T =
(T0, T1) on H induces an orthogonal decomposition

H = Hu ⊕Hus ⊕Hsu ⊕Hss,(3.8)

where the subspaces have the above meaning, if and only ifHus = N (I−ST ∗0 )
∩ N (ST ∗1 ) and Hsu = N (I − ST ∗1 ) ∩ N (ST ∗0 ), while in this case Hss =
N (ST ∗0 ) ∩N (ST ∗1 ). Hence Hss reduces T0 and T1 to shift operators and it is
the maximum subspace with this property.

Recall that the decomposition (3.8) is known as the Słociński decompo-
sition (see [Sl]). Moreover in (3.8) we have Hss = Hs if and only if T0 and
T1 doubly commute.

Remark 3.9. In Example 1 of [GS] a bi-isometry T was given for which
Hus = N (I − ST ∗0 ) ( N (ST ∗1 ) and Hsu ⊕ H1 = N (ST ∗0 ) with N (ST ∗0 ) ∩
N (ST ∗1 ) = {0} = Hu. In view of the above strict inclusion, N (I − ST ∗1 ) ⊂
Hsu ⊕H1 and also H1 6= {0} because otherwise we get Hsu = N (I − ST ∗1 ),
a contradiction. So Hsu ( N (I − ST ∗1 ) = N (I − ST ∗1 ) ∩ N (ST ∗0 ), even if
Hus = N (I −ST ∗0 )∩N (ST ∗1 ), hence T does not have a Słociński decomposi-
tion (3.8).

Remark 3.10. Consider the bicontraction T = (T0, T1) on K from Ex-
ample 2.9. Since ST = 0, T is strongly stable on K. On the other hand, as
T0, T1 are quasinormal, by Theorem 2.3 we have ST ∗ = S2

T ∗ and R(ST ∗) ⊂
R(ST ) = {0}, that is, ST ∗ = {0}. Hence T ∗ is strongly stable on K and we
have K = N (ST ) = N (ST ∗) = K00 in the corresponding decomposition (3.4).

4. Remarks on invariant subspaces for bicontractions. To every
bicontraction T = (T0, T1) onH one can associate a bi-isometry V = (V0, V1)
on R(ST ) such that

(4.1) ViS
1/2
T h = S

1/2
T Tih (h ∈ H, i = 0, 1).

Clearly, Vi is an isometry (Ti being an ST -isometry), and V0V1 = V1V0 be-
cause T0T1 = T1T0. Since N (ST ) is invariant for S

1/2
T Ti, R(ST ) is invariant
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for T ∗i S
1/2
T , and the above definition of Vi implies

(4.2) S
1/2
T V ∗i k = T ∗i S

1/2
T k (k ∈ R(ST ), i = 0, 1).

This relation gives ViSTV ∗i ≤ ST on R(ST ), hence V ∗i is an ŜT -contrac-
tion (i = 0, 1), where ŜT =ST |R(ST )

. Other properties of V are summarized in

Proposition 4.1. Let T = (T0, T1) be a bicontraction on H and V =
(V0, V1) be the bi-isometry on R(ST ) associated to T as in (4.1). Then

(4.3) lim
m,n→∞

V ∗m0 V ∗n1 ŜTV
n
1 V

m
0 k = lim

m,n→∞
V ∗m0 V ∗n1 ŜT

1/2
V n
1 V

m
0 k = k

and

lim
m,n→∞

V m
0 V n

1 ŜTV
∗n
1 V ∗m0 k = lim

n→∞
V n
1−iS

1/2
T ST ∗i S

1/2
T V ∗n1−ik = S

1/2
T ST ∗S

1/2
T k

(4.4)

for every k ∈ R(ST ) and i = 0, 1, where the operator limit in (4.4) is con-
sidered as acting on R(ST ). Moreover, the operator S1/2

T ST ∗S
1/2
T commutes

with V0 and V1 and R(S1/2
T ST ∗S

1/2
T ), as a subspace of R(ST ), reduces V0

and V1 to unitary operators.

Proof. For every k ∈ S1/2
T h with h ∈ H and any integers m,n ≥ 1,

‖I − V ∗m0 V ∗n1 ŜTV
n
1 V

m
0 k‖2 = ‖V ∗m0 V ∗n1 S

1/2
T (I − ST )Tm0 Tn1 h‖2

≤ ‖(I − ST )1/2Tm0 Tn1 h‖2 = ‖Tm0 Tn1 h‖2 − ‖S
1/2
T Tm0 T

n
1 h‖2 → 0

as m,n→∞. Since 0 ≤ I − S1/2
T ≤ I − ST we get as above

‖I − V ∗m0 V ∗n1 ŜT
1/2
V n
1 V

m
0 k‖2 ≤ ‖(I − S1/2

T )1/2Tm0 T
n
1 h‖2

≤ ‖(I − ST )1/2Tm0 Tn1 h‖2 → 0

as m,n → ∞. So, the first equality of (4.3) holds for every k ∈ R(ST ) (the
corresponding sequences are bounded).

Now from (4.1) and (4.2) we obtain

V m
0 V n

1 ŜTV
∗n
1 V ∗m0 k = S

1/2
T Tm0 T

n
1 T
∗n
1 T ∗m0 S

1/2
T k → S

1/2
T ST ∗S

1/2
T k

as m,n→∞, for any k ∈ R(ST ), which proves the second equality of (4.4).
Obviously, R(ST ) reduces the operator S1/2

T ST ∗S
1/2
T (which is self-adjoint),

so this operator can be considered in B(R(ST )). On the other hand, since

V m
i ŜTV

∗m
i k = S

1/2
T Tmi T

∗m
i S

1/2
T k → S

1/2
T ST ∗i S

1/2
T k

as m→∞, we have (by the previous remark)

S
1/2
T ST ∗S

1/2
T k = lim

n→∞
V n
1−iS

1/2
T ST ∗i S

1/2
T V ∗n1−ik

for k ∈ R(ST ) and i = 0, 1. So, the first equality of (4.4) holds true.
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For the last assertion notice that by (4.1) and (4.2), V ∗i is a S1/2
T ST ∗S

1/2
T -

isometry, that is, ViS
1/2
T ST ∗S

1/2
T V ∗i = S

1/2
T ST ∗S

1/2
T , because T ∗i is an ST ∗-

isometry, i = 0, 1. This also implies

S
1/2
T ST ∗S

1/2
T V ∗i = V ∗i S

1/2
T TiST ∗T

∗
i S

1/2
T = V ∗i S

1/2
T ST ∗S

1/2
T ,

which means that S1/2
T ST ∗S

1/2
T commutes with Vi for i = 0, 1. This ensures

that the range

R(S1/2
T ST ∗S

1/2
T ) = S

1/2
T ST ∗S

1/2
T R(S

1/2
T ) = R(S1/2

T ST ∗ST )

as a subspace of R(ST ) reduces V0 and V1. Since from the second equality
of (4.4) it follows that

R(S1/2
T ST ∗S

1/2
T ) ⊂

⋂
m≥0
R(V m

0 ) ∩
⋂
n≥0
R(V n

1 ) = N (I − SV ∗0 ) ∩N (I − SV ∗1 ),

we infer that V0 and V1 are unitary on R(S1/2
T ST ∗S

1/2
T ).

Remark 4.2. From (4.1) one can get the polar decomposition of S1/2
T Ti

(i = 0, 1). Note |S1/2
T Ti| = S

1/2
T , and put Ṽi = JViP where P is the pro-

jection of H onto R(ST ) and J = P ∗ is the canonical embedding of R(ST )
into H. Clearly, Ṽi isometrically maps R(ST ) = N (ST )

⊥ = N (S
1/2
T Ti)

⊥ onto

R(Ṽi) ⊂ R(S1/2
T Ti) ⊂ R(ST ), and

N (Ṽi) = N (P ) = N (ST ) = N (S
1/2
T Ti).

Hence Ṽi is a partial isometry in B(H), and the polar decomposition of S1/2
T Ti

is S1/2
T Ti = ṼiS

1/2
T , while Ṽi is even an extension of Vi, for i = 0, 1.

Observe also that for a bicontraction T ∗ = (T ∗0 , T
∗
1 ) there are isometries

V∗0, V∗1 ∈ B(R(ST ∗)) which satisfy

(4.5) V∗iS
1/2
T ∗ k = S

1/2
T ∗ T

∗
i k (k ∈ R(ST ∗), i = 0, 1).

Recall that two bicontractions T = (T0, T1) on H and S = (S0, S1) on
K are similar if there exists an invertible operator A ∈ B(H,K) satisfying
ATi = SiA, i = 0, 1. If A belonging to B(H,K) is only densely defined, i.e.
R(A) = K with N (A) = {0} and A intertwines Ti with Si (i = 0, 1), one
says that T is a quasiaffine transform of S. Finally, T is quasisimilar to S if
T and S are quasiaffine transforms of each other.

As in the case of a single contraction (see [K]), we can characterize these
concepts using the asymptotic limit operators ST and ST ∗ .

We first give the following
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Lemma 4.3. Let T = (T0, T1) be a bicontraction on H such that N (ST ) =
N (ST ∗) = {0}. Then for i = 0, 1 we have

ViS
1/2
T S

1/2
T ∗ = S

1/2
T S

1/2
T ∗ V

∗
∗i,(4.6)

S
1/2
T ∗ S

1/2
T Vi = V ∗∗iS

1/2
T ∗ S

1/2
T ,(4.7)

ST ∗S
1/2
T Vi = TiST ∗S

1/2
T ,(4.8)

ST ∗STTi = TiST ∗ST .(4.9)

Proof. The hypothesis implies H = R(ST ) = R(ST ∗), so Vi and V∗i are
isometries on H. Then by (4.1) and (4.5) we get

ViS
1/2
T S

1/2
T ∗ = S

1/2
T TiS

1/2
T ∗ = S

1/2
T S

1/2
T ∗ V

∗
∗i,

that is, (4.6). By duality we have V∗iS
1/2
T ∗ S

1/2
T = S

1/2
T ∗ S

1/2
T V ∗i , whence one

obtains (4.7). Now from (4.7) it follows that

ST ∗S
1/2
T Vi = S

1/2
T ∗ V

∗
∗iS

1/2
T ∗ S

1/2
T = (V∗iS

1/2
T ∗ )

∗S
1/2
T ∗ S

1/2
T = TiST ∗S

1/2
T ,

that is, (4.8), while (4.9) is immediate from (4.8).

Theorem 4.4. If T is a bicontraction on H then:

(i) T is similar to a bi-isometry if and only if ST is invertible.
(ii) T is similar to a unitary bicontraction if and only if ST and ST ∗ are

invertible.
(iii) T is quasisimilar to a unitary bicontraction if and only if

N (ST ) = N (ST ∗) = {0}.
Proof. (i) If ST is invertible then T is similar via ST to the bi-isometry

V = (V0, V1) given in (4.1). Conversely, suppose that T is similar to a bi-
isometry S = (S0, S1) on K via an invertible operator A from H onto K.
Let A = Q|A| be the polar decomposition of A, with Q unitary and |A|
invertible. Since ATi = SiA we get Si = Q|A|Ti|A|−1Q∗, whence |A|Ti =
Q∗SiQ|A| = Wi|A| where Wi = Q∗SiQ is an isometry, i = 0, 1. It follows
that |A| =W ∗i |A|Ti, and also Wi = |A|Ti|A|−1, and both give A∗A = |A|2 =
T ∗i A

∗ATi, for i = 0, 1. This forces that A∗A ≤ ST , hence ST is invertible.
(ii) The previous remark implies that if T is similar to a unitary bicon-

traction then ST and ST ∗ are invertible.
Conversely, assume that ST and ST ∗ are invertible, so ATi = SiA as

above, and BT ∗i = S∗iB where S∗i are isometries on G and B ∈ B(H,G) is
invertible. Since Ti = B∗S∗∗i(B

∗)−1 we get SiA = AB∗S∗∗i(B
∗)−1 where S∗∗i

is a coisometry, therefore it is surjective. This yields R(Si) = K, that is, Si
is unitary, i = 0, 1. Hence T is similar to the unitary bicontraction S.

(iii) Suppose that T is quasisimilar to U = (U0, U1) where Ui are unitary
operators on K, i = 0, 1. If A ∈ B(H,K) is such thatR(A) = H, N (A) = {0}
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and ATi = UiA (i = 0, 1) then ATm0 T
n
1 = Um0 U

n
1 A for m,n ∈ N. So,

for h ∈ N (ST ) we have Tm0 Tn1 h → 0 (m,n → ∞), hence Um0 Un1 Ah → 0
(m,n → ∞), which gives Ah = 0 and h = 0, too. Thus N (ST ) = {0}, and
similarly, since U is a quasiaffine transform of T , N (ST ∗) = {0}.

Conversely, assume that N (ST ) = N (ST ∗) = {0}, therefore R(ST ) =

R(ST ∗) = H. We infer thatN (ST ∗S
1/2
T ) = {0} and alsoR(ST ∗S1/2

T ) = H. By
(4.1) and (4.8) and the previous remarks we conclude that T is quasisimilar
to (V0, V1), and it remains to see that V0 and V1 are unitary. Indeed, since
N (T ∗i ) ⊂ N (ST ∗) = {0} one has N (T ∗i ) = {0}. But by (4.2) we have
S
1/2
T N (V ∗i ) ⊂ N (T ∗i ), hence N (V ∗i ) = {0}, which means that Vi is unitary,
i = 0, 1.

As in the case of a single contraction, the above results can be used
to make some remarks on the invariant subspaces of a bicontraction T =
(T0, T1) onH. Obviously, an invariant subspace of T means a jointly invariant
subspace of T0 and T1.

Theorem 4.5. The following statements hold for every bicontraction
T = (T0, T1) on H:

(i) If N (ST ) = N (ST ∗) = {0} then either T0 and T1 are unitary scalar,
or T has nontrivial invariant subspaces which are hyperinvariant for
T0 or T1.

(ii) If ST 6= 0 and ST ∗ 6= 0 then either T0 and T1 are unitary scalar,
or T has nontrivial invariant subspaces which are invariant for any
operator which commutes with T0 and T1.

Proof. (i) The assumption of (i) ensures, by Theorem 4.4, that T is qua-
sisimilar to a bicontraction U = (U0, U1) with Ui unitary. If U0 (or U1) is
nonscalar then U0 (resp. U1) has nontrivial hyperinvariant subspaces, and by
[K, Corollary 4.8] it follows that T0 (resp. T1) has nontrivial hyperinvariant
subspaces. Hence T has nontrivial invariant subspaces, as in the case consid-
ered before. In the other case, one has Ui = λiI with |λi| = 1, and since Ti
is a quasiaffine transform of Ui by an injective operator, we infer Ti = λiI,
i = 0, 1. Clearly, when dimH > 1, any nontrivial subspace of H is invariant
for T .

Note also that N (STi) = N (ST ∗i ) = {0} for i = 0, 1 by the hypothesis
of (i). Thus, one can directly apply [K, Corollary 4.11] for Ti (i = 0, 1) to
obtain the conclusion of (i).

(ii) The assumption of (ii) gives H 6= N (ST ) and H 6= N (ST ∗). So, if
N (ST ) 6= {0} then N (ST ) is a nontrivial invariant subspace for T . Since
h ∈ N (ST ) iff Tm0 Tn1 h → 0 (m,n → ∞), it follows that N (ST ) is also
invariant for any operator which commutes with T0 and T1.
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IfN (ST ∗) 6= {0} then, as above,N (ST ∗) is a nontrivial invariant subspace
for T ∗ and, also, for any operator that commutes with T ∗0 and T ∗1 . In this
case,R(ST ∗) is a nontrivial invariant subspace for T , which remains invariant
for any commutant of T0 and T1.

The other case, namely N (ST ) = N (ST ∗) = {0}, was discussed in (i).

Corollary 4.6. Let T be a bicontraction on H which has no nontriv-
ial invariant subspace. Then either T or T ∗ is strongly stable on H. More
precisely, either T and T ∗ are strongly stable, or T is strongly stable and
0 < ‖ST ∗h‖ < ‖h‖ for all nonzero h ∈ H, or T ∗ is strongly stable and
0 < ‖STh‖ < ‖h‖ for all nonzero h ∈ H.

Proof. By the previous theorem, T has no nontrivial invariant subspaces
iff ST = 0 or ST ∗ = 0, equivalently N (ST ) = H or N (ST ∗) = H. When this
happens, we also haveH = N (I−ST )⊕N (ST ) orH = N (I−ST ∗)⊕N (ST ∗),
that is, N (I − ST ) = {0} or N (I − ST ∗) = {0}. Hence only the following
cases are admissible:

(a) H = N (ST ) = N (ST ∗) which means that T and T ∗ are strongly
stable,

(b) H = N (ST ) and N (ST ∗) = N (I−ST ∗) = {0}, so T is strongly stable
and 0 < ‖ST ∗h‖ < ‖h‖ for 0 6= h ∈ H,

(c) H = N (ST ∗) and N (ST ) = N (I − ST ) = {0}, meaning that T ∗ is
strongly stable and 0 < ‖STh‖ < ‖h‖ for 0 6= h ∈ H.

In the usual terminology (which also appears in [KO]), a bicontraction T
belongs to the class C0· (resp. C1·) if N (ST ) = H (resp. N (ST ) = {0}). Also,
T belongs to C·0 (resp. C·1) if T ∗ belongs to C0· (resp. C1·). For α, β ∈ {0, 1},
the class Cαβ is defined as Cα·∩C·β . Thus, Theorem 4.5 shows that any bicon-
traction of class C11 has nontrivial invariant subspaces, while Corollary 4.6
implies that every bicontraction without nontrivial invariant subspaces be-
longs to C01 or C10. Concerning these latter classes, the following fact can
also be proved.

Theorem 4.7. Every bicontraction that does not belong to the class C00

has nontrivial invariant subspaces if and only if every bicontraction which is
a quasiaffine transform of a unitary bicontraction has nontrivial invariant
subspaces.

Proof. Let T = (T0, T1) be a bicontraction such that either T or T ∗ is not
strongly stable, that is, ST 6= 0 or ST ∗ 6= 0. Suppose that T has no nontrivial
invariant subspace, and firstly that ST 6= 0. This forces N (ST ) = {0} and
hence N (Ti) = {0}, so Ti 6= 0 for i = 0, 1. Since (I − ViV ∗i )S

1/2
T Ti = 0, Vi

being given by (4.1), the assumption on T implies (I−ViV ∗i )S
1/2
T = 0, i = 0, 1

(otherwise, R(Ti) is a nontrivial invariant subspace of T ). As R(ST ) = H it
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follows that Vi is unitary for i = 0, 1, hence T is a quasiaffine transform by
(4.1) of the unitary bicontraction V =(V0, V1). By duality, in the case ST ∗ 6=0
it follows that T ∗ is a quasiaffine transform of the unitary bicontraction
V∗ = (V∗0, V∗1) given in (4.5). We proved that, under the cited assumption
on T , there exist bicontractions (either T or T ∗) without nontrivial invariant
subspaces, that are quasiaffine transforms of unitary bicontractions.

Conversely, let T be a bicontraction onH which is a quasiaffine transform
of a unitary bicontraction U = (U0, U1) on K by an operator A ∈ B(H,K),
such that T has no nontrivial invariant subspaces. Assuming that T is
strongly stable, that is, N (ST ) = H, we get, for 0 6= h ∈ H,

‖Ah‖ = ‖Um0 Un1 Ah‖ = ‖ATm0 Tn1 h‖ → 0 (m,n→∞),

which yields h = 0 (A being injective), a contradiction. Hence T is not
strongly stable, in particular, T is not in the class C00.

Note that Corollary 4.6 and Theorem 4.7 are direct extensions of [K,
Corollary 5.9 and Theorem 4.14].

Finally, notice that some of the above facts concerning invariant sub-
spaces for bicontractions are known (even for multicontractions) and ob-
tained by a different method (see e.g. [KO, Theorems 2.2 and 2.3]). Here we
pointed out the role of asymptotic limit operators in the above problems,
which is similar to the case of a single contraction (see [K]).
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